This paper appears in
Proceedings of AAAI-94, Seattle, WA, July 1994.

Noise Strategies for Improving Local Search

Bart Selman, Henry A. Kautz, and Bram Cohen
AT&T Bell Laboratories
Murray Hill, NJ 07974

{selman, kautz, cohen}@research.att.com

Abstract

It has recently been shown that local search is sur-
prisingly good at finding satisfying assignments for
certain computationally hard classes of CNF formu-
las. The performance of basic local search methods
can be further enhanced by introducing mechanisms
for escaping from local minima in the search space.
We will compare three such mechanisms: simulated
annealing, random noise, and a strategy called “mixed
random walk”. We show that mixed random walk is
the superior strategy. We also present results demon-
strating the effectiveness of local search with walk for
solving circuit synthesis and circuit diagnosis prob-
lems. Finally, we demonstrate that mixed random
walk improves upon the best known methods for solv-

ing MAX-SAT problems.

Introduction

Local search algorithms have been successfully applied
to many optimization problems. Hansen and Jau-
mard (1990) describe experiments using local search
for MAX-SAT, i.e., the problem of finding an assign-
ment that satisfies as many clauses as possible of a
given CNF formula. In general, such local search algo-
rithms find good but non-optimal solutions, and thus
such algorithms were believed not to be suitable for
satisfiability testing, where the objective is to find an
assignment that satisfies all clauses (if such an assign-
ment exists).

Recently, however, local search has been shown to
be surprisingly good at finding completely satisfying
assignments for CNF problems (Selman et al. 1992;
Gu 1992). Such methods outperform the best known
systematic search algorithms on certain classes of large
satisfiability problems. For example, GSAT, a random-
ized local search algorithm, can solve 2,000 variable
computationally hard randomly-generated 3CNF (con-
junctive normal form) formulas, whereas the current
fastest systematic search algorithms cannot handle in-
stances from the same distribution with more than 400
variables (Buro and Kleine-Biining 1992; Dubois et al.
1993).

The basic GSAT algorithm performs a local search
of the space of truth-assignments by starting with a
randomly-generated assignment, and then repeatedly
changing (“flipping”) the assignment of a variable that
leads to the largest decrease in the total number of un-
satisfied clauses. As with any combinatorial problem,
local minima in the search space are problematic in the
application of local search methods. A local minimum
is defined as a state whose local neighborhood does not
include a state that is strictly better. The standard
approach in combinatorial optimization of terminat-
ing the search when a local minimum is reached (Pa-
padimitriou and Steiglitz 1982) does not work well for
Boolean satisfiability testing, since only global optima
are of interest. In Selman et al. (1992) it is shown that
simply continuing to search by making non-improving,
“sideways” moves, dramatically increases the success
rate of the algorithm.! We call the set of states ex-
plored in a sequence of sideways moves a “plateau”
in the search space. The search along plateaus often
dominates GSAT’s search. For a detailed analysis, see
Gent and Walsh (1992).

The success of GSAT is determined by its ability to
move between successively lower plateaus. The search
fails if GSAT can find no way off of a plateau, either
because such transitions from the plateau are rare or
nonexistent. When this occurs, one can simply restart
the search at new random initial assignment. There
are other mechanisms for escaping from local minima
or plateaus, which are based on occasionally making
uphill moves. Prominent among such approaches has
been the use of simulated annealing (Kirkpatrick et al.
1982), where a formal parameter (the “temperature”)
controls the probability that the local search algorithm
makes an uphill move.

Selman and Kautz (1993) proposed another mech-
anism for introducing such uphill moves. The strat-
egy 1s based on mixing a random walk over variables
that appear in unsatisfied clauses with the greedy lo-
cal search. The strategy can be viewed as a way of

! Minton et al. (1990) encountered a similar phenomenon
in their successful application of local search in solving large
scheduling problems.

introducing noise in a very focused manner — namely,
perturbing only those variables critical to to the re-
maining unsatisfied clauses.

We will present detailed experimental data compar-
ing the random walk strategy, simulated annealing,
random noise, and the basic GSAT procedure on com-
putationally difficult random formulas. In doing this
comparison, we tuned the parameter settings of each
procedure to obtain their best performance. We will
see that the random walk strategy significantly out-
performs the other approaches, and that all the escape
strategies are an improvement over basic GSAT.

One might speculate that the good performance of
the random walk strategy is a consequence of our
choice of test instances. We therefore also ran ex-
periments using several other classes of problem in-
stances, developed by transforming other combinato-
rial problems into satisfiability instances. In partic-
ular, we considered problems from planning (Kautz
and Selman 1992) and circuit synthesis (Kamath et
al. 1991; 1993). These experiments again demonstrate
that mixed random walk is the superior escape mech-
anism. In addition, we show that GSAT with walk
is faster than systematic search on certain circuit syn-
thesis problems (such as adders and comparators) that
contain no random component. We then present data
on experiments with a modified version of the random
walk strategy that further improves performance over
GSAT with walk. Finally, we demonstrate that mixed
random walk also improves upon the best known meth-
ods for solving MAX-SAT problems.

Local Search for Satisfiability Testing

GSAT (Selman at al. 1992) performs a greedy local
search for a satisfying assignment of a set of proposi-
tional clauses.? The procedure starts with a randomly
generated truth assignment. It then changes (“flips”)
the assignment of the variable that leads to the great-
est decrease in the total number of unsatisfied clauses.
Note that the greatest decrease may be zero (sideways
move) or negative (uphill move). Flips are repeated un-
til either a satisfying assignment is found or a pre-set
maximum number of flips (MAX-FLIPS) is reached.
This process is repeated as needed up to a maximum
of MAX-TRIES times.

In Selman et al. (1992), it was shown that GSAT
substantially outperforms backtracking search proce-
dures, such as the Davis-Putnam procedure, on vari-
ous classes of formulas, including hard randomly gen-
erated formulas and SAT encodings of graph coloring
problems (Johnson et al. 1991).

As noted above, local minima in the search space of
a combinatorial problem are the primary obstacle to
the application of local search methods. GSAT’s use

2 A clause is a disjunction of literals. A literal is a propo-
sitional variable or its negation. A set of clauses corre-
sponds to a CNF formula: a conjunction of disjunctions.

of sideways moves does not completely eliminate this
problem, because the algorithm can still become stuck
on a plateau (a set of neighboring states each with an
equal number of unsatisfied clauses). Therefore, it is
useful to employ mechanisms that escape from local
minima or plateaus by making uphill moves (flips that
increase the number of unsatisfied clauses). We will
now discuss two mechanisms for making such moves.?

Simulated Annealing

Simulated annealing introduces uphill moves into lo-
cal search by using a noise model based on statistical
mechanics (Kirkpatrick et al. 1983). We employ the
annealing algorithm defined in Johnson et al. (1991):
Start with a randomly generated truth assignment.
Repeatedly pick a random variable, and compute 4,
the change in the number of unsatisfied clauses when
that variable is flipped. If § < 0 (a downhill or side-
ways move), make the flip. Otherwise, flip the variable
with probability e=¢/T, where T is a formal parame-
ter called the temperature. The temperature may be
either held constant, or slowly decreased from a high
temperature to near zero according to a cooling sched-
ule. One often uses geometric schedules, in which the
temperature is repeatedly reduced by multiplying it by
a constant factor (< 1).

Given a finite cooling schedule, simulated annealing
is not guaranteed to find a global optimum — that is,
an assignment that satisfies all clauses. Therefore in
our experiments we use multiple random starts, and
compute the average number of restarts needed before
finding a solution. We call this number R.

The basic GSAT algorithm is very similar to an-
nealing at temperature zero, but differs in that GSAT
naturally employ restarts and always makes a downhill
move if one is available. The value of R for GSAT is
simply the average number of tries required to find a
solution.

The Random Walk Strategy

Selman and Kautz (1993) introduce several extensions
to the basic GSAT procedure. One of those exten-
sions mixes a random walk strategy with the greedy
local search. More precisely, they propose the follow-
ing mixed random walk strategy:

With probability p, pick a variable occuring in some
unsatisfied clause and flip its truth assignment.

With probability 1 — p, follow the standard GSAT scheme,

i.e., make the best possible local move.

3If the only possible move for GSAT is uphill, it will
make such a move, but such “forced” uphill moves are quite
rare, and are not effective in escaping from local minima or
plateaus.

*This form of annealing corresponds to the Metropo-
lis algorithm (Jerrum 1992). See Pinkas and Dechter
(1992), for an interesting modification of the basic anneal-
ing scheme.

Note that the “walk” moves can be uphill.

A natural and simpler variation of the random walk
strategy is not to restrict the choice of a randomly
flipped variable to the set of variables that appear in
unsatisfied clauses. We will refer to this modification as
the random noise strategy. Note that random walk dif-
fers from both simulated annealing and random noise,
in that in random walk upward moves are closely linked
to unsatisfied clauses. The experiments discussed be-
low will show that the random walk strategy is gener-
ally significantly better.

Experimental Results

We compared the basic GSAT algorithm, simulated an-
nealing, random walk, and random noise strategies on
a test suite including both randomly-generated CNF
problems and Boolean encodings of other combinato-
rial problems. The results are given in the Tables 1, 2,
and 3. For each strategy we give the average time in
seconds it took to find a satisfying assignment,® the
average number of flips it required, and R, the average
number of restarts needed before finding a solution.
For each strategy we used at least 100 random restarts
(MAX-TRIES setting in GSAT) on each problem in-
stance; if we needed more than 20 restarts before find-
ing a solution, the strategy was restarted up to 1,000
times. A “*” in the tables indicates that no solution
was found after running for more than 10 hours or us-
ing more than 1,000 restarts.

The parameters of each method were varied over a
range of values, and only the results of the best set-
tings are included in the table. For basic GSAT, we
varied MAX-FLIPS and MAX-TRIES; for GSAT with
random walk, we also varied the probability p with
which a non-greedy move is made, and similarly for
GSAT with random noise. In all of our experiments,
the optimal value of p was found to be between 0.5 and
0.6. For constant temperature simulated annealing, we
varied the temperature T from 5 to 0 in steps of 0.05.
(At T = 5, uphill moves are accepted with probability
greater than 0.8.) For the random formulas, the best
performance was found at 7' = 0.2. The planning for-
mulas required a higher temperature, 7 = 0.5, while
the Boolean circuit synthesis were solved most quickly
at a low temperature, 7' = 0.15.

We also experimented with various geometric cooling
schedules. Surprisingly, we did not find any geomet-
ric schedule that was better than the best constant-
temperature schedule. We could not even significantly
improve the average number of restarts needed before
finding a solution by extremely slow cooling schedules,
regardless of the effect on execution time. An possible
explanation for this is that almost all the work in solv-
ing CNF problems lies in satisfying the last few unsat-

5The algorithms were implemented in C and ran on an
SGI Challenge with a 70 MHz MIPS R4400 processor. For

code and experimental data, contact the first author.

isfied clauses. This corresponds to the low-temperature
tail of a geometric schedule, where the temperature has
little variation.

Hard Random Formulas

Random instances of CNF formulas are often used in
evaluating satisfiability procedures because they can
be easily generated and lack any underlying “hidden”
structure often present in hand-crafted instances. Un-
fortunately, unless great care is taken in specifying the
parameters of the random distribution, the problems
so created can be trivial to solve. Mitchell et al. (1992)
show how computationally difficult random problems
can be generated using the fixed-clause length model.
Let N be the number of variables, K the number of
literals per clause, and L the number of clauses. Each
instance is obtained by generating L random clauses
each containing K literals. The K literals are gener-
ated by randomly selecting K variables, and each of
the variables is negated with a 50% probability. The
difficulty of such formulas critically depends on the ra-
tio between N and L. The hardest formulas lie around
the region where there is a 50% chance of the randomly
generated formula being satisfiable. For 3CNF formu-
las (K = 3), experiments show that this is the case
for L =~ 4.3N. (For larger N the the critical ratio for
the 50% point converges to 4.25.) We tested the al-
gorithms on formulas around the 4.3 point ranging in
size from 100 to 2000 variables.

Table 1 presents our results. For the smallest (100-
variable) formula, we observe little difference in the
running times. As the number of variables increase,
however, the random walk strategy significantly dom-
inates the other approaches. Both random noise and
simulated annealing also improve upon basic GSAT,
but neither of these methods found solutions for largest
three formulas.® The performance of GSAT with walk
is quite impressive, especially consider that fact that
fastest current systematic search methods cannot solve
hard random 3CNF instances with over 400 variables
(Dubois et al. 1993).

The columns marked with “flips” give the average
number of flips required to find an assignment. (A
“flip” in our simulated annealing algorithm is an actual
change in the truth assignment. We do not count flips
that were considered but not made.) When comparing
the number of flips required by the various strategies,
we arrive at the same conclusion about the relative
efficiencies of the methods. This shows that our obser-
vations based on the running times are not simply a
consequence of differences in the relative efficiencies of
our implementations.

Finally, let us consider R, the average number of
restarts needed before finding a solution. Basic GSAT

6 GSAT with walk finds approximately 50% of the formu-
las in the hard region to be satisfiable, as would be expected
at the transition point for SAT.

formula GSAT Simul. Ann.
basic walk noise
vars | clauses | time flips R || time flips R || time flips R || time flips R
100 430 4 7554 8.3 2 2385 | 1.0 .6 9975 | 4.0 .6 4748 | 1.1
200 860 22 284693 | 143 4 27654 | 1.0 47 396534 | 6.7 21 106643 | 1.2
400 1700 122 | 2.6x10° 67 7 59744 | 1.1 95 892048 | 6.3 75 552433 | 1.1
600 2550 1471 30x10° | 500 35 241651 | 1.0 929 | 7.8x10° 20 427 | 2.7x10° | 3.3
800 3400 * * * 286 | 1.8x10% | 1.1 * * * * * *
1000 4250 * * * 1095 | 5.8x10° | 1.2 * * * * * *
2000 8480 * * * 3255 23%x10% | 1.1 * * * * * *

Table 1: Comparing noise strategies on hard random 3CNF instances.

easily gets stuck on plateaus, and requires many ran-
dom restarts, in particular for larger formulas. On the
other hand, GSAT with walk is practically guaranteed
to find a satisfying assignment. Apparently, mixing
random walk over variables in the unsatisfied clauses
with greedy moves allows one to escape almost always
from plateaus that have few or no states from which a
downhill move can be made. The other two strategies
also give an improved value of R over basic GSAT but
the effect is less dramatic.

Planning Problems

As a second example of the effectiveness of the vari-
ous escape strategies, we consider encodings of blocks-
world planning problems (Kautz and Selman 1992).
Such formulas are very challenging for basic GSAT. Ex-
amination of the best assignments found when GSAT
fails to find a satisfying assignment indicates that dif-
ficulties arise from extremely deep local minima. For
example, the planning problem labeled “Hanoi” cor-
responds to the familiar “towers of Hanoi” puzzle, in
which one moves a stack of disks between three pegs
while never placing a larger disk on top of a smaller
disk. There are many truth assignments that satisfy
nearly all of the clauses that encode this problem, but
that are very different from the correct satisfying as-
signment; for example, such a near-assignment may
correspond to slipping a disk out from the bottom of
the stack.

As seen in Table 2, GSAT with random walk is far
superior. As before, basic GSAT fails to solve the
largest problems. GSAT with walk is about 100 times
faster than simulated annealing on the two largest
problems, and over 200 times faster than random noise.
The random noise and annealing strategies on the large
problems also require many more restarts than the ran-
dom walk strategy before finding a solution.

Circuit Synthesis

Kamath et al. (1991) developed a set of SAT encodings
of Boolean circuit synthesis problems in order to test
a satisfiability procedure based on integer program-
ming. The task under consideration was to derive a
logical circuit from its input-output behavior. Selman

et al. (1992) showed that basic GSAT was competitive
with their integer-programming method. In Table 3,
we give our experimental results on five of the hardest
instances considered by Kamath et al. As is clear from
the table, both the random walk and the simulated
annealing strategies significantly improve upon GSAT,
with random walk being somewhat better than simu-
lated annealing. For comparison, we also included the
original timings reported by Kamath et al.” In this
case, the random noise strategy does not lead to an
improvement over basic GSAT. In fact mixing in ran-
dom noise appears to degrade GSAT’s performance.
Note that the basic GSAT procedure already performs
quite well on these formulas, which suggests that they
are relatively easy compared to our other benchmark
problems.

The instances from Kamath et al. (1991) were de-
rived from randomly wired Boolean circuits. So,
although the SAT encodings contain some intricate
structure from the underlying Boolean gates, there is
still a random aspect to the problem instances. Re-
cently, Kamath et al. (1993) have generalized their ap-
proach, to allow for circuits with multiple outputs. Us-
ing this formulation, we can encode Boolean circuits
that are useful in practical applications. Some exam-
ples are adder and comparator circuits. We encoded
the I/O behavior of several of such circuits, and used
GSAT with walk to solve them. Table 4 shows our
results. (“GSAT+w” denotes GSAT with walk. We
used p = 0.5. We will discuss the “WSAT” column
below.) The type of circuit is indicated in the table.
For example, every satisfying assignment for the for-
mula 2bitadd_11 corresponds to a design for a 2-bit
adder using a PLA (Programmable Logic Array). The
suffix “11” indicates that the circuit is constrained to
use only 11 AND-gates. We see from the table that
GSAT with walk can solve the instances in times that
range from less than a second to a few minutes. We
also included the timings for the Davis-Putnam (DP)
procedure. We used a variant of this procedure devel-
oped by Crawford and Auton (1993). This procedure

"Kamath et al.’s satisfiability procedure ran on a VAX
8700 with code written in FORTRAN and C.

formula GSAT Simul. Ann.
basic walk noise
id | vars | clauses || time flips R || time flips R time flips R || time flips R
med. 273 2311 7.5 | 70652 | 125 0.4 3464 | 1.0 4.5 41325 1.1 4.5 12147 | 1.0
rev. 201 1382 3.7 | 41693 | 100 0.3 3026 | 1.0 2.7 29007 1.1 2.7 9758 | 1.0
hanoi 417 2559 * * * 39 | 334096 | 2.6 20017 | 16x10° | 100 3250 | 4.1x10° 25
huge 937 14519 * * * 38 | 143956 | 1.1 9648 | 37x10° | 200 8302 | 4.4x10° 13
Table 2: Comparing noise strategies on SAT encodings of planning problems.
formula Int.P. GSAT Simul. Ann.
basic walk noise

id | vars time || time flips R. || time flips | R. || time flips R. || time flips | R.
fl6al | 1650 2039 58 709895 5 2 3371 | 1.1 375 | 1025454 6.7 12 | 98105 | 1.3
f16b1l | 1728 78 269 | 2870019 | 167 12 | 25529 | 1.0 1335 | 2872226 | 167 11 | 96612 | 1.4
fl6¢c1 | 1580 758 2 12178 1.0 1 1545 | 1.0 5 14614 1.0 5 | 21222 | 1.0
fi6d1 | 1230 1547 87 872219 7.1 3 5582 | 1.0 185 387491 1.0 4 | 25027 | 1.0
fl6el | 1245 2156 1 2090 1.0 1 1468 | 1.0 1 3130 1.0 3 5867 | 1.0

Table 3: Comparing noise strategies on the circuit synthesis problem instances as studied in Kamath et al. (1991).

is currently one of the fastest complete methods, but
it is quite surprising to see that it only solves two of
the instances.® (A “+” indicates that the method ran
for 10 hrs without finding an assignment.) The good
performance of GSAT with walk on these problems in-
dicates that local search methods can perform well on
structured problems that do not contain any random
component.

Circuit Diagnosis

Larrabee (1992) proposed a translation of the problem
of test pattern generation for VLSI circuits into a SAT
problem. We compared the performance of GSAT with
walk and that of DP on several of Larrabee’s formu-
las. Our results are in table 5.° We see that GSAT
with walk again works very well, especially compared
to DP’s systematic search. These results and the ones
for circuit synthesis are of particular interest because
they involve encodings of problems with clear practi-
cal applications, and are not just useful as benchmark
problems for testing satisfiability procedures.

Modifying the Random Walk Strategy

We have recently begun to experiment with a new algo-
rithm that implements GSAT’s random walk strategy
with subtle but significant modifications. This new al-
gorithm, called WSAT (for “walk sat”), makes flips

8Preliminary experiments indicate that some of these
formulas can also be solved by combining DP with multiple
starts that randomly permute variables. Details will appear
in the full version. We thank Jimi Crawford for discussions
on this issue.

°The table contains some typical satisfiable instances
from a collection made available by Allan van Gelder and
Yumi Tsuji at the University of California at Irvine.

by first randomly picking a clause that is not satisfied
by the current assignment, and then picking (either at
random or according to a greedy heuristic) a variable
within that clause to flip. Thus, while GSAT with walk
can be viewed as adding “walk” to a greedy algorithm,
WSAT can be viewed as adding greediness as a heuris-
tic to random walk. The “WSAT” columns in Tables 4
and 5 shows that WSAT can give a substantial speed
up over GSAT with walk. Whether or not WSAT out-
performs GSAT with walk appears to depend on the
particular problem class. We are currently studying
this further.

One unexpected and interesting observation we have
already made is that there can be a great variance be-
tween running GSAT with 100% walk (i.e., p = 1.0)
and running WSAT where variables are picked within
an unsatisfied clause at random. At first glance, these
options would appear to be identical. However, there
is a subtle difference in the probability that a given
variable is picked to be flipped. GSAT maintains a
list (without duplicates) of the variables that appear
in unsatisfied clauses, and picks at random from that
list; thus, every variable that appears in an unsatis-
fied clause is chosen with equal probability. WSAT
employs the two-step random process described above
(first picking a clause, and then picking a variable),
that favors variables that appear in many unsatisfied
clauses. For many classes of formulas, the difference
does not appear to be significant. However, GSAT with
100% walk does not solve the circuit diagnosis prob-
lems, whereas WSAT with random picking can solve
all of them.

Maximum Satisfiability

Finally, we compare the performance of GSAT with
walk to the methods studied by Hansen and Jau-

formula DP GSAT4+w | WSAT

id | vars | clauses time time time
2bitadd_12 708 1702 * 0.081 0.013
2bitadd_11 649 1562 * 0.058 0.014
3bitadd_32 | 8704 32316 * 94.1 1.0
3bitadd_31 | 8432 31310 * 456.6 0.7
2bitcomp_12 300 730 23096 0.009 0.002
2bitcomp_5 125 310 1.4 0.009 0.001

Table 4: Comparing an efficient complete method (DP) with local search strategies on circuit synthesis problems.

(Timings in seconds.)

formula DP GSAT4+w | WSAT

id | vars | clauses time time time
ssa7552-038 | 1501 3575 7 129 2.3
ssa7552-158 | 1363 3034 * 20 2
ssa7552-159 | 1363 3032 * 14 0.8
ssa7552-160 | 1391 3126 * 18 1.5

Table 5: Comparing DP with local search strategies on circuit diagnosis problems by Larrabee (1989). (Timings in

seconds.)

mard (1990) for MAX-SAT. Our results appear in
Table 6. Hansen and Jaumard compared five differ-
ent algorithms for MAX-SAT. They considered a ba-
sic local search algorithm called “zloc”, two determin-
istic algorithms proposed by David Johnson (1974)
called “zjohnl” and “zjohn2”, a simulated annealing
approach called “anneal”, and their own “steepest as-
cent, mildest descent” algorithm, “zsamd”. The last
one is similar to basic GSAT with a form of a tabu list
(Glover 1989). They showed that “zsamd” consistently
outperformed the other approaches.

We repeated their main experiments using GSAT
with walk. The problem instances are randomly gen-
erated 3SAT instances. For each problem size, 50 prob-
lems were randomly generated, and each problem was
solved 100 times using different random initial assign-
ments. The mean values of the best, and mean num-
ber of unsatisfied clauses found during the 100 tries
are noted in the table. For example, on the 500 vari-
able, 5000 clause 3SAT instances, the best assignments
GSAT with walk found contained an average of 161.2
unsatisfied clauses. As we can see from the table,
GSAT with walk consistently found better quality solu-
tions than any other method. Note that there is only
a small difference between the best and mean values
found by GSAT with walk, which may indicate that
the best values are in fact close to optimal.

Conclusions

We compared several mechanisms for escaping from
local minima in satisfiability problems: simulated an-
nealing, random noise, and mixed random walk. The
walk strategy introduces perturbations in the current
state that are directly relevant to the unsatisfied con-

straints of the problem. Our experiments show that
this strategy significantly outperforms simulated an-
nealing and random noise on several classes of hard
satisfiability problems. Both of the latter strategies
can make perturbations that are in a sense less focused,
in that they may involve variables that do not appear
in any unsatisfied clauses. The relative improvement
found by using random walk over the other methods
increases with increasing problem size. We also showed
that GSAT with walk to be remarkably efficient in solv-
ing basic circuit synthesis problems. This result is es-
pecially interesting because the synthesis problems do
not have any random component, and are very hard
for systematic methods. Finally, we demonstrated that
GSAT with walk also improves upon the best MAX-
SAT algorithms. Given the effectiveness of the mixed
random walk strategy on Boolean satisfiability prob-
lems, an interesting direction for future research would
be to explore similar strategies on general constraint
satisfaction problems.

References

Buro, M. and Kleine-Biining, H. (1992). Report on a SAT
competition. Technical Report # 110, Dept. of Math-
ematics and Informatics, University of Paderborn, Ger-
many.

Crawford, J.M. and Auton, L.D. (1993) Experimental Re-
sults on the Cross-Over Point in Satisfiability Problems.
Proc. AAAI-93, Washington, DC, 21-27.

Davis, M. and Putnam, H. (1960). A computing procedure
for quantification theory. J. Assoc. Comput. Mach., 7,
201-215.

Dubois, O., Andre, P., Boufkhad, Y., and Carlier, J.
(1993). SAT versus UNSAT. DIMACS Workshop on Sat-

method #£vars 100 100 100 | 300 300 300 300 500
#clauses 200 500 700 | 600 800 | 1500 | 2000 5000

zloc best 0.4 | 10.8 | 21.0 2.8 8.3 35.4 64.4 | 233.8
zjohnl mean 2.3 | 149 | 28.2 4.7 | 10.6 45.3 74.1 | 268.8
zjohn2 mean 1.4 | 13.5 | 26.9 2.7 9.0 441 76.5 | 257.4
anneal best 0 5.6 | 15.1 | 0.7 3.1 22.6 | 47.6 | 215.7
zsamd best 0 3.7 | 134 0.5 1.2 10.6 34.0 | 174.6
mean 0.3 5.1 | 14.7 2.4 4.3 15.3 39 | 182.8

GSAT+ best 0 2.8 | 129 0 0 7.6 31.8 | 161.2
mean 0 2.9 | 129 0 0 8.1 34.9 | 163.6

Table 6: Experimental results for MAX-3SAT. The data for the first five methods are from Hansen and Jaumard

(1990).

isfiability Testing, New Brunswick, NJ, Oct. 1993.

Glover, F. (1989). Tabu search — Part I. ORSA Journal
of Computing, 1, 190-206.

Gent, I.P. and Walsh, T. (1992). The enigma of SAT hill-
climbing procedures. Techn. report 605, Department of
Computer Science, University of Edinburgh. Revised
version appeared in the Journal of Artificial Intelligence
Research, Vol. 1, 1993.

Gu, J. (1992). Efficient local search for very large-scale
satisfiability problems. Sigart Bulletin, Vol. 3, no. 1,
8-12.

Hansen J. and Jaumard, B. (1990). Algorithms for the
maximum satisfiability problem. Computing, 44, 279-
303.

Jerrum, M. (1992) Large Cliques Elude the Metropolis
Process. Random Structures and Algorithms, Vol. 3,
no. 4, 347-359.

Johnson, D.S. (1974) Optimization algorithms for combi-
natorial problems. J. of Comp. and Sys. Sci., 9:256-279.

Johnson, D.S., Aragon, C.R., McGeoch, L.A., and
Schevon, C. (1991) Optimization by simulated anneal-
ing: an experimental evaluation; part II, graph coloring
and number partioning. Operations Research, 39(3):378—
406.

Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G.,
and Resende, M.G.C. (1991). A continuous approach
to inductive inference. Mathematical Programming, 57,
215-238.

Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G.,
and Resende, M.G.C. (1993). An Interior Point Ap-
proach to Boolean Vector Function Synthesis. Technical

Report, AT&T Bell Laboratories, Nov. 1993.

Kautz, H.A. and Selman, B. (1992). Planning as satisfia-
bility. Proceedings ECAI-92, Vienna, Austria.

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983).
Optimization by Simulated Annealing. Science, 220,
671-680.

Larrabee, T. (1992). Test pattern generation using
Boolean satisfiability. IEEE Transactions on Computer-
Aided Design, 1992.

Minton, S., Johnston, M.D., Philips, A.B., and Laird, P.

(1990) Solving large-scale constraint satisfaction and

scheduling problems using a heuristic repair method.
Proceedings AAAI-90, 1990, 17-24. Extended version
appeared in Artificial Intelligence, 1992.

Mitchell, D., Selman, B., and Levesque, H.J. (1992). Hard
and easy distributions of SAT problems. Proceedings
AAAI-92, San Jose, CA, 459-465.

Papadimitriou, C.H. (1991). On Selecting a Satisfying
Truth Assignment. Proc. of the Conference on the Foun-
dations of Computer Science, 163—-169.

Papadimitriou, C.H., Steiglitz, K. (1982). Combinatorial
optimization. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Pinkas, G. and Dechter, R. (1992). An Improved Con-

nectionist Activation Function for Energy Minimization.
Proc. AAAI-92, San Jose, CA, 434-439.

Selman, B. and Kautz, H.A. (1993). Domain-Independent
Extensions to GSAT: Solving Large Structured Satisfia-
bility Problems. Proc. IJCAI-93, Chambery, France.

Selman, B. and Levesque, H.J., and Mitchell, D.G. (1992).
A New Method for Solving Hard Satisfiability Problems.
Proc. AAAI-92, San Jose, CA, 440-446.

