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Abstract — Zusammenfassung

Algorithms for the Maximum Satisfiability Problem. Old and new algorithms for the Maximum Satisfi-
ability problem are studied. We first summarize the different heuristics previously proposed, ie., the
approximation algorithms of Johnson and of Lieberherr for the general Maximum Satisfiability problem,
and the heuristics of Lieberherr and Specker, Poljak and Turzik for the Maximum 2-Satisfiability
problem. We then consider two recent local search algorithmic schemes, the Simulated Annealing
method of Kirkpatrick, Gelatt and Vecchi and the Steepest Ascent Mildest Descent method, and adapt
them to the Maximum Satisfiability problem. The resulting algorithms, which avoid being blocked as
soon as a local optimum has been found, are shown empirically to be more efficient than the heuristics
previously proposed in the literature.

AMS Subject Classifications: 90 Programming, 03 Logic
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Algorithmen fiir das maximale Erfiillbarkeitsproblem. Es werden bekannte und neue Algorithmen fiir
das maximale Erfiillbarkeitsproblem untersucht. Zunichst geben wir eine Ubersicht iiber verschiedene
bisher vorgeschlagene Heuristiken wie z.B. die Approximationsalgorithmen von Johnson und von
Lieberherr fiir das allgemeine maximale Erfiillbarkeitsproblem und die Heuristiken von Lieberherr
und Specker, sowie von Poljak und Turzik fiir das maximale 2—Erfiillbarkeitsproblem. Sodann beachten
wir zwei neuere lokale Suchverfahren, wie die Simulated Annealing Methode von Kirkpatrick, Gelatt und
Vecchi sowie die Methods des steilsten Anstieges und flachsten Abstieges und adaptieren diese Verfahren
fiir das maximale Erfiillbarkeitsproblem. Es zeigt sich, daB diese Verfahren, die nicht in einem lokalen
Optimum stehen bleiben, empirisch effizienter sind als die bisher in der Literatur vorgeschlagenen
Heuristiken.

1. Introduction

A central problem in Artificial Intelligence, Logic and Computational Complexity
is the Satisfiability problem (sAT) which can be expressed as follows:

Given a collection C of m clauses involving n logical variables x, x,, ..., X,, determine
whether or not there exists a truth assignment for C such that all clauses are
simultaneously satisfied.

SAT has a wide variety of applications such as consistency in expert systems knowl-
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edge bases (see Hayes, Waterman and Lenat [30], Nguyen et al. [43]), integrity
constraints in databases (see e.g. Asirelli, de Santis and Martelli [3], Gallaire,
Minker and Nicolas [16]).

If the answer to SAT is “no”, a natural question, of great practical importance, arises,
i.e., how close can one get to satisfiability? Making that question precise leads to
the Maximum Satisfiability problem (see Karp [38]) studied in this paper. Expressed
as a decision problem it can be defined as follows:

Given a collection C of m clauses, involving n logical variables x,, x,, ..., X,, and a
positive constant k, determine whether or not there exists a truth assignment for C
such that at least k clauses can be simultaneously satisfied.

This problem can also be expressed as an optimization problem and then takes
the form:

Given a collection C of m clauses involving n logical variables x,, x,, .. ., X,, determine
a truth assignment for C that satisfies the maximum number of clauses.

We will consider later a subproblem of MAX—sAT, the Maximum r—Satisfiability
problem (MAX—r1SAT) which can be stated as follows:

Given a collection C of m clauses involving n logical variables x,, x,, ..., X, and such
that each clause contains at most r distinct literals, determine a truth assignment for
C that satisfies the maximum number of clauses.

As the MAX—SAT problem is Np-complete, one must often be content with an
approximate solution, obtained by some heuristic algorithm. Indeed, the computing
time required to find an optimal solution, or to prove the optimality of such a
solution when it is found, becomes prohibitive when the problem gets large.

Ascent methods constitute an important class of heuristics. In these methods, an
initial solution is found and subjected to a sequence of local changes which improve
each time the value of an objective function until a local optimum is found. The
objective function may be given in the problem formulation or may be an evaluation
function expressing the difference between the current solution and a target solution.
The main drawback of ascent algorithms is that they are unable to get out of a local
optimum. For some rare classes of problems all local optima are also global optima
and ascent methods, prominent among which are the so-called greedy algorithms,
yield optimal solutions. Much more often, there are many local optima and the first
one found may be far from globally optimal.

Recently, local improvement heuristic methods have been proposed which include
features allowing to get out of local optima. Exploiting an analogy with a problem
of thermodynamical statistics, Kirpatrick, Gelatt and Vecchi [39] have proposed
a general approach to combinatorial optimization called Simulated Annealing.
Following this approach, an initial solution is found and evaluated. Then a local
change is randomly obtained and its effect on the value of the objective function is
assessed. If there is an improvement, the local change is accepted. If there is some
deterioration, a probability of acceptance is calculated. This probability decreases
as the amount of deterioration and the elapsed time (or the number of local changes
already considered) increase. A random number in [0, 1] is generated and the local
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change is accepted if and only if it is smaller than the probability just calculated.
The procedure stops as soon as no local change has been accepted during a sequence
of a given number of iterations. Otherwise another local change is considered.

This new approach has been widely studied and applied. It has proved to be
competitive and sometimes superior to the best heuristics known for some classes
of problems (e.g. quadratic assignment problems, see Burkard and Rendl [6]) but
not all of those to which it has been applied.

An alternate approach, also allowing to get out of a local optimum has been
proposed by one of the authors [26] under the name of Steepest Ascent Mildest
Descent. Following this approach, an initial solution is found and local changes in
the direction of steepest ascent are performed until a local optimum is reached.
When this is the case the corresponding solution together with its value are noted,
ifit is the best one found so far. Then a local change is done along the direction of
mildest descent and a reverse change is forbidden for a given number of iterations.
The procedure terminates if no improvement in the value of the best found solution
is observed during a cycle of iterations of fixed length. A similar algorithmic scheme
was independently proposed by Glover [19] under the name of Tabu Search.

A comparison of both heuristics, as applied to the maximization of quadiatic 01
functions (see El Baamrani [14], Hansen et al. [29]) shows that the solutions
obtained by Steepest Ascent Mildest Descent are on average better than those
obtained by Simulated Annealing and the computing times lower. Experiments for
quadratic assignment problems (see Stephany [47]) lead to similar conclusions for
problems with less than thirty facilities; for larger quadratic assignment problems
computing times with the Steepest Ascent Mildest Descent heuristic tend to be
prohibitive. Both heuristics are applied in this paper to the Maximum Satisfiability
problem and comparisons are made with some previous heuristics. Many further
applications of Steepest Ascent Mildest Descent or Tabu Search have been done
recently by various researchers. Surveys are given by Glover [20] and Hertz and
de Werra [32].

The paper is organized as follows. The Maximum Satisfiability problem and its

- different mathematical formulations are presented in the next section. Some applica-
tions of the MAX—SAT problem are described in the last paragraph of that section.
The heuristics previously proposed for the Maximum Satisfiability problem are
presented, with some simplifications and a uniform notation, in Section 3: first those
for the general case (Johnson [36], Lieberherr [40]), and then those which are
specific to MAX—2sAT (Lieberherr and Specker [41], Poljak and Turzik [44]). Section
4is devoted to new approaches with Ascent Descent methods; precise formulations
of Simulated Annealing and of Steepest Ascent Mildest Descent are given in sub-
sections 4.1 and 4.2 respectively, and their specializations to MAX—SAT are studied
in subsection 4.3. Computational experiments are reported on in Section 5. An
analysis of the performance of Ascent Descent methods is presented in subsec-
tion 5.1 and a comparison with the other heuristics (and with an exact algorithm
in the case of MAX—2sAT) is made in subsection 5.2. Conclusions are drawn in
Section 6.
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2. Formulations of the Maximum Satisfiability Problem
2.1. Definition of the Problem

Let U = {u,u,,...,u,} be a set of boolean variables. A truth assignment for U is a
function ¢: U — {True, False}. If t(u) = True, we say that u is true under ¢; if
t(u) = False we say that u is false under ¢. If u is a variable in U, then u and @ are
literals over U. The literal u is true under ¢ if and only if the variable u is true under
t; the literal # is true if and only if the variable  is false.

A clause over U is a disjunction of literals. It is satisfied by a truth assignment if
and only if at least one of its literals is true under that assignment. A formula is a
conjunction C of clauses and is satisfiable if and only if there exists some truth
assignment for U that simultaneously satisfies all the clauses in C. Such a truth
assignment is called a satisfying truth assignment for C. The Maximum Satisfiability
problem is defined as follows:

Instance: Set U of variables, collection C of clauses, positive integer k < |C]|.
Question: Is there a truth assignment for U that simultaneously satisfies at least k of
the clauses in C?

MAX—SAT is NP-complete even in the particular case when there are two variables
per clause (Garey, Johnson and Stockmeyer [18]), or when each clause involves at
most one positive literal, i.e., is of the Horn type (Jaumard and Simeone [35]).
However when each variable has at most two occurrences (the variable being
complemented or not in one or both of its occurrences), the problem is reducible
to a minimum cost network flow problem (Jaumard [34]), and hence is polynomial.

MAX-SAT contains the Satisfiability problem (SAT) which may be expressed as
follows:

Instance: Set U of variables, collection C of clauses over U.

Question: Is there a satisfying truth assignment for C?

The latter problem has two well known polynomial-time instances: 2—Satisfiability
(2-sAT) where each clause contains at most two literals and Horn satisfiability
(HORN-SAT) where each clause is of Horn type. The former problem can be solved
in O(|C|) time by an algorithm of Aspvall, Plass and Tarjan [4] (see also Even, Itai
and Shamir [15]) and the latter one can be solved in O(]) time (where [ is the size
of the problem, i.e., the total number of occurrences of the variables) by an algorithm
of Dowling and Gallier [10] (see also Henschen and Wos [31], Jones and Laaser
[37]). Other polynomially solvable cases are described in Arvind and Biswas [2],
Dubois [11], Tovey [49], Yamasaki and Doshita [50]. When there are three or
more literals by clause, saT is NP-complete (Cook [8]).

2.2. Mathematical Formulations
We are now interested in the optimization form of the MAX—SAT problem: given a

set C = {C;,C,,...,C,} of clauses over a set U = {u;,u,,...,u,} of boolean vari-
ables, determine a truth assignment which satisfies the maximum number of clauses
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of C. For any literal u®, let u® with o € {0,1} equal uif « = 1 and # if « = 0. A clause
C; of C can be expressed as a disjunction of literals C; = \/,E, ufs where I; is the
subset of {1,2,...,n} corresponding to the indices of the variables in C.

2.2.1. Linear 0-1 Programming

We associate a 0—1 variable x; to each variable u; of U such that 0 corresponds to
the value False and 1 to the value True. Moreover we associate to each clause C; a
0-1 variable y;. Then MAX—SAT can be formulated as follows:

Maximize y = Z Vi
j=1

Subjectto: Y x>y, j=1,2,....m

iel;
x; € {0,1} i=12,...,n
y;€{0,1} i=12,...,m.

As the sum of the y; is maximized and as each y; appears as the right-hand side of
one constraint only, y; will be equal to 1 if C; is true and equal to 0 if C; is false.
Deleting the objective function and setting all variables y; at 1 yields a formulation
of the sAT problem studied by Blair, Jeroslow and Lowe [5].

The linear 0—1 programming formulation of MAX—SAT suggests that this problem
could be solved by a branch-and-bound method using linear programming relaxa-
tion, i.e., replacing the constraints x; € {0,1} and y; e {0,1} by x; € [0,1] and y; e
[0, 1]. Unfortunately this is not likely to work well in practice because the solution

=i(i=12,...,n), y;=1(j=12,...,m)is feasible for the linear programming
relaxation unless there exists some constraints containing only one variable. The
bounds so obtained would be very poor. Better bounds might be obtained using
Chvatal cuts, as done by Hooker [33] for the problem SAT.

2.2.2. Unconstrained Nonlinear 0—1 Programming
(Pseudo-Boolean Programming)

Let & = 1 —o,;. Then the negation of clause C; = \/;. 1, uf is the term C = /\;, u{¥;
it is true if and only if no literal u{“ of C; is true Solvmg MAX-SAT is equlvalent to
finding the truth assignment such that the smallest number of clauses C are true.
This in turn is equivalent to the following unconstrained nonlinear 0—1 minimiza-
tion problem, or unconstrained pseudo-boolean minimization problem (see Hammer
and Rudeanu [22]):

iel;

Minimize z i IT xiv
A
{0,

1} i=12...,n
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This formulation has recently been used by Sutter [48] in a branch-and-bound
algorithm for MAX—2SAT.

2.3. Applications
2.3.1. Inconsistency in Expert-Systems Databases

In expert-systems (see e.g. Hayes, Waterman and Lenat [30], Nguyen et al. [43]),
databases are used in which the information about objects under study is usually
expressed by implications. Well-known methods of boolean algebra allow to rewrite
these implications as a set of clauses. An important practical problem is to check
the consistency of the database after updating by adding and deleting some of the
implications. If the database is not consistent, it is desirable to find the smallest set
of implications which should be deleted, or all smallest such sets of implications,
in order to restore consistency. Such a set can be obtained by solving the MAX—SAT
problem for the clauses corresponding to all implications in the database.

232, Consisténcy of Database Queries

Problems similar to the above one (see e.g. Gallaire, Minker and Nicolas [16] and
Asirelli, de Santis and Martelli [3]) arise in evolutive databases which use logic
programming tools in order to store informations. Typically, in the more general
problem of integrity constraint, one wants to know the reason for which the system
cannot answer some queries. One possible reason is lack of logical consistency of
the set of facts contained in the database. Due to the large number of facts in current
databases and also to the numerous dynamic updates, this problem is hard to solve
in practice; so efficient heuristics are needed.

3. Previous Heuristics
3.1. General Maximum Satisfiability Problem
3.1.1. Johnson [1974]

Johnson proposed two approximation algorithms that can be implemented in time
O(¢.1og(¢)) where ¢ denotes the size of the problem. Each heuristic is of greedy type
and works by generating a truth assignment TRUE. The first heuristic, JOHN1, is
presented below.

Heuristic procedure JOHN1.

1. TRUE « ¢; LEFT « C; LIT « U U U; z(TRUE) « 0;

2. If LEFT = ¢ then stop and return z(TRUE) as the approximate optimum;
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3. Let u® be the literal in LIT which is contained in the most clauses of LEFT and let
UT be the set of clauses in LEFT which contain u®,

4, Set: z(TRUE) « z(TRUE) + |UT|;
LEFT « LEFT\UT;
TRUE « TRUE U {u"};
LIT « LIT\ {1, 4 };

5. Goto 2.

Let z* denote the maximum number of satisfied clauses and g the minimum number
of literals contained in any clause of the problem. Johnson showed that for all g > 1
and for any approximate solution TRUE obtained by the JOHN1 heuristic:

q
z(TRUE) > - z¥%
( ) qg+1

and the bound is sharp for all sufficiently large 7.

The second heuristic, JOHN2, takes into account “wounded” clauses, i.e., clauses
containing literals to which the value false has been assigned as the truth assignment
is generated.

Heuristic procedure JOHN2.

1. Assign to each clause C; € C a weight w(C;) = 27'¢;
Set: TRUE « ¢,
LEFT « C;
ur« UuU;
Z(TRUE) « 0;
2. If LEFT = ¢ then stop and return z(TRUE) as the approximate optimum;
3. Let u be any literal occurring in both LIT and a clause of LEFT;
Let UT be the set of clauses in LEFT containing u and UF be the set of clauses in LEFT
containing u,
401 Y wC)= Y w)
C;eUT C;€UF
then TRUE « TRUE U {u};
z(TRUE) « z(TRUE) + |UT|;
LEFT « LEFT\UT;
For each C; € UF do w(C,) « 2-w(C));

else TRUE « TRUE L {ui};
z(TRUE) « z(TRUE) + |UF|;
LEFT « LEFT\UF;
For each C; € UF do u(C;) « 2-w(Cy);
Endif;

5. LIT « LIT\ {8, @}; goto 2.
The worst case bound of the JOHN2 heuristic is much better than that of the JouN1

heuristic. For all g > 1 and for any approximate solution z(TRUE) obtained by the
JOHN?2 heuristic:
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27 -1

z(TRUE) > z*,

and the bound is sharp for all sufficiently large Z.

Note that since the choice of which literal to consider at Step 3 in JOHN2 is left
largely undetermined, there is some potential for improvements which might affect
its average case behavior. Furthermore, one may notice that both algorithms do
not necessarily stop at a local optimum, i.e., a truth assignment such that changing
the truth value of a single variable does not improve the value of the objective
function. To illustrate this, consider the following example:

C={uy vuy,u viyiy VUt V iy Vus,i; V is,u, V i,
Uy V Ug, Ty V Uz, U, V U3, Uy V Uy, Uy V L)

Assume literals are ranked by increasing indices, the uncomplemented one preced-
ing the complemented one each time. When there are ties in JOHN1 and in JOHN2,
we use the lexicographic order. Applying the JOHN1 heuristic, we successively select
the literals #,, u,, u; and u, to be set to true, which yields a solution vector
u* = (F, T, T, T) of value 9 (where T stands for true and F for false). For the JOHN2
heuristic, let us consider the criterion of selecting the literal u with the largest sum
of weights w(C;) for all clauses C; to which u belongs. Applying the JOHN2 heuristic
with this criterion, or only with the lexicographic order yields again the solution
u* = (F, T, T, T). But u* is not a local optimum since the value of the vector (F, T, T, F)
is 10.

3.1.2. Lieberherr [1982]

Lieberherr [40] proposed an efficient approximation algorithm y-MAXMEAN for the
generalized maximum y-satisfiability problem which includes MAX—SAT. Moreover,
he showed that, form an extremal point of view his algorithm is the best possible in
the class of polynomial algorithms. The generalized maximum y-satisfiability prob-
lem is defined as follows (Schaefer [46]): Let = {Ry,R,,...,R,,} be any finite set
of logical relations. A logical relation is defined to be any subset of {0, 1}" for some
integer r > 1, and a y-formula is any conjunction R; A R, A --* A R, of such
relations. The y-satisfiability problem is the problem of deciding whether a given
y-formula is satisfiable. The maximum -satisfiability problem is defined by: given
a y-formula F, find a 0—1 assignment to the variables of F which satisfies the
maximum number of relations (clauses in the case of MAX—SAT).

Let us recall one more definition before stating the main results of Lieberherr, as
well as his algorithm y-MAXMEAN. A y-formula F is called symmetric if any permuta-
tion of the variables in the formula returns the same formula up to a permutation
of the relations.

Let  be a set of relations, I” a set of symmetric y-formulas and F a y-formula of
I with n variables. Let mean,(F) denote the average number of satisfied clauses
among all assignments which set exactly k variables to 1 and maxmean(F) =
maxg <<, mean,(F).
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a) If F is symmetric then there is a polynomial algorithm MAXMEAN which satisfies
the fraction:

; A(F,
rr= inf max SA(F,J)

F e[ all 0—1 assignments J of F rl(F)

of the relations for a given y-formula F € I', where SA(F, J) is the number of satisfied
relations in formula F under assignment J, and rI(F) the number of relations in the
Y-formula F.

b) Ifthe y-satisfiability problem for the formulas in I"is NP-complete and I”is closed
under concatenation of formulas with disjoint variables, then: for any rational
r' > rr and y-formulas in I” finding a truth assignment which satisfies the fraction
r' of the clauses is NP-complete.

¢) Algorithm MAXMEAN satisfies at least maxmean(F) relations for F e I'.

d) If I' is closed under renaming, then the problem of finding an assignment that
satisfies strictly more than maxmean(F) relations for F € I', is NP-equivalent.

Given a y-formula F, the MAXMEAN algorithm outputs a 0—1 assignment which
satisfies at least maxmean(F) relations and can be stated as follows:

Procedure MAXMEAN
1. Find k (0 < k < n), so that maxmean(F) = mean,(F) by a linear search.

2. Apply algorithm MEAN to F and k to find an assignment satisfying at least
maxmean(F) relations.

Given a y-formula and an integer k(0 < k < n), the algorithm MEAN outputs an
assignment which satisfies at least mean,(F) clauses (the number of variables to
which 1 is assigned might be <k) and can be stated as follows:

Procedure MEAN

For all variables x; in F do
if mean, _;(F,,=,) > mean,(Fj -,)
thenx;, < Lk k —1;F < F,
else x; < 0; F « F, _
endif
Endfor.
(mean_, (F) is defined to be zero.)

3.2. Maximum 2-Satisfiability
3.2.1. Lieberherr and Specker [1981]

Independently of the algorithm MAXMEAN for the general case, Lieberherr and
Specker [41] proposed another algorithm for MAX—2SAT. They first show that every
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2-satisfiable formula has a truth assignment that satisfies at least the fraction & of its

clauses, where h =

~ 0.618 (the reciprocal of the “golden ratio™). Then

they provide a polynomial-time algorithm that will find for any 2-satisfiable
formula a truth assignment satisfying at least the fraction h of its clauses. Further-
more they prove that, for any rational &' > h, finding a truth assignment satisfying
at least the fraction k' of the clauses of any 2—satisfiable formula is NP-complete.

The algorithm ENUM of Lieberherr and Specker is presented below:

Procedure ENUM

1. For each variable x; which occurs complemented in a clause of length 1, replace all
occurrences of the literals x; and X; by their complements (afterwards the clauses
of length 1 contain only positive literals.)

2. Compute the first prime p greater than or equal to n, and let W be a set of p variables
containing all those from X.

3. Enumerate the set 1(n) of truth assignments (or interpretations):
p p-1 p
Im=) U U ~t(nk,gq,r
k=0 q=1 r=1

where the truth assignments INT(n, k, q,r) are defined in the following way. Let
RP[k] be an arbitrary permutation of p variables. Then the variable x; in W(l <
i < n)is set to 1 by the truth assignment INT(n, k, q,r) if and only if

((g* RP[Kk](i) + r)mod p) < k,

otherwise x, is set to Q.
Keep the truth assignment which satisfies the maximal number of clauses in F.

The ENUM algorithm is a polynomial algorithm with an overall running time O(n3¢)
where £ is the total number of occurrences of literals in the formula F. It is easy to
build an example (cf Lieberherr and Specker [41]) showing that the heuristic JOHN2
will not in general provide a truth assignment satisfying at least a fraction & of the
clauses. Using the ENUM algorithm, there is no guarantee that the best truth assign-
ment corresponds to a local optimum.

3.2.2. Poljak and Turzik [1982]

Recall that a bipartite subgraph of a graph G = (V, E) is such that the vertices can
be partitioned into two subsets V; and ¥, and all edges have one extremity in ¥,
and the other in V,. Edwards [12,13] provides an estimate for the maximum
number of edges of a bipartite subgraph. From this estimate, Poljak and Turzik
[44] deduce an extremal bound for the Maximum 2-Satisfiability problem and
define a polynomial algorithm providing a truth assignment which allows to reach
this bound.
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Given a quadratic formula, they define a graph G = (V, E) as follows: each variable
u;€ U is associated with a vertex u; and each clause uf v u¥ such that i #j is
associated with an edge (u;,4;). In most cases, G is a multigraph, i.e., has parallel
edges.

Poljak and Turzik prove that one can always find a truth assignment which satisfies
3m—p

at least clauses of the quadratic formula where p denotes the number of linear

clauses. Moreover they provide an O(m) linear-time algorithm (POLTUR) to obtain
such a truth assignment and we recall it below. They show that when the graph G
is simple, i.e., the quadratic formula does not contain any pair of clauses involving
e 2 F + % %(n — k):l clauses
where k denotes the number of components of G. They also provide an O(n®)
polynomial-time algorithm to obtain such an assignment. The reader is referred to
their paper for further details on the latter algorithm.

; : 3
the same variables, the bound can be improved to

Procedure POLTUR heuristic
1. TRUE « ¢; VAR « U; LEFT « C;

2. If no variable in U is involved in any clause of LEFT
then TRUE] « TRUEL L U;
TRUE2 « U U U\ TRUEI;
evaluate z(TRUE1) and z(TRUE2);
return z(TRUE) = max (z(TRUE1), z(TRUE2)) as the approximate solution;
stop;
Endif;

3. Let u; be any variable occurring in both U and a clause of LEFT,
Set: VAR « VAR\ {u;};
Let CT be the set of clauses of LEFT involving only variables of U\ VAR and cT1 be
a subset of clauses of CT which contain both a positive and a negative literal,
Set: LEFT « LEFT\CT; 6 « 0;
4. For every clause C(o;, %) = uf v uj’ of cT do
If u; € TRUE then
If C(o;,a;) € cT1 then 6 < 6 + 1 else 6 « § — 1 endif
else
If C(oy, ;) € cTl then 6 < 6 — 1 else 6 « 6 + 1 endif
Endif
Endfor;
If 6 > O then TRUE « TRUE U {u;}
else TRUE « TRUE U {#;}
Endif;

5. Goto 2.
3m—p
4

It follows from the estimate that for any approximate solution TRUE ob-
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tained by the POLTUR heuristic

3 P
et I 4
Z(TRUE) > -z .

For Max — 2sAT the worst case bounds for JOHN1 and JOHN2 are respectively equal
*

2 :
to gz* and %z* if there are unit clauses, and both equal to % otherwise. If we

consider a quadratic formula with linear clauses, i.e., p # 0, since z* is always greater
than p, the worst case analysis gives advantage to the POLTUR heuristic rather than
to the JoHN2 (or JoHN1) heuristic. However if the quadratic formula does not contain
any unit clause, the worst case bound of POLTUR is equivalent to the one of JOHN2,
hence better than the one of JOHNI.

As in the JOHN2 heuristic, the choice of which literal to consider at Step 3 is left
undetermined, which might lead to some improvement in the average case behavior.
Again one can notice that the POLTUR heuristic does not necessarily stop at a local
optimum, as follows. Let us consider the same set of clauses C as in the paragraph
3.1.1. Assume that we select the literals in the order u,, u,, u; and u,. We obtain
TRUE = {u,,u,}. The values of the vectors (F, T,F, T) and (T, F, T, F) are respectively
10 and 8 so that the optimum vector is u* = (F, T, F, T). But 4* is not a local optimum
since the value of (F,F,F, 1) is 11.

4. Ascent Descent Methods
4.1. Simulated Annealing

In the early days of computer science, Metropolis et al. [42] proposed a heuristic
to simulate the behavior of a collection of atoms initially in equilibrium at tempera-
ture ¢ and subjected to cooling. It was well known that rapid cooling would block
the system in a high energy state corresponding to disorder whereas slow cooling,
or annealing, would bring the system into an ordered, low energy stdte. This
behavior was reproduced by the proposed simulation program.

The procedure first considers a system of atoms in motion with energy E and
temperature t. An atom is randomly chosen and a random displacement applied to
it. The implied change in energy dE of the system is calculated. If dE is negative
then the displacement is accepted and E reduced by dE. If dE is positive, the
probability for the change dE to take place is evaluated, following Boltzmann’s law:

dE .
P(dE) = exp ——k—t> where k is Boltzmann’s constant and the temperature ¢ is

evaluated on the Kelvin scale. Then the probability P(dE) is compared with the
value of a random variable x uniformly distributed in [0, 1]. The displacement is
accepted if and only if x is less than P(dE). This basic iteration is repeated many
times and as predicted by Boltzmann’s law, the system evolves to the most likely
state at temperature t. Then ¢ is multiplied by a constant a in [0, 1] and the sequence
of iterations repeated. The minimal value of the energy decreases with ¢ as the
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probability to accept a displacement which would increase E diminishes. When ¢ is
sufficiently low, no more random displacements are accepted. The system is “frozen”
in a quasi stable state corresponding to a local minimum of E.

Thirty years after the publication of Metropolis et al.’s method, Kirpatrick, Gelatt
and Vecchi [39] proposed to apply a smilar approach to the optimization of
combinatorial problems. Independently, Cerny [7] considered the use of such a
method to solve the traveling salesman problem.

This hew approach to heuristics for combinatorial optimization has the following
advantages:

1. The heuristic does not stop at the first local optimum found but, with some
probability, proceeds to further exploration of the solution set.

2. According to Kirkpatrick et al., the heuristic exhibits some sort of natural
“divide and conquer” behavior at high temperature, i.e., the main features of the
optimal solution become apparent and, to some extent, it breaks up into sub-
problems. .

3. The theory of thermodynamical statistics can be brought to bear to exhibit some
possible properties of the solution set, such as the existence of many local optima
with values close to the global optimum.

4. Under reasonable assumptions the heuristic converges (perhaps very slowly), to
a global optimum (see e.g. Anily and Federgruen [1]).

We now present a pidgin-algol program for the Simulated Annealing approach
following Burkard and Rendl [6]. Suitable changes are introduced in order to
consider here the case of maximization.

Heuristic procedure SA

Logical change
Real, a
Set t to an initial high value;
Select a feasible solution S and calculate the objective value z(S);
Change « .true.;
While change do
Begin
Change « .false.;
Repeat rep times
Begin
Transform S into S’ by a random move in the neighbourhood of S and
calculate 6 the corresponding change in the objective function value;
If 5 > O then goto accept;
P(0) «+ exp(d/t);
Generate a random value for a variable x uniformly distributed in [0, 1];
If x < P(6) then goto accept else goto exit;
Accept: S « §';
z(S) « z(S) + &;
I 6 # 0O then change « true;
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Exit;
End;
t<t.a,
End.

The logical variable change is used to check if no change in the objective function
occurs during a cycle of rep random trials. The values of the parameters ¢, rep and
a have a strong influence on the performance of the heuristic. Finding the best values
for a class of problems usually requires a long and systematic experimental study.
Rep is often taken to be a low order power of the problem size, or some surrogate
such as the number of variables. The value ¢ must be chosen sufficiently high for
most or all possible changes to be acceptable during the first stage of the resolution.
In other words, P(d) should initially be close to 1. The value a must be chosen
sufficiently large in order to allow a slow cooling and avoid premature freezing in
a low value local maximum. As it strongly influences computing time a should not
be too large either.

4.2. Steepest Ascent Mildest Descent

The Simulated Annealing heuristic proceeds by local search and is not necessarily
blocked as soon as a new local optimum is found. Nevertheless, the direction of the
local changes are little exploited. If the objective function decreases, the change is
always accepted however small it may be; if the objective function increases, the
change is also accepted with some probability. It therefore seems desirable to devise
a method which expoits information on the direction of steepest descent and yet
retains the property of not being blocked at the first local optimum found. The
Steepest Descent Mildest Ascent approach constitute such a method. Local changes
in the direction of steepest descent are performed until a local optimum is obtained.
Then a local change along a direction of mildest ascent takes place and the reverse
move is forbidden for a given number of iterations to avoid cycling with a high
probability. Further specialized devices for detecting and breaking cycling can be
added and will be outlined after the presentation of the general approach.

We now propose a pidgin-algol program for the Steepest Descent Mildest Ascent
heuristic similar to that one for Simulated Annealing presented in the last section.

Heuristic procedure SAMD

Logical change
Select a feasible solution S and calculate the objective value z(S);
Set f; = 0 for j € J, index set of the directions of change;
Change « .true.;
S*8§;
z* « z(S);
While change do

Begin

Change « .false.;
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Repeat rep times
Begin
Transform S into the solution S; modified in the j* direction and evaluate
0; = z(8;) — z(8) for j € J with f; = 0;
Let 6, = max{§;/j e J, f; = 0};
S8
If 6, < O then f; < p;
If z(S,) > z* then z* « z(S,);
S* < 8
Change « .true.;
Ji< f;— 1 for all j e J such that f; > 0,
End;
End.

The logical variable change is used to check if a better solution than previously
known is found during a cycle of rep local changes. The best solution found so far
is kept in $* and its value in z*. The parameters f; denote the remaining number of
iterations during which a local change in direction j is forbidden. When a change
in a descent direction j is done, f; is set at the value p. The larger the value of p the
more difficult it will be to come back to a local optimum, but also to explore its
vicinity.

While forbidding local reverse changes, as just described, guarantees to get out of
- alocal optimum, it does not entirely prohibit the possibility of cycling. The following
device called “local optima checking” allows to check for and break cycles. Each
time a local optimum S* is found for the first time, it is introduced in a list and a
counter d* for directions used is set equal to 1. When getting to a local optimum,
it is first checked whether it belongs to the list of local optima already found (this
can be done easily, e.g. by using hash coding). If this is the case, the counter d* of
the directions used is augmented by one and a local change is performed along the
corresponding d*-th mildest descent direction. Otherwise the first direction is used
as described above. If, for some solution, all directions have been explored, the
procedure stops. Alternatively, all directions could be considered as admissible
again after an increase of the parameter p.

4.3. Application of the Ascent Descent Methods
4.3.1. Local Changes and Initial Solution

In any ascent-descent method, the set of local changes should be such that any
solution can be obtained from any other one after an adequate sequence of such
changes. In the MAX—SAT problem one may consider an initial solution which is
randomly generated, i.e., a vector of values equal to true or false, and as local changes
the complementation of one of these variables, i.c., exchange from true to false or
from false to true. Alternatively, one could take as an initial vector a solution given
by some heuristic (see Section 3).
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4.3.2. Evaluation Functions

In order to evaluate the effect of a local change, different factors can be taken into
account such as the number and/or the cardinality of unsatisfied clauses which
become satisfied, the number and/or the cardinality of satisfied clauses which
become unsatisfied, the number and/or the cardinality of clauses containing the
switching literal and which remain satisfied, the difference between the number of
occurrences of the variable in direct and in complemented form, and so on.

A simple evaluation function, denoted by f,, is the following:

Let UNSAT, (resp. SAT, ) be the set of unsatisfied (resp. satisfied) clauses involving the
literal u, or i, and which become satisfied (resp. unsatisfied) when switching the
value of u,. Define the switching variable as the one for which:

|UNSAT,| — |SAT|
is maximum.

Other evaluation functions are discussed in the original version of this paper [27].

4.3.3 Quality of Local Optima

Let z* denote the optimum value and g the minimum number of literals contained
in a given clause of the problem. Applying the Steepest Ascent Mildest Descent
method with the evaluation function f, leads, before descent takes place, to a local
maximum, i.e., to a solution such that no increase in the number of satisfied clauses
is obtained by switching the value of any single variable. Such solutions have the
same worst case bound as the heuristic JOHN1, as we now show.

Theorem 1: Any local optimum of any instance of MAXSAT with at least q literals per
clause is such that:

and the bound is sharp.

Proof. Assume the switch defined by the evaluation function f, does not allow any
new increase of the number of satisfied clauses. Then for any literal u;: [UNSAT,| <
[SAT].

Let UNSAT (resp. SAT) denote the set of unsatisfied (resp. satisfied) clauses. From the
previous relation:

qlUNSAT| < ¥ |UNSAT,| < Y [SAT,| < [SAT| = z,
'k k
and, as m = |UNSAT| + |SAT|, z > —Lm.
q+1

To show that the bound is sharp consider the following example:
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C={171 \'4 uz,b_lz \" u3,173 Vv ul,ﬁ4 \" U5,175 \" u6,176 \% u4,ﬁ1 \% ﬁ4,il_2 \" 175,173 \" 176}.

The solution U = {T,T, T, T, T, T} is locally optimal, with z = 6 and m—:]_ = 6
q

q
Corollary 2: z > ——z*.
orollary 2: z > o

Proof. m > z*. ]

We now focus on the maximum number r of literals per clause. Consider MAX—1SAT
and let p; denote the number of clauses with i literals,i = 1,2,...,r.

Theorem 3: Any local optimum of MAX—rSAT is such that:

1 k-1
> —{km — k — 1)p;
Z_k=:‘,1233(..,r I:k+ 1( ™ ;;1 ( )P,)]

and the bound is sharp.

Proof. Let IUNSAT; and IUNSAT > ; denote the set of unsatisfied clauses with i literals
per clause and with at least i literals per clause respectively. Let SAT! denote the set
of clauses for which a single literal is true: this set can be partitioned into r sets ISAT;
of clauses with i literals for i =1, 2, ..., r. Let 1SATY; = (Jj=i 044
local optimality conditions |UNSAT;| < [SAT;|, j = 1, 2, ..., nimply:

. [UNsAT)| < 3 [sATy| = [saT!].
J J

The left-hand-side can be bounded from below by:

k-1 '
Y i|TUNSAT;| + k|TUNSAT | foranyk=1,2,...,r.
i=t

As |UNSAT| = m — z = Y ¥_! |TUNSAT;| + |TUNSAT,,| we obtain, substituting for
|TUNSAT, | and partitioning SAT?,

k-1
k|UNsAT| < Y (J1sAT}| + (k — i) |TUNSAT;[) + [1SATL .
i=1

TBen, as k|UNSAT| = k(m — z) and [1SAT}| + (k — i)|TUNSAT;| < (k — i)p; for k > i
and [1SATL,;| < z, we deduce:

k(m—2z2) < kil (k—i)p; + z.
i=1
Hence,
1 k=1

As z is integer and the above formula must hold for all k = 1, 2, ..., r, the result
follows.
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To show that the bound is sharp, consider the example:

C={uy vu, v - vu,u viyu,V ilyuy Vv iy, i, 43}, where r > 3. Thus

m=7p =p,=3,p=0fori=3,4,...,r— 1 and p, = 1. The solution U =

(T, T, T, T,F,F,...,F) is locally optimal with z = 4. The right-hand side of (1) is equal
k+9

7 11
to|:§:|=4fork=l,toli?]=4fork=2,[m]s3fork23. n

We now compare the bound just obtained with those of other heuristics. The bound
q

for Johnson’s second heuristic, i.e., z > m depends on the minimum number

24
o i m, .
g of literals per clause and is equal to 5 in the general case, i.e., when there are some

unit clauses. This is very often the case in logical problems arising in expert systems

m 2m— p,
1’3
and is thus at least as tight as Johnson’s bound when g = 1.

and data-bases. The bound of Theorem 3 can be rewritten z > max
3m — 2p, — p,

e
For formulas with exactly q literals per clause, the bound reduces to that of Theorem
1 and is then as weak as that of Johnson’s first heuristic.

.. Im — ;
The bound on the Poljak-Turzik heuristic, i.e., z > %, is always greater than

the two first terms in the above bound, which are the only ones to be considered
for MAX—-2SAT. There are thus some MAX-2SAT problems for which the Poljak-Turzik
heuristic will always give a solution better than some locally optimum one, regard-
less of the way the variables are selected.

5. Computational Experience

All the algorithms of the previous sections (except that of Lieberherr as the simpler
method of Lieberherr and Specker for MAX—2SAT was already very time consuming)
have been implemented in Fortran 77 on a Pyramid 90x and compared on random
formulas, characterized by n, m and r where n is the number of variables, m the
number of clauses and r the number of literals in a clause. We assume that no clause
contains both a literal and its complement.

We have also programmed an exact branch-and-bound algorithm for MAX—2SAT,
described in the initial version of this paper [27], to see how close the various
heuristics get from the true optimum.

5.1. Analysis of the Performance of Ascent Descent Heuristics
Before comparing the methods presented in sections 3 and 4, we study the effect of

the parameter values for both the Simulated Annealing (SA) heuristic and the
Steepest Ascent Mildest Descent (SAMD) heuristic.
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We first consider in this sensitivity analysis the effect of a (the attenuating coefficient)
and ¢ (the mobility parameter) on the sA heuristic. Turning to the SAMD heuristic,
we then study the effect of rep (maximum number of trials without improvement of
the value of the objective function) and of p (number of iterations during which it
is forbidden to take a reverse direction) while a and t are at fixed values, i.e., those
giving the best results for the sA heuristic.

We use as test problems 10 instances of a MAX—3SAT problem P with n = 100
variables and m = 500 clauses. For a given set of values of the parameters, we
generate nsol = 50 random initial points and solve a given instance nsol times.

Table 6-1 presents a summary of the results obtained with the sa heuristic for various
values of a and t for rep = 100 and rep = 500. These results are means for 10
problems and nsol = 50. Such values are given for the average number of unsatisfied
clauses (z), the number of unsatisfied clauses in the best solution among those of
the nsol runs for each problem (zopt), the number of increases of the value of the
incumbent (it), the number of times the best solution was found (f) and the cpu time
(tcpu), in seconds.

Table 6-1. Sensitivity analysis for saA: influence of g and .

rep 100 500

t\a 06 07 08 09 095 06 07 08 09 095
95 96 89 175 66 54 57 58 44 41 z
47 49 48 37 37 33 33 35 31 32 zopt

20 374 378 380 396 404 420 415 415 423 425 iter
16 14 22 25 35 72 49 40 108 206 f
27 33 47 89 172 122 160 237 471 930 tcpu
93 92 87 177 69 54 52 57 52 44 z
40 46 47 43 37 28 28 34 35 3.1 zopt
50 377 382 383 397 403 420 41.8 421 422 429 iter

23 21 21 33 30 45 46 66 123 129 !
31 38 55 106 207 139 186 276 551 1108 tepu
95 96 86 75 63 63 58 46 38 4.0 z
47 48 45 40 3.1 35 36 27 27 3.0 zopt

100 376 37.8 385 399 403 410 418 427 434 4238 iter
18 16 25 21 27 35 60 73 181 152 f
33 42 62 122 234 153 204 307 613 1230 tcpu
100 91 87 79 62 55 54 48 40 38 z
47 45 43 40 31 29 31 31 28 2.6 zopt

200 376 379 392 395 409 41.7 419 421 427 430 iter
L7 19 17 24 24 46 47 93 127 131 f
36 46 67 131 258 16.5 222 336 675 1353 tcpu

It appears that: (i) the number of unsatisfied clauses decreases significantly when
rep goes from 100 to 500 and slightly with increasing values of a; it is not significantly
affected by ¢, (ii) computation times are roughly proportional to rep, increase with
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a, sharply when a approaches 1; they augment slightly with increasing ¢, (iii) the
number of iterations increases slightly when rep goes from 100 to 500 and does not
seem to depend on ¢; (iv) the number f of times the best (and presumably optimal
in most cases) solution is found does not seem to depend on ¢, increases when rep
goes from 100 to 500 and sharply increases when a tends to 1 and rep = 500. This
confirm that the sa heuristic often provides an optimal solution, or a solution very
close to the optimum, if much computing time is expended.

Table 6-2 presents a summary of the results obtained with the sA and sAMD heuristics
for various values of rep and p for a = 0.9 and ¢ = 100. It is seen that: i) SAMD gives
consistently better results than sa for p not too large, in terms of averages (z) of the
best values found and of times (f) such a solution is found, ii) the best value of p
appears to be around 15, i.e., large enough to allow to force the exploration away
from the vicinity of a local maximum, but not so large as to hamper the exploration
of regions of high values (taking p equal to 15% of the number of variables has also
been found to be a good choice in quadratic optimization in 0-1 variables, see
Hansen et al. [29]). iii) quality of solutions augments with rep, more quickly for sa
than for sAMD, iv) cpu times of sA are consistently much larger than those of SAMD.

Table 6.2. Sensitivity analysis for saMD: influence of rep and p.

SAMD SA
rep\ p 10 15 20 25 30 35 40

49 46 49 5.3 59 6.4 7.1 75 z

3.1 32 51 34 35 3.6 43 40 zopt

100 333 334 333 326 320 313 311 39.9 iter
115 151 8.0 6.5 3.1 2.6 24 2.1 f

069 073 072 070 069 066 057 | 1191 | tcpu
46 43 45 49 54 6.0 65 59 z

33 34 3.4 35 3.6 37 44 3.7 zopt

- 200 340 344 340 338 330 327 320 413 iter
150 207 130 6.6 34 25 3.1 6.7 f

115 120 121 120 121 110 109 | 2445 tcpu
34 3.0 3.1 3.6 4.1 47 53 38 z

2.1 2.7 27 2.7 2.7 3.1 32 29 zopt

500 347 352 350 345 339 335 327 43.4 iter
308 392 324 170 70 6.5 3.5 18.1 f

225 233 247 255 251 250 251 | 5434 tepu
40 35 37 4.0 44 49 54 4.1 z

34 34 34 34 30 3.1 35 30 zopt

1000 340 344 342 337 336 331 326 430 iter
314 435 341 220 7.7 30 3.6 17.1 f

404 436 454 463 542 543 500 | 12520 tcpu
3.7 35 35 38 42 45 50 33 z

30 34 34 34 34 35 3.6 3.0 zopt

2000 350 345 344 342 337 334 329 440 iter
343 459 426 306 183 9.6 5.5 350 f

788 840 906 920 951 962 978 | 22477 tepu
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5.2. Comparison of the Ascent Descent Methods with the Previous Heuristics
5.2.1. General Maximum Satisfiability

The results of experiments with MAX—3SAT and MAX~4SAT problems are summarized
in Tables 6-3 and 6-4. The algorithms which are compared are Ascent to the first
local optimum (obtained as a byproduct of the Steepest Ascent Mildest Descent
algorithm using evaluation function f; and noted algorithm loc with best optimal
value found zloc), the heuristics of Johnson, Simulated Annealing and the Steepest
Ascent Mildest Descent itself. For each problem size, 50 problems are randomly
generated, all clauses being assumed to be equiprobable and possible repetitions
being allowed. Each problem is solved 100 times (except for the Johnson’s heuristics
which are deterministic). The mean values of the best, worst, median and mean
values are noted as well as the mean cpu time in seconds. The mean number iter of
improvements of the incumbent is also noted for the Ascent Descent heuristics.

It is seen that: i) the Johnson’s heuristics performed poorly, often giving a worst
solution that the Ascent heuristics, ii) Steepest Ascent Mildest Descent gives signifi-
cantly better results than all other heuristics, especially for large problems. Simu-
lated Annealing is the second best heuristic but takes much more time than the

Table 6-3. Comparative results for MAX—3SAT.

n 100 100 100 300 300 300 300 500
m 200 500 700 600 800 1500 2000 5000
zloc best 04 10.8 210 2.8 83 354 64.4 2338

worst 4.1 20.6 325 9.4 17.2 520 85.0 260.0
median 1.7 15.5 26.0 54 11.5 43.2 72.6 2515
mean 1.9 15.6 26.6 59 12.2 43.5 73.5 249.1
cpu | 0.06 0.12 0.21 0.35 0.42 0.72 0.88 233

zjohn1 mean 23 149 282 4.7 10.6 45.3 74.1 268.8

cpu 0.06 0.18 0.33 041 0.53 0.69 1.37 3.49

zjohn2 mean 14 13.5 26.9 2.7 9.0 44.1 76.5 2574
cpu 0.06 0.15 0.29 0.35 0.51 0.68 1.26 3.78

zsa best 0 5.6 15.1 0.7 31 226 47.6 215.7
worst 1.1 11.1 21.4 5.5 10.7 410 68.1 245.5

median 0 8.1 17.6 23 54 28.6 574 222.7

mean 0.2 8.2 18.1 2.7 6.1 30.0 58.0 226.4

iter 20.1 38.7 443 61.2 76.1 109.2 1224 222.8

cpu 325 4.59 10.58 5.51 6.43 5.62 109 15.8

zsamd best 0 3.7 134 0.5 1.2 10.6 34.0 174.6
worst 1.1 74 17.0 4.8 7.6 214 45.1 190.6

median 0.1 4.7 144 2.1 4.1 14.7 383 182.8

mean 0.3 5.1 14.7 24 43 15.3 39 182.8

iter 16.3 34.0 384 48.7 64.0 97.9 113.5 208.7

cpu [ 048 0.87 1.01 1.02 1.42 3.96 3.39 8.15
P 15 15 10 25 25 25 25 25
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Table 6-4. Comparative results for MAX—4SAT.

n 100 300 300 300
m 700 1500 2500 3000
zloc best 3.7 49 21.2 324
worst 109 13.7 372 50.7

median 6.6 7.6 21.5 40.7

mean 7.1 8.5 28.6 416

cpu 0.20 0.53 0.85 0.94

zjohn1 mean 70 8.5 29.7 439
cpu 0.34 0.98 1.13 1.42

zjohn2 mean 52 5.6 27.7 412
cpu 0.32 0.92 1.17 1.36

zsa best 0.3 10 119 14.3
worst 40 100 25.2 273

median 1.5 35 17.2 18.7

mean 1.8 42 17.7 20.0

iter 314 71.2 96.1 114.6

cpu 11.7 9.94 9.71 21.35

zsamd best 0.0 0.0 04 59
worst 0.7 4.0 70 14.6

median 0.0 09 34 8.7

mean 0.1 . 1.3 38 94

iter 243 53.1 829 99.4

cpu 0.87 1.69 422 7.34

p 10 25 25 25

rep 100 100 100 200

other ones, iii) the range of best values found in the 100 runs of the Ascent-Descent
heuristics are not very large but however significant. This suggest it may be worth-
while to take the best result of many runs if getting very close to the true optimum
is highly desirable.

5.2.2 Maximum 2-Satisfiability

Results for MAX-2SAT problem are summarized in Table 6-5. In addition to the
heuristics applied in the general case, those of Lieberherr and Specker, and of Poljak
and Turzik as well as the exact algorithm are used. In this series of experiments,
problem instances have been kept small in order to allow exact resolution (only two
instances of problem with m = 200 and n = 100 have been solved). Each column
corresponds to one problem instance, solved once by the Johnson, Lieberherr-
Specker, and Poljak-Turzik heuristics and 100 times by the Ascent Descent heur-
istics. The algorithms of Lieberherr and Specker, and of Poljak and Turzik, which
have the best worst case bounds, give significantly worse results than the other
heuristics. The optimum solution obtained after much effort by the exact algorithm
is always found at least once by the Ascent Descent heuristics in the 100 resolutions.
The average performances of the latter do not differ much.
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Table 6-5. Comparative results for MAX—2SAT.

n 10 20 20 50 60 100 100
m 100 200 200 200 200 200 200
zloc best 13 0 21 13 13 7 8
worst 13 33 28 26 18 18 19

mean 13 31 232 18.5 159 11.3 139

cpu 0.02 0.033 0.03 0.033 0.05 0.08 0.05

zjohn1 meax. 15 33 24 18 15 12 15
cpu ‘03 0.05 0.03 0.083 0.07 0.17 0.15

zjohn2 mean <5 31 27 18 16 9 12
cpu 0.03 0.03 0.05 0.067 0.03 0.08 0.07

zlieb mean 14 32 27 28 20 24 24
cpu 2.07 369.8 96.5 485.7 1326 4685 4445

zpol mean 24 45 42 46 40 48 39
cpu 0.03 0.05 0.05 0.05 0.05 0.08 0.05

zsa best 13 29 21 13 11 S 7
worst 13 29 21 16 13 12 12

mean 13 29 21 133 122 7.3 8.9

cpu 0.7 7.47 5.94 4.20 419 3.61 3.66

zsamd best 13 29 21 13 1 5 7
worst 13 31 21 14 13 15 18

mean 13 29.8 21 13.1 11.8 8.8 11.5

cpu 0.03 0.26 0.22 0.19 0.21 0.26 024

z* mean 13 29 21 13 11 S 7
r 1 1 4 7 7 7 7

rep 10 100 - 100 100 100 100 100

6. Conclusions

The Maximum Satisfiability problem is a natural extension of the basic Satisfiabil-
ity problem. Several algorithms have been proposed to solve it, some of which have
sharp bounds on the guaranteed number of clauses which will be satisfied. We have
summarized these heuristics and provided two new ones based on recently proposed
Ascent Descent methods (Simulated Annealing and Steepest Ascent Mildest De-
scent). A systematic experimental study of the performances of all these algorithms
shows that the best one appears to be the Steepest Ascent Mildest Descent heuristic.
It provided solutions with almost the maximum number of satisfied clauses in all
cases where this could be verified, i.e., for the MAX—2SAT problem. Moreover the best
solution obtained by that heuristic in a series of 100 resolutions of each of these
problems was always optimal, and the computation time remained moderate. For
MAX—-3SAT and MAX-4SAT, it outperformed all previous heuristics as well as the
specialization of the Simulated Annealing algorithmic scheme.
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