

Cornell University

THE UNIVERSITY OF BRITISH COLUMBIA

Microsoft[®]

Research Procrastinating with Confidence: Near-Optimal, Anytime, Adaptive Algorithm Configuration

INRODUCTION

given distribution

Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, Devon Graham

EXPERIMENTAL RESULTS

methods:

*972 configurations of minisat SAT solver on 20118 CNFuzzDD SAT instances

RUNTIME VARIATION IN PRACTICE

*****Proportion of (ϵ, δ) -optimal configurations for solver/input distribution pairs

EXTENSION FOR INFINITE N

RELATED WORK

- Weisz, András György, Csaba Szepesvári. ICML 2018.

• SPC is able to find a good configuration more quickly than other

SPC is fastest when most configurations are far from optimal, a common scenario in practice

• Find i^* that is competitive with OPT^{γ} , the best configuration left after excluding the fastest γ -fraction

Achieve similar runtime guarantee, with \mathbf{OPT}^{γ} in place of \mathbf{OPT}

• Sample a set \hat{N} of size $O(1/\gamma \log(1/\gamma))$. Run SPC on \hat{N}

• Can extend this idea to refine γ over time in anytime setting

• Efficiency Through Procrastination: Approximately Optimal Algorithm Configuration with Runtime Guarantees. Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier. IJCAI 2017. • LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration. Gellért

• CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration. Gellért Weisz, András György, Csaba Szepesvári. ICML 2019.