

ABSTRACT

- We present the most expressive parameter tying scheme possible for operating on exchangeable data.
- We perform a number of experiments using this parameter tying scheme in two different deep models.
- State-of-the-art results on benchmark matrix completion tasks.
- Very strong results applying trained models to previously unseen data, including from disjoint datasets.

EXCHANGEABLE DATA

• Example: Movie recommender system.

	HANK	TAB	HANCOVER	
	5		3	5
••	3	1		4
\bigcirc		4	2	4
	1	2		

	HIANIC		HANGEVER	
	5	5	3	5
	3	1	2	4
	3	4	2	4
<u> </u>	1	2	2	3

• Permuting rows/columns does not change input data.

EXCHANGEABLE MATRIX LAYER

• Define each output element of our layer to be:

$$Y_{i,j} = \sigma \left(w_1 X_{i,j} + w_2 \sum_{i'=1}^n X_{i',j} + w_3 \sum_{j'=1}^m X_{i,j'} + w_4 \sum_{i'=1}^n \sum_{j'=1}^m X_{i',j'} + w_4 \sum_{i'=1}^n \sum_{j'=1}^n X_{i',j'} + w_4 \sum_{j'=1}^n \sum_{j'=1}^n X_{j',j'} + w_4 \sum_{j'=1}^n \sum_{j'=1}^n$$

• Equivalent to a simple parameter tying scheme. Shown here for 1, 2 and 3D cases. Each colour represents a tied parameter.

Exchangeable vector

Exchangeable matrix

Exchangeable tensor

- Layer extends to higher dimensions and to sparse inputs.
- Constant number of parameters, but each parameter can be a vector/matrix to achieve better expressivity, similar to convolutions.
- Can incorporate per-row, per-column, and global input features.

Deep Models of Interactions Across Sets

Jason Hartford, Devon R. Graham, Kevin Leyton-Brown, Siamak Ravanbakhsh University of British Columbia

EQUIVARIANT MODEL

- We want to constrain our model to make the same
- Equivalent to seeing all possible permutations of rows/ columns of the input data.
- Amounts to cheap data augmentation.

THEORETICAL RESULTS

Exchangeable Matrix Layer

- Will make the same predictions on any row/column permutation of input.
- Permutations *across* rows/columns will result in different predictions.
- Increasing number of parameters violates equivariance.

BUILDING DEEP MODELS

• Our exchangeable matrix layer pools over the dimensions of the input tensor.

Matrix Input

• We use this layer to build deep models.

Self-Supervi ed Model

Factorized Autoencoder

these embeddings.

าล	iC			
	ML-100K	Flixter	Douban	VahooMusio
	0.945	1.313	0.833	38.0
	0.929	1.179	0.801	22.4
	0.910	0.941	0.734	20.5
	0.910	0.908	0.738	20.0
)	0.910	0.987	0.766	23.3