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Abstract. The propositional satisfiability problem (SAT) is one of the most promi-
nent and widely studied NP-hard problems. The development of SAT solvers,
whether it is carried out manually or through the use of automated design tools
such as algorithm configurators, depends substantially on the sets of benchmark
instances used for performance evaluation. Since the supply of instances from
real-world applications of SAT is limited, and artificial instance distributions such
as Uniform Random k-SAT are known to have markedly different structure, there
has been a long-standing interest in instance generators capable of producing
‘realistic’ SAT instances that could be used during development as proxies for
real-world instances. However, it is not obvious how to assess the quality of the
instances produced by any such generator. We propose a new approach for eval-
uating the usefulness of an arbitrary set of instances for use as proxies during
solver development, and introduce a new metric, Q-score, to quantify this. We
apply our approach on several artificially generated and real-world benchmark
sets and quantitatively compare their usefulness for developing competitive SAT
solvers.
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1 Introduction & Background

The Boolean satisfiability problem (SAT) is perhaps the most widely studied NP-
complete problem; as many advances in SAT have direct implications for solving other
important combinatorial problems, SAT has been a focus of intense research in algo-
rithms, artificial intelligence and several other areas for several decades. State-of-the-
art SAT solvers have proven to be effective in real-world applications – particularly,
Conflict-Driven Clause Learning (CDCL) solvers in the area of hardware and software
verification. This has been one of the driving forces in the substantial progress on prac-
tical SAT solvers, as witnessed in the well-known SAT competitions, where instances
from applications are often referred to as industrial instances. The SAT competitions
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also feature a separate track for randomly generated instances, with a particular focus
on the prominent class of uniform k-CNF instances at or near the solubility phase tran-
sition [10] (henceforth, random instances). The competitions separate industrial and
random instances into distinct tracks, because they tend to have very different struc-
tures [3], and because SAT solvers that perform well on random instances (e.g., KC-
NFS [11]) tend to perform poorly on industrial instances, and vice-versa. The industrial
instances used in SAT competitions are often large, routinely containing millions of
variables, whereas challenging random instances are significantly smaller. Industrial
instances are typically vastly easier than random instances of comparable size.

Many of the industrial instances available to the public belong to the sets used in
prior competitions. Developers of SAT solvers targeting industrial instances tend to con-
figure and test their solvers on this limited supply of instances, which can lead to over-
fitting (see, e.g., [19]) and test set contamination. Furthermore, the instances used in
competitions can be very large, and are often unsuitable for performing the more exten-
sive experiments carried out during the design and optimisation of solvers. Therefore,
developers of SAT solvers would benefit from access to a large quantity of industrial in-
stances spanning a large range of sizes and difficulty. Ideally, smaller or easier instances
would satisfy the criterion that improvements made in solving them can be expected to
scale to larger (competition-sized) or harder instances. Such smaller or easier instances
would effectively act as proxies for the target instances that are ultimately to be solved.

The development of solvers targeted for hard, random k-CNF instances has bene-
fited for a long time from the availability of generators that can easily produce large
quantities of instances of varying sizes and difficulty. The development of generators
for instances bearing close resemblance to real-world SAT instances has been one of
the “ten challenges in propositional reasoning and search” posed in 1997 by Selman et
al. [26] and was reaffirmed as an important goal by Kautz & Selman in 2003 [21]. The
challenge calls for the automated generation of SAT instances that “have computational
properties that are more similar to real-world instances” [26], and it remains somewhat
unclear how to assess the degree to which a generator meets this goal. Despite this,
many generators have been proposed as more realistic alternatives to k-CNF. These in-
clude several instance generators derived from graph theory problems([25,27,13]), and
the quasigroup completion problem (QCP) [12,1].

More recently, Ansótegui et al. [2] proposed a set of instance generators, includ-
ing one which was specifically designed to produce ‘industrial-like’ instances that ex-
hibit some of the same statistical properties as real-world industrial instances. Another
industrial-like instance generator was presented by Burg et al. [9], which combines
small segments of instances from real-world instances to produce new instances.3 Fi-
nally, Järvisalo et al. [20] proposed an instance generator derived from finding optimal
circuits for simultaneously computing ensembles of Boolean functions. While this last
generator makes no specific claims of industrial-like properties, its instances are de-

3 Unfortunately, this instance generator is not publicly available.



Evaluating Instance Generators by Configuration 3

rived from (random) circuits and so we speculate that they may share properties with
industrial instances derived from (real-world) circuits.

Here, we propose a new approach for assessing instance generators – and, indeed,
arbitrary sets of instances – in terms of how useful they are as proxies for real-world
instances during the development SAT solvers. (Actually, our approach is not specific to
SAT, and generalises to other problems in a straightforward manner). In particular, we
motivate and define a new metric, Q-score, to measure the extent to which optimising
the performance on a given instance set results in performance improvements on a set
of target instances used for testing purposes (e.g., in the context of a competition or
real-world application). Q-score is particularly useful in situations where benchmark
sets that are known a priori to be good proxies for the target instances are either not
available (e.g., because the supply of target instances is too limited) or not usable for
performance optimisation (e.g., because they are too difficult). We note that this premise
provides the core motivation for developing random generators for ‘industrial-like’ SAT
instances. It also stands in contrast to standard situations in machine learning, where the
data used for training a prediction or classification procedure is typically representative
of the testing data used for assessing the performance of the trained procedure. This
latter observation is relevant, because the development of a SAT solver resembles a
training process in machine learning in that both aim at optimising performance on
certain classes of input data. This aspect of solver development is captured in the notion
of automated algorithm configuration, an approach that has proven to be very effective
for the development of high-performance SAT solvers [17,22,30,29].

We define the Q-score in Section 2, and then use it to measure the usefulness of
benchmark sets obtained from four instance generators with respect to three industrial
target sets using two different highly parametric solvers. In Section 3, we describe the
three target sets and the four generators used in our experiments: an ‘industrial-like’
generator proposed by Ansótegui et al. [2], the ensemble-circuit generator from [20], a
‘fuzzing’ tool for debugging SAT solvers [8], and a reference uniform random 3-CNF
generator [10]. Also in Section 3, we provide details on the two highly parametric al-
gorithms LINGELING [7] and SPEAR [6], and on the way in which we configured these
using two fundamentally different configurators: PARAMILS [19,18], and SMAC [16].
The results from our experiments, reported in Section 4, indicate that the ‘industrial-
like’ generator proposed in [2] is not generally suitable as a proxy during SAT solver
development, while the ensemble-circuit generator from [20] can indeed produce useful
instances. In Section 5 we summarise the insights gained from our work and propose
some avenues for future research.

2 Quantitative Assessment of Instance Set Utility

In the following, we introduce our new metric for determining the utility of using a
given instance set S as a proxy for a target instance set T during the training and de-
velopment of new solvers. Our primary motivation is to aid the development of a new
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algorithm that we wish to perform well on the target instance set T , when using T it-
self during development is infeasible (e.g., the instances in T are prohibitively large, too
costly, or not available in sufficient numbers). Under such circumstances, we would like
to use some other instance set, S, to develop and train our algorithm. In particular, we
might wish to use randomly generated instances with ‘realistic’ properties as proxies
for the target instances.

Our metric requires a reference algorithm A, which is typically not the same algo-
rithm we are interested in developing. For example, we may choose A as one of the
current state-of-the-art algorithms for solving instances in the target set T , or A may
be a previous version of an algorithm that we are trying to improve upon. The config-
uration space of A, which we denote as Θ, is ideally quite large and sufficiently rich
to permit effective optimisation of A for many different types of instances. Algorithms
that have been designed to have a large configuration space are known as highly para-
metric algorithms [6,23,7,30,29,15]. The primary criterion for selecting A is the quality
of its parameter configuration space Θ; ideally, to solve instances both in T and outside
of T , and with significantly different optimal configurations for each.

Our metric also requires a cost statistic c to measure the performance of the algo-
rithm with a given configuration θ. We use the notation c(A(θ), X) to represent the
cost of running configuration θ of A on each instance in set X . Cost statistics used in
the literature include the average run-time, average run-length, percent of instances not
solved within a fixed time, and PAR10, which we describe in Section 3. For conve-
nience, we will assume that c is to be minimized and is greater than zero; otherwise,
a simple transformation can be used to ensure this is true. We use the notation θ∗X to
represent the optimal configuration of A for an instance set X for the given cost statistic
c. The cost statistic used in the context of assessing instance set utility should reflect the
way performance is assessed when running the algorithm of interest on T .

We now define our metric, Q(S, T,A, c) as the ratio of the performance of algorithm
A in its optimal configuration for target instance set T , and the performance of A in its
optimal configuration for the proxy instance set S, both evaluated on instance set T
according to cost statistic c. Formally,

Q(S, T,A, c) =
c(A(θ∗T ), T )

c(A(θ∗S), T )
.

We use QT (S) as a shorthand for Q(S, T,A, c) if A and c are held fixed and are
clear from the context, and we refer to QT (S) as the Q-score of S given T . The closer
QT (S) is to one, the more suitable set S is as a proxy for target set T and conversely,
the lower QT (S), the less suitable S is as a proxy for T . Intuitively, QT (S) can be inter-
preted directly as the percentage of optimal performance that can be obtained through
optimising algorithm A based on the proxy instances in S.

In practice, the optimal configuration θ∗T will typically be unknown. We can ap-
proximate it by θ′T , the best known configuration of A on target set T . This best known
configuration can be drawn from any source, and represents an upper bound on the cost
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of the real optimal configuration. Conveniently, an approximate Q-score computed us-
ing θ′T will still always be ≤ 1 (as otherwise, some other known configuration would
be better than the best known configuration). Similarly, the optimal configuration θ∗S
(optimal in terms of performance on the proxy set, not the target set) will also be un-
known; one convenient way to obtain an approximation θ′S is by applying automatic
configuration of A on the proxy set S.

The approximate Q-score for a given algorithm, proxy set, and target set can then
be calculated as follows:

1. Obtain θ′S by configuring algorithm A on the proxy set S using some method (such
as one of the automatic configurators discussed in Section 3).

2. Evaluate this configuration on some instances from the target set, T , using a cost
metric such as PAR10, to obtain c(A(θ′S , T )).

3. Evaluate some other, known configurations of A (for example, the default configu-
ration) on those same target set instances.

4. Let θ′T be the configuration with the lowest cost from any of the evaluations above
(including θ′S), and let c(A(θ′T , T )) be the corresponding cost.

5. Compute QT (S) =
c(A(θ′

T ),T )
c(A(θ′

S),T )

This process entails collecting a set of good, known configurations of A for T to
find a good approximation θ′T of the optimal configuration θ∗T . One way to improve that
approximation is to generate new configurations by applying automatic configuration
of A on T (as we do in this work). This may not always be possible, nor is it strictly
necessary to compute an approximate Q-score; but we recommend it where practical.
However, if automated configuration is applied to T , it is critical to use a set of training
instances for configuration that does not contain any of the instances from T that are
used for evaluating the Q-score. The reasons for this are somewhat subtle, but worth
discussing in some more detail.

Particularly when a given target set T consists of a small set of available real-world
instances, these instances are assumed to be representative of a larger set of real-world
instances inaccessible to the algorithm designer (or experimenter), and our goal is to im-
prove performance on that larger set, rather than on the specific representative instances
we have available. Under these circumstances, applying automatic configuration on the
same instances as we use for evaluation may result in over-tuning - that is, it may pro-
duce a configuration that performs well on those exact instances, but generalizes poorly
to the larger set of (unavailable) instances.

Ideally, we would have enough instances available from T that we can afford to split
them into two disjoint sets, and use one for configuration, and the other for evaluation
and Q-score computation. However, since a motivating factor for producing instance
generators in the first place is having access to only limited numbers of instances from
T , there may not be sufficiently many instances to split T into disjoint training and
testing sets that can both be seen as representative of T . We encounter precisely this
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dilemma in Section 3, where we resolve it by configuring instead on a set of instances
that we believe to be similar to the target set. As the approximate Q-score does not de-
fine where the best known configuration comes from, this is entirely safe to do: in the
worse case, configuring on other instance families may simply produce bad configura-
tions that fail to improve on the best known configuration.

We also ensure that the instances in our candidate proxy sets S can be solved ef-
ficiently enough for purposes of algorithm configuration. In particular, for some cost
statistics, Q-scores can be pushed arbitrarily close to 1 simply by adding a large num-
ber of unsolvable instances to the target set; to avoid this possibility, we exclude from
the target set T any instances that were unsolved by any configuration of a given solver.
Even after this consideration, if the performance differences between different config-
urations of A on the instance sets of interest, and in particular on T , are small, then all
QT values will be close to one and their usefulness for assessing instance sets (or the
generators from which the instance sets were obtained) will be limited.

Below, we will provide evidence that for algorithms with sufficiently large and rich
configuration spaces, the differences in QT measures for different candidate proxy sets
tend to be consistent, so that sets that are better proxies w.r.t. a given algorithm A tend
to also be better proxies w.r.t. a different algorithm A′, as long as A and A′ are not
too different. This latter argument implies that instance sets (or generators) determined
to be useful given some target set T (e.g., industrial instances or, more specifically,
hardware verification instances) for some baseline solver can be reused, without costly
recomputation of Q-scores, for the development of other solvers. Tompkins et al. [29]
used a metric analogous to Q-score, although their purpose was significantly different
than that underlying our work presented here, and observed configurations where the
best known configuration for a set was found while configuring for a different set.

3 Experimental Setup

We now turn to the question of how useful various types of SAT instances are as prox-
ies for typical industrial instances. For this purpose, we used four instance generators
(Double-Powerlaw, Ensemble, Circuit-Fuzz and 3-CNF), three industrial target sets
(SWV, HWV and SAT Race), two high-performance, highly parametric SAT solvers
(SPEAR and LINGELING), and the automatic algorithm configurators PARAMILS and
SMAC.

The first generator we selected is the Double-Powerlaw generator from Ansótegui
et al. [2]. Of the five generators introduced in that work, Double-Powerlaw was identi-
fied as the most ‘industrial-like’ by its authors, as it was the only one that they found
to produce instances on which a typical CDCL SAT solver known to perform well on
industrial instances, MINISAT (version 2 [28]), consistently out-performed the solvers
MARCH [14] and SATZ [24], which perform much better on random and crafted (hand-
made) instances than on industrial instances. Using the software provided by Ansótegui
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et al. with the same parameters used in their experiments (β = 0.75,m/n = 2.650, n =

500 000), we generated 600 training instances at the solubility phase-transition of the
Double-Powerlaw instance distribution.

The second generator is the random ensemble-circuit generator, GENRANDOM,
from Section 5.2 of Järvisalo et al. [20]. This generator takes parameters (p, q, r), two
of which (p and q) were set to 10 in their experiments. Our own informal experiments
suggested that a value of r = 11 produces a mix of satisfiable and unsatisfiable in-
stances that are moderately difficult for LINGELING (requiring between 10 and 200
seconds to solve); larger and smaller values produce easier instances that are dominated
by either satisfiable or unsatisfiable instances. We make no claim that these are optimal
settings for this generator, but we believe that they are reasonable and produce interest-
ing instances. We used the script provided by Järvisalo et al. to generate 600 training
instances with p = 10, q = 10, r = 11.

The third generator is adapted from the circuit-based CNF fuzzing tool FUZZSAT [8]
(version 0.1). FUZZSAT is a fuzzing tool, intended to help the designers of SAT solvers
test their code for bugs by randomly generating many instances. It randomly constructs
combinational circuits by repeatedly applying the operations AND, OR, XOR, IFF and
NOT, starting with a user-supplied number of input gates. The tool then applies the
Tseitin transformation to convert the circuit into CNF. Finally, a number of additional
clauses are added to the CNF, to further constrain the problem. While not designed
with evaluation or configuration in mind, these instances are structured in ways that
resemble (at least superficially) real-world, circuit-derived instances, and hence might
make good proxies for such instances. However, the instances generated by the tool are
usually very easy and typically solved within fractions of a second. This is a useful
property for testing, but not for configuration, since crucial parts of a modern CDCL
solver might not be sufficiently exercised to realistically assess their efficacy. Adjust-
ing the number of starting input gates allows the size of the circuit to be controlled,
but even for moderately sized random circuits, most generated instances remain very
easy. In order to produce a set of instances of representative difficulty, we randomly
generated 10 000 instances with exactly 100 inputs using FUZZSAT (with default set-
tings), and then filtered out any instances solvable by the state-of-the-art SAT solver
LINGELING (described below) in less than 1 CPU second. This yielded a set of 387
instances, of which 85 could be proved satisfiable by LINGELING, 273 proved unsat-
isfiable, and the remaining 29 could not be solved within 300 CPU seconds. We make
no claim that these instances are near a solubility phase-transition, or that these are the
optimal settings for producing such instances; however, they do represent a broad range
of difficulty for LINGELING, which makes them potentially useful for configuration.
We selected 300 of these instances to form a training set.

The fourth generator we selected is the random instance generator used in the 2009
SAT Competition. There is strong evidence that these instances are dissimilar to typical
industrial instances [3], and we included them in our experiments primarily as a control.
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We generated a set of 600 training instances composed of 100 instances each at 200,
225, 250, 275, 300, and 325 variables at the solubility phase transition [10]. While other
solvers can solve much harder random instances than these, they are an appropriate size
for experimentation with the reference algorithms we selected (SPEAR and LINGELING,
see below).

We picked two classes of industrial instances known from the literature as our target
instance sets. The first is a set of hardware verification instances (HWV) sampled from
the IBM Formal Verification Benchmarks Library [31], and the second consists of soft-
ware verification instances (SWV) generated by CALYSTO [5]. Both of these sets have
been employed previously by Hutter et al. in the context of automatically configuring
the highly parametric SAT solver SPEAR, and we used the same disjoint training and
testing sets as they did [17].

The third target instance set is from the 2008 SAT Race and includes a mix of real-
world industrial problems from several sources (including the target sets we selected).
This is the same set used by Ansótegui et al. for evaluating their instance generators [2].
The SAT Race 2008 organizers used a separate set of instances to qualify solvers for
entry into the main competition. As there are only 100 instances from the main compe-
tition, instead of splitting them into training and testing sets, we used these qualifying
instances to train the solvers and tested on the complete set of main competition in-
stances. This qualifying set is comprised of real industrial instances, but from different
sources than the instances used in the actual SAT Race. Still, as we will show below,
configuring on the qualifying instances produced the best configurations for each solver.

We selected two highly parametric, high-performance CDCL SAT solvers for our
experiments. The first is LINGELING [7] (version 276), which won third place in the
application category of the 2011 SAT Competition. The second is SPEAR [6] (version
32.1.2.1), one of the first industrial SAT solvers designed to be highly parametric, which
won the QF BV category of the 2007 SMT Competition. These two solvers were cho-
sen based on their performance on industrial instances and their large configuration
space (≈ 1017 and ≈ 1046 configurations, respectively4). Furthermore, these solvers
were developed entirely independently from each other, with very different configu-
ration spaces. LINGELING has many parameters controlling the behaviour of its pre-
processing/in-processing and memory management mechanisms, while SPEAR features
several alternative decision and phase heuristics.

Both LINGELING and SPEAR were configured for each of our five training sets using
two independent configurators: PARAMILS [17,18], and SMAC [16]. Both configura-
tors optimised the Penalised Average Runtime (PAR10) performance, with a cut-off of
300 seconds for each run of the solver to be configured. PAR10 measures the average
runtime, treating unsolved instances as having taken 10 times the cut-off time.

4 PARAMILS can only configure over finite, discretized configuration spaces. Parameters taking
arbitrary integers or real numbers were manually discretized to a small number of representa-
tive values (< 10), from which the spaces above were computed.
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Table 1. PARAMILS configurations of LINGELING running on the target instances. Best known
configurations are shown in boldface. Q-scores closer to 1 are better.

LINGELING HWV SWV SAT Race 2008
Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved

3-CNF 0.043 182.8 286/291 0.005 32.3 301/302 0.175 3512.4 58/93
Double-Powerlaw 0.095 82.9 289/291 0.005 34.6 301/302 0.209 2944.7 64/93
Circuit-Fuzz 0.175 45.2 290/291 0.132 1.2 302/302 0.437 1404.5 80/93
Ensemble 0.766 10.3 291/291 0.079 2.1 302/302 0.562 1092.8 83/93

HWV 1.000 7.9 291/291 0.078 2.1 302/302 0.621 989.8 84/93
SWV 0.095 83.2 289/291 0.879 0.2 302/302 0.217 2825.2 65/93
SAT-Race Qualifying 0.624 12.6 291/291 0.203 0.8 302/302 1.000 614.3 88/93
Default 0.724 10.9 291/291 0.054 3.0 302/302 0.624 984.0 84/93

Configuration remains a compute-intensive step. Following a widely used protocol
for applying PARAMILS, we conducted ten independent runs for each of our fourteen
pairs of solvers and training sets, allocating 2 CPU days to each of those runs. For
each solver and training set combination we then evaluated the ten configurations thus
obtained on the full training set and selected the one with the best PAR10 score; this
second stage required as much as three additional days of CPU time. The same protocol
was used for SMAC. Carried out on a large compute cluster using 100 cores in parallel,
this part of our experiments took five days of wall clock time and resulted in seven
configurations for each configurator on both SAT solvers (in addition to their default
configurations), which we refer to as SAT-Race, HWV, SWV, 3-CNF, Circuit-Fuzz,
Ensemble, and Double-Powerlaw. We then evaluated each configuration on each target
testing set using a cut-off time of 15 CPU minutes per instance. On the HWV and SAT
Race target sets, there were some instances that were not solved by any configuration
of each solver. We have excluded those instances from the results for the respective
solvers, to avoid inflating the Q-scores, as discussed above. We note that, unlike in a
competition scenario, this does not distort our results, as the purpose of our study was
not to compare solver performance.

All experiments were performed on a cluster of machines equipped with six-core
2.66GHz 64-bit CPUs with 12 MB of L3 cache running Red Hat Linux 5.5; each con-
figuration and evaluation run had access to 1 core and 4GB of RAM.

4 Results & Analysis

Results for each configuration against the three target instance sets (HWV, SWV, and
SAT Race 2008) are presented in Tables 1-4; for reference, the performance of each
respective solver’s default configuration is shown in the bottom rows. As seen from
these data, in all cases the best known configuration of each solver was found through
automatic configuration (sometimes by SMAC, and sometimes by PARAMILS).
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Table 2. SMAC configurations of LINGELING running on the target instances. Best known con-
figurations are shown in boldface. Q-scores closer to 1 are better.

LINGELING HWV SWV SAT Race 2008
Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved

3-CNF 0.065 121.5 288/291 0.005 32.7 301/302 0.183 3349.2 60/93
Double-Powerlaw 0.100 78.7 289/291 0.090 1.8 302/302 0.273 2250.3 71/93
Circuit-Fuzz 0.053 150.1 287/291 0.932 0.2 302/302 0.215 2852.4 65/93
Ensemble 0.177 44.6 290/291 0.073 2.3 302/302 0.551 1114.6 83/93

HWV 0.720 11.0 291/291 0.158 1.0 302/302 0.471 1303.5 81/93
SWV 0.100 79.3 289/291 1.000 0.2 302/302 0.327 1879.8 75/93
SAT-Race Qualifying 0.178 44.3 290/291 0.177 0.9 302/302 0.439 1399.2 80/93

Default 0.724 10.9 291/291 0.054 3.01 302/302 0.624 984.0 84/93

Table 3. PARAMILS configurations SPEAR running on the target instances. Best known config-
urations are shown in boldface. Q-scores closer to 1 are better.

SPEAR HWV SWV SAT Race 2008
Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved
3-CNF 0.265 376.3 279/290 0.001 881.0 273/302 0.487 4336.6 45/78
Double-Powerlaw 0.083 1111.7 255/290 < 0.001 1737.2 244/302 0.298 6712.4 23/78
Circuit-Fuzz 0.211 435.8 276/290 0.001 907.4 273/302 0.615 3589.0 52/78
Ensemble 0.084 1097.9 256/290 0.001 1389.5 256/302 0.499 4251.0 46/78

HWV 1.000 91.8 287/290 0.001 695.4 279/302 0.687 3292.2 55/78
SWV 0.045 2058.2 224/290 0.641 1.19 302/302 0.300 6585.8 23/78
SAT-Race Qualifying 0.800 114.7 286/290 0.469 1.62 302/302 1.000 1909.3 63/78
Default 0.213 430.2 277/290 0.012 64.5 300/302 0.591 3706.7 51/78

The Q-scores provide us with quantitative insight regarding the extent to which
the instance generators can serve as proxies for the three sets of real-world instances
considered here. For example, overall, there are only two cases where a configuration on
generated instances produced a SAT-solver that scored above 0.75 (i.e., was within 25%

of the best known configuration’s performance). Both of these involve LINGELING:
once when configured by PARAMILS on the Ensemble instances and running on the
HWV target set, and once when configured by SMAC on the Circuit-Fuzz instances
and running on the SWV target set. However, in both cases this very strong performance
of a generated instance configuration seems to be an isolated occurrence, one that is
not replicated with SPEAR or the other configurator. This suggests that none of the
four generated instance sets could be considered excellent matches to any of the three
industrial instance sets considered here (for the purposes of developing SAT solvers).

However, there are still substantial differences between the generators: Considering
the Q-scores in Tables 1–4, we observe that, as expected, the 3-CNF instances did not
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Table 4. SMAC configurations of SPEAR running on the target instances. Best known configu-
rations are shown in boldface. Q-scores closer to 1 are better.

SPEAR HWV SWV SAT Race 2008
Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved
3-CNF 0.199 462.1 276/290 0.001 1496.9 252/302 0.533 3579.3 48/78
Double-Powerlaw 0.061 1497.6 243/290 < 0.001 1981.4 236/302 0.262 7300.2 15/78
Circuit-Fuzz 0.271 338.9 280/290 0.001 613.6 282/302 0.633 3015.1 53/78
Ensemble 0.163 563.8 273/290 0.001 823.7 275/302 0.611 3125.6 52/78

HWV 0.787 116.6 287/290 0.289 2.63 302/302 0.662 2885.7 54/78
SWV 0.029 3122.0 190/290 1.000 0.762 302/302 0.280 6818.2 19/78
SAT-Race Qualifying 0.188 487.7 275/290 0.003 231.0 295/302 0.572 3338.2 50/78

Default 0.213 430.2 277/290 0.012 64.5 300/302 0.591 3231.7 51/78

provide effective guidance towards good configurations for real-world instances: in only
one case we obtained performance within 50% of the best known configuration, and in
most cases the Q-scores are well below 25% of optimal.

On the other hand, solvers configured on the Circuit-Fuzz instances showed bet-
ter performance, especially on the SAT Race instances. SPEAR always improved its
performance on the SAT Race instances relative to the default configuration when con-
figured using the Circuit-Fuzz instances. This provides evidence that the Circuit-Fuzz
instances can make reasonable proxies for real-world SAT Race instances. However,
we also observe that these are at best imperfect proxies: LINGELING, a SAT solver
that has been more heavily optimized for performance on SAT Race instances, always
performed worse than the default on the SAT Race instances after configuring on the
Circuit-Fuzz instances (however, configuring LINGELING on the Circuit-Fuzz instances
was still better than configuring on 3-CNF).

The evidence for the utility of the Ensemble instances is much stronger. In three
out of four cases, configuring on the Ensemble instances lead to a solver that obtained
a runtime > 50% of best known configuration on the SAT Race 2008 target set, and
even in the remaining case its runtime was only just barely less than 50% of the best
known configuration. This is not stellar performance – but it is not dismal, either: we
can conclude that the Ensemble instance are moderately effective proxies for the SAT
Race target set.

Our results also provide a clear answer to the question whether the Double-Powerlaw
instances can serve as useful proxies in solver design for the types of industrial instances
considered here. Neither LINGELING nor SPEAR when configured on these instances
performed well on any of our three target sets; not once did configuring on the Double-
Powerlaw instances produce a solver that was within 50% of the best known configura-
tion. Strikingly, we can see that in 7 of 12 cases, the Double-Powerlaw configurations
performed worse than the 3-CNF configurations, and even in the remaining cases, it
was better than 3-CNF by less than 10%.
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Finally, we compared results between LINGELING and SPEAR to assess of the ro-
bustness of our Q-score measure. As we observed for the Circuit-Fuzz instances, there
are certainly differences between these solvers, and an instance set may be more useful
for one than for the other. However, our results indicate that even for these very dif-
ferent solvers (in terms of configuration space, design and implementation), Q-scores
are generally quite consistent, especially if the same configurator is used. For example,
configuring either SPEAR or LINGELING on the HWV training instances always pro-
duced reasonably good results on the SAT Race 2008 target set. Conversely, training
either solver on the SWV training instances always produced poor results on the HWV
and SAT Race 2008 instances. Training either solver on 3-CNF or Double-Powerlaw
always produced poor results on HWV and SWV; as observed above, training on the
Ensemble instances always produced reasonably good results on the SAT Race 2008
instances.

That said, PARAMILS and SMAC sometimes produced inconsistent results. For
example, using PARAMILS to configure either solver on the SAT Race Qualifying in-
stances produced good performance on the HWV target set, whereas poor performance
was observed on the same set for configurations observed from SMAC. We speculate
that this could be due to the way in which the model-based search approach under-
lying SMAC reacts to characteristics of the given instances and configuration spaces.
Nevertheless, these inconsistencies were quite rare, and even when using different con-
figurators, results were usually highly consistent between solvers.

Closer examination of the Double-Powerlaw instances provided strong evidence
that, despite sharing some statistical similarities with actual industrial instances, they
give rise to very different behaviour in standard SAT solvers. In particular, we found
that the Double-Powerlaw instances (both satisfiable and unsatisfiable) are without ex-
ception extremely easy for industrial SAT solvers to solve. A typical industrial instance
of medium difficulty tends to require a modern CDCL solver to resolve tens or hun-
dreds of thousands of conflicts; these conflicts arise from bad decisions made by the
decision heuristic while searching for a satisfying assignment of literals. In contrast,
the Double-Powerlaw instances can typically be solved (by MINISAT [28], which re-
ports this information conveniently) with less than 100 conflicts – even though these
instances are very large (containing 500 000 variables and 1.3 million clauses).

Unfortunately, there is not much room to make these instances larger without caus-
ing solvers to run out of memory (though we have experimented informally with gen-
erating Double-Powerlaw instances that are 10 times larger, and found that they are not
substantially harder to solve). Moreover, we found these instances to be uniformly easy
to solve – even out of thousands of generated instances, none took more than 10 seconds
to solve using SPEAR or LINGELING. For this reason, filtering by difficulty, as we did
with the Circuit-Fuzz instances, would not be effective.
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5 Conclusions & Future Work

We have introduced a new configuration-based metric, the Q-score, for assessing the
utility of a given instance set for developing, training and testing solvers. The funda-
mental approach underlying this metric is based on the idea of using the automated
configuration of highly parametric solvers as a metaphor for a solver development pro-
cess aimed at optimising performance on particular classes of target instances. Although
the notion of Q-score applies to highly parametric solvers for arbitrary problems, our
motivation for developing it was to assess how actual instance generators can serve as
proxies for a range of SAT instances as considered in the literature.

We found strong evidence that the Double-Powerlaw instances do not fulfill that
role well, as indicated by robust, consistent results obtained for two high-performance
CDCL SAT solvers with very different configuration spaces, LINGELING and SPEAR,
across three separate sets of industrial target instances, and using two different config-
urators, PARAMILS and SMAC. We also presented evidence that the generated En-
semble instances are moderately effective for configuring for the SAT Race 2008 com-
petition instances. Along with our results for the Circuit-Fuzz instances, this suggests
that generating random instances in the original problem domain (circuits, in these two
cases) might be a promising area for future industrial-like instance generators.

Because our metric does not depend on any specific properties of the generators or
target domains, it should be widely applicable for evaluating the usefulness of many
different types of instance generators, and on any target instance set for which there is
an appropriate parametric solver (one whose design space includes good configurations
for those target instances). As argued by Selman et al. [26], generators that can produce
instances resembling real-world instances would be valuable in the development of SAT
solvers. By providing an approach to evaluate candidates for such generators, we hope
to spur further research in this direction. We see the work by Ansótegui et al. [2] as a
valuable first step in this direction, but as indicated by our findings reported here (and
also reflected in the title of their publication), much work remains to be done.

Finally, as our metric can be evaluated automatically, we can in principle use it
to configure instance generators themselves. Generators are typically parametrized; it
may not be known in advance what settings produce the most appropriate instances
for training. Instead of finding generator settings that produce difficult instances or that
correspond to a phase transition, automatic algorithm configuration based on Q-score
could identify generator settings that produce instances that make good proxies for
interesting classes of real-world SAT problems.
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