Utilitarian Algorithm
Configuration

Devon R. Grahamt 1
Kevin LeytonfBrownl

Tim Roughgardenzvg'

3

Setup

Algorithms i =1, ..., n

Input instances 5 = 1,2, 3, ...

T4, runtime of 4 on j

u(Ty;) € [0, 1], utility from running on j
F;(t) := Pr;(Ty; < t), runtime CDF

U; = Ej[u(T};)], expected utility

Aj; = max;, U;s — U;, optimality gap

0O 0 0 0O 0 O

Objective
o Find algorithm * with small optimality gap.
o Existing procedures optimize runtime.
o Our procedure optimizes utility.

Utility Function Examples

AN

Generic Procedure
o Repeat..

1 Choose an algorithm 3.

2 Runionaninput j for up to x seconds.

o .. until stopping condition reached.

alézerypto

The first algorithm con-
figuration procedure to
optimize utility instead
of runtime.

An anytime procedure that requires minimal
parameter-setting from the user.

Comes with non-trivial, input-dependent
theoretical guarantees that improve with time.

Scan for full paper.

1] Graham, Devon R, Kevin Leyton-Brown, and Tim Roughgarden. "Formalizing preferences over
runtime distributions” International Conference on Machine Learning. PMLR, 2023,

(2] Even-Dar, Eyal, Shie Mannor, and Yishay Mansour. "PAC bounds for multi-armed bandit and
Markov decision processes” COLT 2002 Sydney, Australa, July 8-10, 2002

{31 Mannor, Shie, and John N. Tsitsikis. ° exploration in
bandit problem” Journal of Machine Learning Research 5 Jun (2004): 623-648.

Error from Sampling

Classic result from Bandits literature [2,3].
Sampling introduces estimation error.

Necessary and sufficient to take enough sam-
ples m that:

\/ _log::rm < max{A;, €}

Intuition: a large enough sample will be repre-
sentative of the true mean

Error from Capping

o

o

New, input-dependent result.
Capping introduces error by censoring observa-
tions.
Necessary and sufficient to take samples at a
captime x; large enough that:

u(ki)(1 = Fi(k;)) < A;+e
Intuition: we don't need to know about the tail
if it contributes very little to expected utility.

Utilitarian Procrastination

o

o

Anytime, adaptive procedure.
Input-dependent bounds: m and «; only need
to be large enough that:

A/ SR 4 w(k)(1 = Fi(mi) < max{A;, e}

