
ISO/IEC JTC 1/SC 29/WG1 N862
Date: 1998-07-08

ISO/IEC JTC 1/SC 29/WG 1ISO/IEC JTC 1/SC 29/WG 1
(ITU-T SG8)(ITU-T SG8)

Coding of Still PicturesCoding of Still Pictures

JBIG JBIG JPEGJPEG
Joint Bi-level Image Joint Photographic

 Experts Group Experts Group

TITLE: Coding of Numerical Data in JBIG-2

SOURCE: Dave Tompkins (davet@ece.ubc.ca)
and Faouzi Kossentini (faouzi@ece.ubc.ca)
Department of Electrical and Computer Engineering
University of British Columbia
Vancouver BC Canada V6T 1Z4

PROJECT: JBIG-2

STATUS: Discussion

REQUESTED ACTION: For Inclusion in the JBIG-2 Standard

DISTRIBUTION: 13th Meeting of ISO/IEC JTC1/SC 29/WG1

Contact:
ISO/IEC JTC 1/SC 29/WG 1 Convener - Dr. Daniel T. Lee
Hewlett-Packard Company, 11000 Wolfe Road, MS42U0, Cupertion, California 95014, USA
Tel: +1 408 447 4160, Fax: +1 408 447 2842, E-mail: Daniel_Lee@hp.com

2

1. Summary
This document presents the results from implementing a variety of numerical coding methods within the
JBIG-2 bitstream format to a specific encoder profile. The profile used to encode the data was fairly
straightforward, and is described in section 2. Section 3 describes some of the issues involved with
encoding numerical data in general. Section 4 describes each of the coding methods used in this
experiment, and section 5 provides the results of the experiment for each numerical data type.

Overall, using an optimized Huffman table produced the best results, but not when the overhead of
including the table size is considered. The multi-symbol Arithmetic coder used in this experiment
performed very poorly. Depending on the data type, the standard Huffman tables produced good results,
but in most circumstances the standard tables were outperformed by a Binary Arithmetic coder. Whether
the Binary coder based its’ codes upon the standard Huffman tables, or a another coding scheme, it seemed
to be the best, and has the advantage of being compatible with the MQ bitstream.

Further Recommendations are included in Section 6.

2. Profile Description
The Profile used to generate the data for this experiment uses a simple and straightforward lossless soft
pattern matcher, and is a component of the upcoming JBIG-2 Verification Model (VM). The data for this
experiment was also generated for two additional profiles, but the relative performance of the different
encoding methods was similar. It is hoped that this profile will represent a “typical” lossless
implementation of JBIG-2 with SPM.

Here are some points of interest regarding the profile used:
• The image is not segmented into sub-pictures, and no halftone information is detected or used.
• The profile does not detect vertical text, and does not consider using a transposed coordinate system.
• Four segments are used to describe the document: Page Information Segment, Symbol Dictionary

Segment, Symbol Image (instance) Segment, and a Generic Bitmap Segment (residue).
• Originally, all symbols are removed from the document and sorted by height and then width.
• All symbols smaller than 2x2 pixels are returned to the residue.
• All symbols are checked to see if a previous symbol of size no more than +/- 2 pixels has an 80% pixel

match. If an appropriate match exists, the symbol is removed from the dictionary and is encoded only
in the Instance segment, with refinement information.

• For aligning refinement images, only the default centroid method is used, with no offsets.
• Any symbols in the dictionary that only occur once, and are not used for refinement information by any

other symbols are returned to the residue.
• Only one dictionary segment is used, so all of the symbols are exported. Furthermore, no symbols in

the dictionary are constructed with refinement or aggregate information from previous symbols.
• In the Instance Segment, a stripe size of 1 pixel is used, and symbols are referenced by their lower-left

coordinate.

3

3. General Encoding Issues with JBIG-2
In addition to compression efficiency, each encoding scheme should be evaluated on how easily it can be
incorporated into the JBIG-2 bitstream format. In Refinement Symbol Image (Instance) segments this issue
become even more pertinent, as integers will be intermixed with refinement data encoded with the MQ
coder. If the bitstreams are incompatible, the data will have to be forced to byte boundaries, resulting in
some inefficiency. If incompatible bitstreams are used, including the refinement information at the end of
the segment should be considered as an alternative. However, adding refinement information at the end of
the segment increases the bitstream complexity and increases the memory requirements for a decoder.

Huffman codes, or similar direct bit encoding can be incorporated directly into the MQ bitstream with the
MQ Coder. The Coder can be forced to encode bits directly by setting the Most Probable Symbol to 0 (or
1) and the Probability to ~50% before encoding (or decoding) each bit. This method could also be used to
encode data where using contexts have no effect, or in some cases when the arithmetic predictions can
decrease efficiency. This method is illustrated in Figure 3.1.

int dummyMPS, dummyIndex;

…

for(each bit) {

 dummyMPS = 0; /* force MPS to 0 */

 dummyIndex = 0; /* force probability to ~50%
*/

 MQEncode(bit, &dummyIndex, &dummyMPS);

}

Figure 3.1 – Using the MQ Coder to encode bits directly

Arithmetic coders in general pose a problem with their memory requirements, especially if the coder is
going to allow integers with 32-bit precision. It would be physically impractical to support a multi-symbol
arithmetic coder that could properly handle enough symbols for 32 bit precision. If a multi-symbol
approach is to be used, reasonable limits would have to be imposed on the range of numbers being encoded,
and an alternative for encoding large numbers would have to be available. Binary coders do not escape this
problem, and with variable length codes, the memory requirements to handle all the possible contexts would
be even worse.

For Arithmetic Binary coders, saturated contexts can be used to reduce memory requirements. With
saturated contexts, a limit is placed on the number of bits that can be used for contexts. When the length of
context required exceeds the allowed context size, there are two possible solutions: 1) using a single context
for all of the remaining bits to encode and 2) using the direct encoding scheme as mentioned above to
encode the bits directly. The size of the context to be used can be specified in the header, similar to the
method used to describe Huffman tables, or context templates in the bitmap segments. By leaving the
context size flexible in the standard, it will allow for different profiles to exist with variable memory
requirements.

4

4. Coding Methods
This section describes how each column of the data in Section 5 was calculated.

4.1 Entropy

This column represents the theoretical minimum number of bits per number (symbol) required. The value
was calculated with the following equation:

∑ ∑∑

⋅

−

N

j count
jcount

count
jcount

()

)(
log

()

)(
2

4.2 Huffman – Optimized Tables Method A

An Optimized Huffman Table was constructed for each data set, using the optimal code length for each
number (symbol). In each table, it includes not just the length of the data, but in parenthesis it shows the
length of the codes with the table size considered. The size of the table was determined according to the
current bitstream requirements for defining a custom table. With the exception of the Symbol ID data
[IAID], which used the run-length method in section 7.4.3.4 [1], each table was constructed according to
the method described in section C.1 [1].

Note: The Optimized Huffman Table in method A was constructed to minimize the code lengths, NOT to
minimize the size of the table. For example, if the number 10 and 11 both have a code length of 7, it
would reduce the table size to make their prefix code length 6 and have a range length of 1. However, to
reduce complexity and to ensure the minimum code lengths, every number that occurred was assigned a
range length of 0. Conversely, table entries for numbers that did not occur were minimized, and were
grouped together with the largest possible range lengths, and given prefix lengths of 0.

4.3 Huffman – Optimized Tables Method B

For each data type, there are several pre-defined standard Huffman tables available in the current JBIG-2
standard. For method B, these standardized tables were used, with prefix code lengths optimized for the
data set. For each data set, the appropriate tables were considered, and then the table was selected which
would minimize the length of the data stream.

 4.4 Huffman – Optimized Tables Method C

An Optimized Huffman Table was constructed for each data set, using the method described in Appendix
A. For each document, several tables and data streams were generated (with varying thresholds) and the
method that generated the smallest overall bitstream size was used for the calculations.

4.5 Huffman – Standard Tables

The current standard includes some standard Huffman tables that are generally optimized for each data
type. For most of the data types, there are several different tables available. The data contained in these
charts represents the minimum of all the available tables.

For example: to encode the subsequent Symbol A coordinate [IADA] any of tables C.8, C.9 and C.10
can be used. For document F01_300, Table C.8 was the optimum choice, and was chosen, but for

5

document F01_600 Table C.9 was used. For each document, all of the available tables were utilized,
and then the one with the highest compression was chosen

4.6 Arithmetic – Multi-Symbol Alphabet [Arithmetic MSA]

As described in Section 3, there are numerous issues involved with using a Multi-Symbol Arithmetic
Coder. An existing generic library routine was used for the arithmetic coding. The routine was modified
for each data type so that the number of symbols in the coder was lowered to the smallest power of 2 large
enough to accommodate the data.

For example: The subsequent Symbol A coordinate data [IADA] contained data in the range –68..3669
so the coder used an alphabet of 4096 symbols.

4.7 Arithmetic – Binary (MQ) – Huffman Codes

This method encoded with the MQ Binary Arithmetic Coder, but used the Huffman codes from the
standardized tables to represent each number as a stream of bits. A saturated context was used, as
described in Section 3, with a single context for all the remaining bits. As in Section 4.4, the results were
calculated for each of the available tables and the result from the optimum table was selected for each
document.

4.8 Arithmetic – Binary (MQ) – Arithmetic Coders

As with Section 4.7, the number to be coded was represented as a binary code, and was encoded with the
MQ Coder. However, instead of using the specific Huffman tables as the basis for the binary code, a
specific table was used. In each case, the sign bit (s) was only used for data types where negative numbers
are supported. In all tables, the value N is assumed to be the absolute value of the number being encoded.

4.8.1 Arithmetic Coder - Style A
Style A is very straightforward, and simply encodes each value with a fixed number of bits. For negative
numbers, the value is encoded with a signed magnitude notation. The number of bits used for each data
type would have to be included in the header segment, or for certain tables it could be fixed. In this
experiment, the minimum possible data length was selected for each document. The OOB symbol is
encoded as all 1’s, so the number of bits required should take this into consideration.

For example, with 5 bits, and support for negative numbers, the following numbers would be encoded as:

OOB 111111
1 000001
–1 100001
-30 111110 (maximum negative number)

4.8.2 Arithmetic Coder - Style B
Style B is almost identical to Style A, with the exception of the OOB symbol. In Style B, the OOB is
encoded as a 1, and a 0 prefixes all other numbers.
For example, with 5 bits, and support for negative numbers, the following numbers would be encoded as:

OOB 1
1 0000001
–1 0100001
-31 0111111 (maximum negative number)

6

4.8.3 Arithmetic Coder - Style C
To encode the Number N, the following table is used:

Prefix Bits Meaning Data Bits
1 OOB
00 0
01s0 +/- 1
01s10 +/- 2
01s110 1 bit number N – 3
01s1110 2 bit number N – 5
01s11110 4 bit number N – 9
01s111110 6 bit number N – 25
01s1111110 8 bit number N – 89
01s11111110 12 bit number N – 345
01s11111111 32 bit number N – 4441
s=optional sign bit
Table 4.1 – Encoding Scheme for Arithmetic Coder Style C

Note: Special Thanks to William Rucklidge for suggesting this table structure.

4.8.4 Arithmetic Coder - Style D
To encode the Number N, the following table is used:

Prefix Bits Meaning Data Bits Suffix Bit
111111 OOB
0 2 bit number N s
10 4 bit number N – 4 s
110 6 bit number N – 20 s
1110 8 bit number N – 84 s
11110 12 bit number N – 340 s
111110 32 bit number N – 4436 s
Table 4.2 – Encoding Scheme for Arithmetic Coder Style D

4.8.5 Arithmetic Coder - Style E
To encode the Number N, the following table is used:

Prefix Bits Meaning Data Bits
1 OOB
0s0 2 bit number N
0s10 4 bit number N – 4
0s110 6 bit number N – 20
0s1110 8 bit number N – 84
0s11110 12 bit number N – 340
0s11111 32 bit number N – 4436
Table 4.3 – Encoding Scheme for Arithmetic Coder Style E

7

5. Numerical Data Types
This section summarizes the numerical results for each data type. Table 5.1 lists each Data Type, and a
brief description.

Data Description Relevant Section(s) Note
IADB Strip Delta B 6.4.3 and 7.4.3.2.1
IAFA First Symbol A Coordinate 6.4.4 and 7.4.3.2.1
IADA Subsequent Symbol A Coordinate 6.4.5 and 7.4.3.2.1
IAIB Instance B Coordinate 6.4.6. and B.2 1.
IAID Instance Symbol ID 6.4.7 and B.3 2.
IARI Refinement Flag 6.4.8
IARDH Instance Refinement Delta Height 6.4.8.1 and 7.4.3.2.1
IARDW Instance Refinement Delta Width 6.4.8.2 and 7.4.3.2.1
IARDX Instance Refinement X Offset 6.4.8.3. and 7.4.3.2.1 3.
IARDY Instance Refinement Y Offset 6.4.8.3. and 7.4.3.2.1 3.
IADH Height Class Delta Height 6.5.2 and 7.4.2.1.1
IADW Height Class Delta Width 6.5.3 and 7.4.2.1.1
IAAI Aggregate Information 6.5.4.2. and 7.4.2.1.1 4.
IAEX Symbol Table Run Length Export Flags 6.5.6. 5.

Notes:

1. Because the Profile that was used a strip size of 1, no B coordinate information is available.

2. There are no standardized Huffman tables for encoding the Symbol ID information. The encoder is
required to determine Huffman codes for each ID, and those codes are included in the bitstream in a
special table.

3. Because the Profile that was used for this experiment did not use offsets, no useful information is
available.

4. Because the Profile that was used for this experiment did not utilize an Aggregate method of building
symbols, no information is available.

5. Because the Profile that was used for this experiment exported all of the symbols, no useful
information is available.

Table 5.1 – Brief Description of Each Data Type

8

Tables 5.2 through 5.7 contain the total number of kilobytes required to encode all of the 32 standard ITU
documents (8 documents, at 4 resolutions).

Entropy
Huff – Opt
Method A
(+ Table)

Huff – Opt
Method B
(+ Table)

Huff – Opt
Method C

(incl. Table)
Huffman
Standard

Arithmetic
MSA

IADB 4.9k 4.9k (7.2k) 5.7k (6.5k) 6.4k 6.0k 12.0k
IAFA 16.3k 16.3k (41.6k) 22.7k (23.4k) 24.1k 23.3k 25.7k
IADA 29.3k 29.4k (40.0k) 33.1k (34.2k) 35.3k 38.4k 59.9k
IAID 37.5k 37.5k (39.4k) N/A N/A N/A 59.7k
IARI 2.5k 5.6k (6.0k) 5.6k (6.0k) 5.7k 5.6k 5.7k
IARDH 6.9k 6.5k (6.9k) 7.0k (7.5k) 7.6k 11.7k 13.1k
IARDW 8.9k 9.4k (9.8k) 9.4k (9.9k) 9.6k 11.0k 11.7k
IADH 0.1k 0.2k (0.6k) 0.2k (0.7k) 0.3k 0.2k 0.8k
IADW 2.3k 2.3k (3.5k) 2.6k (3.1k) 2.9k 3.3k 4.7k
Total* 71.1k 74.7k (115.6k) 86.5k (91.2k) 92.0k 99.5k 133.6k
*excluding IAID.

Table 5.2 – Total Number of Kilobytes Required to Encode all 32 Images

Entropy
Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

IADB 4.9k 6.0k N/A N/A 5.6k 7.1k 7.2k
IAFA 16.3k 23.2k N/A N/A 23.1k 22.9k 22.9k
IADA 29.3k 33.6k N/A N/A 34.0k 37.6k 34.6k
IAID 37.5k N/A N/A N/A 45.7k 45.7k 45.8k
IARI 2.5k 2.6k N/A N/A 2.7k 11.2k 12.5k
IARDH 6.9k 7.2k N/A N/A 7.3k 11.9k 9.4k
IARDW 8.9k 9.2k N/A N/A 9.2k 12.0k 11.4k
IADH 0.1k 0.2k N/A N/A 0.2k 0.3k 0.4k
IADW 2.3k 2.7k N/A N/A 2.6k 2.6k 2.6k
Total* 71.1k 84.6k N/A N/A 84.7k 105.8k 100.9k
*excluding IAID.

Table 5.3 – Total Number of Kilobytes Required to Encode all 32 Images:
Arithmetic Coders – using a Saturated Context for only the Prefix Bits

9

Entropy
Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

IADB 4.9k 5.8k 5.6k 5.7k 5.6k 5.5k 5.6k
IAFA 16.3k 23.0k 21.8k 21.9k 22.1k 22.0k 22.0k
IADA 29.3k 32.2k 32.6k 32.2k 32.4k 33.3k 32.2k
IAID 37.5k N/A 38.6k 38.7k 39.5k 38.8k 38.8k
IARI 2.5k 2.6k 2.6k 2.6k 2.7k 2.7k 2.7k
IARDH 6.9k 7.2k 7.2k 7.3k 7.3k 7.3k 7.3k
IARDW 8.9k 9.2k 9.3k 9.3k 9.2k 9.3k 9.4k
IADH 0.1k 0.2k 0.2k 0.2k 0.2k 0.2k 0.2k
IADW 2.3k 2.7k 2.7k 2.6k 2.6k 2.6k 2.6k
Total* 71.1k 82.7k 82.0k 81.7k 82.1k 82.9k 81.9k
*excluding IAID.

Table 5.4 – Total Number of Kilobytes Required to Encode all 32 Images
Arithmetic Coders – using a Saturated Context of size 16

Entropy
Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

IADB 4.9k 5.8k 5.6k 5.7k 5.6k 5.5k 5.6k
IAFA 16.3k 23.0k 21.7k 21.8k 23.8k 21.9k 21.9k
IADA 29.3k 32.3k 36.4k 34.1k 34.1k 33.8k 32.5k
IAID 37.5k N/A 38.6k 38.7k 44.1k 39.9k 40.4k
IARI 2.5k 2.6k 2.6k 2.6k 2.7k 2.7k 2.7k
IARDH 6.9k 7.2k 7.2k 7.3k 7.3k 7.3k 7.3k
IARDW 8.9k 9.2k 9.3k 9.3k 9.2k 9.3k 9.4k
IADH 0.1k 0.2k 0.2k 0.2k 0.2k 0.2k 0.2k
IADW 2.3k 2.7k 2.7k 2.6k 2.6k 2.6k 2.6k
Total* 71.1k 82.9k 85.7k 83.7k 85.5k 83.2k 82.1k
*excluding IAID.

Table 5.5 – Total Number of Kilobytes Required to Encode all 32 Images
Arithmetic Coders – using a Saturated Context of size 10

Entropy
Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

IADB 4.9k 5.8k 6.3k 7.1k 5.6k 5.5k 5.6k
IAFA 16.3k 23.1k 21.8k 21.9k 25.4k 21.9k 22.4k
IADA 29.3k 32.4k 40.5k 35.4k 35.1k 34.3k 33.1k
IAID 37.5k N/A 38.8k 39.7k 48.2k 41.2k 42.1k
IARI 2.5k 2.6k 2.6k 2.6k 2.7k 2.7k 2.7k
IARDH 6.9k 7.2k 7.2k 7.3k 7.3k 7.3k 7.3k
IARDW 8.9k 9.2k 9.3k 9.3k 9.2k 9.3k 9.4k
IADH 0.1k 0.2k 0.2k 0.2k 0.2k 0.2k 0.2k
IADW 2.3k 2.7k 2.7k 2.6k 2.6k 2.6k 2.6k
Total* 71.1k 83.2k 90.6k 86.5k 88.1k 83.8k 83.2k
*excluding IAID.

Table 5.6 – Total Number of Kilobytes Required to Encode all 32 Images
Arithmetic Coders – using a Saturated Context of size 8

10

Entropy
Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

IADB 4.9k 5.9k 8.2k 8.7k 5.8k 5.5k 5.6k
IAFA 16.3k 23.3k 21.9k 22.1k 30.6k 23.0k 24.1k
IADA 29.3k 33.5k 46.1k 37.6k 40.3k 38.4k 34.9k
IAID 37.5k N/A 41.2k 42.0k 59.9k 44.1k 46.1k
IARI 2.5k 2.6k 2.6k 2.6k 2.7k 2.7k 2.7k
IARDH 6.9k 7.2k 7.2k 7.3k 7.3k 7.3k 7.3k
IARDW 8.9k 9.2k 9.3k 9.3k 9.2k 9.3k 9.4k
IADH 0.1k 0.2k 0.2k 0.2k 0.2k 0.2k 0.2k
IADW 2.3k 2.8k 2.9k 2.6k 2.7k 2.7k 2.6k
Total* 71.1k 84.6k 98.3k 90.5k 98.7k 89.1k 86.7k
*excluding IAID.

Table 5.7 – Total Number of Kilobytes Required to Encode all 32 Images
Arithmetic Coders – using a Saturated Context of size 5

Saturated
Context Size

Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

Prefix 84.6k N/A N/A 84.7k 105.8k 100.9k
16 (64k) 82.7k 82.0k 81.7k 82.1k 82.9k 81.9k
10 (1k) 82.9k 85.7k 83.7k 85.5k 83.2k 82.1k
8 (256) 83.2k 90.6k 86.5k 88.1k 83.8k 83.2k
5 (32) 84.6k 98.3k 90.5k 98.7k 89.1k 86.7k

Table 5.8 – Total Number of Kilobytes Required to Encode all 32 Images
Arithmetic Coder Totals (Excluding IAID data)

Saturated
Context Size

Arithmetic
Huffman

Arithmetic
Style A

Arithmetic
Style B

Arithmetic
Style C

Arithmetic
Style D

Arithmetic
Style E

Prefix N/A N/A N/A 45.7k 45.7k 45.8k
16 (64k) N/A 38.6k 38.7k 39.5k 38.8k 38.8k
10 (1k) N/A 38.6k 38.7k 44.1k 39.9k 40.4k
8 (256) N/A 38.8k 39.7k 48.2k 41.2k 42.1k
5 (32) N/A 41.2k 42.0k 59.9k 44.1k 46.1k

Table 5.9 – Total Number of Kilobytes Required to Encode all 32 Images
Arithmetic Coder IAID Values

11

6. Recommendations

• It is recommended that the committee include a small subset of arithmetic coding methods in the JBIG-
2 standard. Each of the formats included in this experiment, and numerous alternate structures would
make the integer coding in the JBIG-2 standard very robust. For certain data types, using a very
specific table, or the Huffman table would be appropriate, but for many of the data types, using a
general-purpose coder (i.e.: Style B) would be simple to implement, and very effective.

• In accordance with the first recommendation, it is recommended that the corresponding header
segments be modified to support the new arithmetic coding structures and options.

• The JBIG-2 standard should allow several arithmetic coder context sizes, to allow for different memory
requirements. The size of the context can be specified in the segment headers.

• If the committee expects that optimized Huffman table structures will be a popular encoding method,
then it is recommended that a more robust table structure be included in the JBIG-2 standard. The
structure currently in the standard works well for general distributions of numbers but is very poor for
very specific data sets. The method described in Appendix A, and formats used in other bitstreams
should be considered.

• Furthermore, if optimized Huffman table structures are to be used frequently, it is recommended that
the symbol instance segment should support a profile where the refinement information could be
separated from the Huffman-encoded information in the bitstream, to reduce the wastage caused by
forcing the bitstreams to byte boundaries.

7. References
[1] JBIG Committee, “N839: WD14492 as of 20 April 1998”.

12

APPENDIX A – Alternate Huffman Table Definition
This Huffman table definition was designed as an alternate to the table definition currently in the JBIG-2 Standard
draft.

This method does not necessarily include all possible values from the data stream in the table. A Value that occurs
in the data stream without a table entry is encoded with an Escape [ESC] code, and then encoded directly (as the
difference from the lowest value in the table).

When designing a table, it is common to set a threshold value, and then not assign a Huffman code to any values
that do not have a frequency higher than the threshold value. It is then very simple for an encoder to test several
threshold values, and select the threshold that produces the smallest combined bitstream of table size and data size.

At the start of the table is the necessary header information,

Number of Bits for Lowest Number
Number of Bits for Delta Values

Number of Bits for [Esc] Numbers
Number of Bits for Prefix Lengths

Lowest Number in Data Set
Length of the OOB Prefix
Length of the ESC Prefix

And then each entry of the table has two values:

Length of the Symbol Prefix
Delta (Difference) to the Next Symbol

Where a Prefix Length of 0 indicates the end of the table.

The Prefix codes are generated in the same manner as the existing table structure defined in the standard.

The data stream is interpreted the same as the existing method, with the exception of the ESC codes, where after
an ESC code is encountered, a specified number of bits are read in. The bits are interpreted as a value, which is
then added to the lowest value in the table. A difference of 0 could indicate the end of the data stream.

Here is the procedure for decoding a bitstream encoded with this method:
(a Z was added to each variable name as to not confuse it with any existing variable name)

1) Decode 5 bits.
Store the value of those bits in ZHTLOWLENBITS

2) Decode 5 bits.
Store the value of those bits in ZHTDELTALENBITS
(Note: if ZHTDELTALENBITS = 0, then all entries in the Table are separated by a length of 1)

3) Decode 5 bits.
Store the value of those bits in ZHTESCLENBITS

4) Decode 3 bits.
Store the value of those bits in ZHTPREFLENBITS

5) Decode 1 bit.
Store the value of that bit in ZHTLOWSIGNBIT

13

6) Decode ZHTLOWLENBITS bits.
Store the value of those bits in ZHTLOW
If ZHTLOWSIGNBIT then negate ZHTLOW

7) Decode ZHTPREFLENBITS bits.
Store the value of those bits in ZHTOOBLEN
(Could be Optional, depending on the Data)

8) Decode ZHTPREFLENBITS bits.
Store the value of those bits in ZHTESCLEN

9) ZHTNUM = 0

10) ZHTVAL[0] = ZHTLOW

11) Decode ZHTPREFLENBITS bits.
If the value is 0, goto step 0.
Otherwise,
Store the value in ZHTPREFLEN[ZHTNUM]

12) ZHTNUM = ZHTNUM + 1

13) If ZHTDELTALENBITS bits = 0
ZHTDELTALEN = 1
Otherwise,
Decode ZHTDELTALENBITS bits and store the value in ZHTDELTALEN

14) ZHTVAL[ZHTNUM] = ZHTVAL[ZHTNUM-1] + ZHTDELTALEN

15) Goto 0

16) Using the method described in section X.X,
assign codes to
ZHTPREFLEN[0]..ZHTPREFLEN[ZHTNUM-1], ZHTESCLEN & ZHTOOBLEN
store the results in ZHTPREF[0]..ZHTPREF[ZHTNUM-1], ZHTESC, ZHTOOB respectively

17) Continue Interpreting the Remainder of the Bitstream as Follows:

a) Decode bits until it is a recognizable code from step 0

i) if code is ZHTOOB, return the value OOB

ii) if code is ZHTPREF[J], return ZHTVAL[J]

iii) if code is ZHTESC, decode the next ZHTESCLENBITS bits
Store the result in ZHTESCCODE
if ZHTESCCODE = 0, return EOF (End of File)
Otherwise,
return ZHTLOW + ZHTESCCODE

