

Formalizing Preferences Over Runtime Distributions

Devon R. Graham¹, Kevin Leyton-Brown¹, Tim Roughgarden^{2,3}

Motivation Which algorithm do you prefer? Algorithm 1 Algorithm 2 **Solves 99 problems** Runs all 100 problems in 1 second, runs the for 10 days each **100th problem for 10** without solving any. days without solving. By what criteria? (Average runtime cannot distinguish between these...) Axiomatic Approach Axioms: • Von Neumann-Morgenstern axioms [1] solving faster is better • solving is better than running out of time Theorem: Given time budget K_r **Algorithm A** is preferred to Algorithm B if and only if $\mathbb{E}[u(t_A,\kappa)] \geq \mathbb{E}[u(t_B,\kappa)]$

It Matters

Algorithm Configuration [3]: Ontimized utility function

_		Uniform(5)	Exp(0.1)	Pareto(1, 5)	LogLapla
rue utility functior	Uniform(5)	1.000	0.662	0.976	0.
	Exp(0.1)	0.732	1.000	0.691	0.
	Pareto(1, 5)	0.998	0.835	1.000	0.
	LogLaplace(0.1, 5)	0.649	0.994	0.630	1.

"Optimizing the right utility function gives a higher-quality solution."

International SAT Competition [4]:

		Uniform(20)	Uniform(500)	Utility Function Pareto(5, 3)	Pareto(5, 1)	Exp(1
	1st -	pakis	mallobparallel	pakis	mallobparallel	mallobpa
	2nd -	mallobparallel	pmcomsps	mallobparallel	pakis	plingeli
	3rd -	pmcomspsstrsc	pakis	plingeling	pmcomspsstrsc	pakis
bu		pmcomsps	pmcomspscom	pmcomspsstrsc	pmcomsps	pmcomsp
ankii		pmcomspscom	pmcomspsstrsc	pmcomspscom	pmcomspscom	pmcoms
Ba		plingeling	mergehordesatparallel	pmcomsps	plingeling	painlessm
		mergehordesatparallel	painlessmaple	painlessmaple	mergehordesatparallel	pmcomsps
		painlessmaple	plingeling	mergehordesatparallel	painlessmaple	mergehordesa
		abcdparascavel	abcdparascavel	abcdparascavel	abcdparascavel	abcdparas

"Different utility functions lead to different rankings."

[1] Von Neumann, Morgenstern. Theory of Games and Economic Behaviour. 1947.

[2] Jaynes. Information Theory and Statistical Mechanics. 1957. [3] Weisz, György, Szepesvári. LeapsAndBounds: A Method for Approximately Optimal Algorithm Configuration. 2018. [4] 2021 International SAT Competition

