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INRODUCTION

o Algorithm Configuration: finding parameter settings for an
algorithm so that it performs well on inputs drawn from a
given distribution

Structured Procrastination with Confidence (SPC):
e anytime algorithm configuration procedure
e optimal runtime, up to log factors
e adaptive to be faster on easier problem instances

PROBLEM SETUP

e 1 € N: Potential parameters to choose from

e J ~ I Distribution over possible input instances

e R(i,j): Runtime of parameter setting i on input j

GOAL: (¢, 5)-OPTIMALITY

e We want to find a parameter i* € N s.t.

Ry(i*) < (1 + €)OPT

where:
e R5(1) = [EjNF[min{R(i,j), 75}] is expected runtime of i capping at 75, the

(1 — 6)-quantile (i.e., Pr[R(i,]) > 75] < 0)
j~T

OPT = min [t NF[R(i,j)] is expected runtime of the optimal configuration
IEN

1™ is within a (1 + ¢)-factor of the best configuration

if we discard the worst O-fraction of i™'s runtimes
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capping /'s runtime
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Near-Optimal, Anytime, Adaptive Algorithm Configuration

Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, Devon Graham

STRUCTURED PROCRASTINATION WITH CONFIDENCE

for : € N do
| Q; < queue of (input, captime) pairs sampled from I’

while search is not interrupted do

1 1" <— configuration with smallest LCB of mean runtime
Js T <= Qi=-pop()
2 run ¢* on input J
3 if +* times out at captime T then
- Qi+.push((g,2T1))
4 update ¢*’s LCB

return configuration that ran on the most instances

1. select smallest LCB

1

4. update LCB

2. run with
timeout 7

3. if timeout,
return to Q
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o F(x)istrue CDF

e Area above F(x) is
true mean runtime
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empirical CDF
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RUNTIME GUARANTEE

SPC returns an (€, 0)-optimal configuration if its runtime is

Q(OPT( ‘;5‘ : Z%))

iZS

o Sis the set of (¢, 0)-optimal configurations
e Foreachi & S, iis (€, 0,)-suboptimal (¢; > € and 0, > 0)

EXPERIMENTAL RESULTS

e SPCis able to find a good configuration more quickly than other

methods:
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RUNTIME VARIATION IN PRACTICE

SPC is fastest when most configurations are far from
optimal, a common scenario in practice

CPLEX-CORLAT: 6 = 0.001

SPEAR-IBM: 6 = 0.001 CPLEX-BIGMIX: 6 = 0.001
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EXTENSION FOR INFINITE N

e Find i* that is competitive with OPT”, the best configuration
left after excluding the fastest y-fraction

Achieve similar runtime guarantee, with OPT" in place of OPT

o Sample a set N of size O(1/ylog(1/y)). Run SPC on N

e Can extend this idea to refine y over time in anytime setting
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