Microsoft:

Research

: Cornell University

UBC| THE UNIVERSITY OF BRITISH COLUMBIA

INRODUCTION

o Algorithm Configuration: finding parameter settings for an
algorithm so that it performs well on inputs drawn from a
given distribution

Structured Procrastination with Confidence (SPC):
e anytime algorithm configuration procedure
e optimal runtime, up to log factors
e adaptive to be faster on easier problem instances

PROBLEM SETUP

e 1 € N: Potential parameters to choose from

e J ~ I Distribution over possible input instances

e R(i,j): Runtime of parameter setting i on input j

GOAL: (¢, 5)-OPTIMALITY

e We want to find a parameter i* € N s.t.

Ry(i*) < (1 + €)OPT

where:
e R5(1) = [EjNF[min{R(i,j), 75}] is expected runtime of i capping at 75, the

(1 — 6)-quantile (i.e., Pr[R(i,]) > 75] < 0)
j~T

OPT = min [t NF[R(i,j)] is expected runtime of the optimal configuration
IEN

1™ is within a (1 + ¢)-factor of the best configuration

if we discard the worst O-fraction of i™'s runtimes

EXAMPLE

(g, 6)-Optimality

capping /'s runtime

g

1.0
R(/)
Rs(/)

20 A

o
(00]
]

=
ul
1

probability
o
(@)]
runtime

10 A
(1 + €)OPT A

o
N
1

7 (g, 6)-optimal
OPT A -

= CDF of runtime
R(i): mean runtime
Rs(i): mean capped runtime

0.2 1

2_

OO] T T T T T T T T T T
0.0 10.0 Ts 30.0 1 2 3 4 5 §) 7
runtime configuration i

___. Procrastinating with Confidence:
Near-Optimal, Anytime, Adaptive Algorithm Configuration

Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, Devon Graham

STRUCTURED PROCRASTINATION WITH CONFIDENCE

for : € N do
| Q; < queue of (input, captime) pairs sampled from I’

while search is not interrupted do

1 1" <— configuration with smallest LCB of mean runtime
Js T <= Qi=-pop()
2 run ¢* on input J
3 if +* times out at captime T then
- Qi+.push((g,2T1))
4 update ¢*’s LCB

return configuration that ran on the most instances

1. select smallest LCB

1

4. update LCB

2. run with
timeout 7

3. if timeout,
return to Q

1

o F(x)istrue CDF

e Area above F(x) is
true mean runtime

~J
o>

(U9
~

[N
o

e G(x)is observed
empirical CDF

e GREEN areais LCB mo Runtime T

Probability of solving an instance

-

RUNTIME GUARANTEE

SPC returns an (€, 0)-optimal configuration if its runtime is

Q(OPT(‘;5‘ : Z%))

iZS

o Sis the set of (¢, 0)-optimal configurations
e Foreachi & S, iis (€, 0,)-suboptimal (¢; > € and 0, > 0)

EXPERIMENTAL RESULTS

e SPCis able to find a good configuration more quickly than other

methods:

21.5' | | - | | - | | " "'S'P'C'I“- 6'20.1'_
@ LB |0 =09
@®. sP §=0.1
TJ’T 21.0 - - OPT §=0.5
g
2 20.5 ve ®0
=
2 20.0 ® 0 & B EFTERETE IO
§ OO O @os C
= 19.5 o
_______________________________ g W N |) S —
10" 10° 10° 10°
CPU days

¥ 972 configurations of minisat SAT solver on 20118 CNFuzzDD SAT instances

RUNTIME VARIATION IN PRACTICE

SPC is fastest when most configurations are far from
optimal, a common scenario in practice

CPLEX-CORLAT: 6 = 0.001

SPEAR-IBM: 6 = 0.001 CPLEX-BIGMIX: 6 = 0.001

1.0 1.0 1.0
2}
c
S
508 0.8 0.8
>
o
€ 0.6 0.6 0.6
o
O
IS
© 0.4 0.4 0.4-
S
S 0.2 0.2- 0.2-
2
o

0.0 0.0 0.0-

102 103 104 10° 106 107 10-2 101 103 1071 10° 10! 102 103 104
& (3 3

% Proportion of (€, 0)-optimal configurations for solver/input distribution pairs

EXTENSION FOR INFINITE N

e Find i* that is competitive with OPT”, the best configuration
left after excluding the fastest y-fraction

Achieve similar runtime guarantee, with OPT" in place of OPT

o Sample a set N of size O(1/ylog(1/y)). Run SPC on N

e Can extend this idea to refine y over time in anytime setting

RELATED WORK

Efficiency Through Procrastination: Approximately Optimal Algorithm Configuration with
Runtime Guarantees. Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier. IJCAI 2017.

e [eapsAndBounds: A Method for Approximately Optimal Algorithm Configuration. Gellért
Weisz, Andras Gyorgy, Csaba Szepesvari. ICML 2018.

e CapsAndRuns: An Improved Method for Approximately Optimal Algorithm Configuration.
Gellért Weisz, Andras Gyorgy, Csaba Szepesvari. ICML 2019.

