
Dynamic Local Search for SAT:

Design, Insights and Analysis

Dave Tompkins

Final PhD Oral Examination

Department of Computer Science, UBCDepartment of Computer Science, UBC

September 16, 2010

Supervisor: Holger Hoos

Supervisory Committee: Will Evans, Alan Hu

University Examiners: David Kirkpatrick, David Mitchell (SFU)

External Examiner: Steve Prestwich

Chair: Robin Turner (ECE)

Primary Goal

"to advance the state-of-the-art

for SLS algorithms for SAT"

1-1

Primary Goal

"to advance the state-of-the-art

for SLS algorithms for SAT"

• Explicitly: develop new SLS algorithms that can • Explicitly: develop new SLS algorithms that can

outperform existing algorithms

1-1

Primary Goal

"to advance the state-of-the-art

for SLS algorithms for SAT"

• Explicitly: develop new SLS algorithms that can • Explicitly: develop new SLS algorithms that can

outperform existing algorithms

• Implicitly: advance our understanding of current

algorithms and introduce tools for developing new

algorithms

1-1

Overview

• Introduction

– The Propositional Satisfiability problem (SAT)

– Stochastic Local Search (SLS) for SAT

– Summary of key contributions– Summary of key contributions

• Body of Work

• Conclusions

– Review key contributions

– Future work

1-2

Propositional Satisfiability

• Boolean variables are either (T)rue or (F)alse

– x1: Dave's PhD defence will have a positive outcome

– x2: Dave will celebrate tonight

formula(¬x1˅ x2) ˄ (x1˅¬x2)

clause
negative literal

formula

2-1

Propositional Satisfiability

• Boolean variables are either (T)rue or (F)alse

– x1: Dave's PhD defence will have a positive outcome

– x2: Dave will celebrate tonight

x1 x2

F F

F T

T F

T T

(¬x1˅ x2) ˄ (x1˅¬x2)

2-1

Propositional Satisfiability

• Boolean variables are either (T)rue or (F)alse

– x1: Dave's PhD defence will have a positive outcome

– x2: Dave will celebrate tonight

x1 x2

F F

F T

T F

T T

(¬x1˅ x2) ˄ (x1˅¬x2)

T

F

F

T

2-1

Propositional Satisfiability

• Boolean variables are either (T)rue or (F)alse

– x1: Dave's PhD defence will have a positive outcome

– x2: Dave will celebrate tonight

x1 x2

F F

F T

T F

T T

(¬x1˅ x2) ˄ (x1˅¬x2)

T

F

F

T

• Objective: Given a formula (SAT instance)

find a satisfying assignment

satisfying assignments

2-1

Many "Real" SAT Applications

Software Verification Sudoku

2-2

Exponential Search Space

x1 x2

F F

F T

T F

T T

2-3

Exponential Search Space

x1 x2

F F

F T

T F

T T

x1 x2 x3

F F F

F F T

F T F

F T T

T F F

T F TT F T

T T F

T T T

2-3

Exponential Search Space

x1 x2

F F

F T

T F

T T

x1 x2 x3

F F F

F F T

F T F

F T T

T F F

T F T

x1 x2 x3 x4

F F F F

F F F T

F F T F

F F T T

F T F F

F T F TT F T

T T F

T T T

F T F T

F T T F

F T T T

T F F F

T F F T

T F T F

T F T T

T T F F

T T F T

T T T F

T T T T

2-3

Exponential Search Space

• n variables:

2n assignments

• 250 variables

x1 x2

F F

F T

T F

T T

x1 x2 x3

F F F

F F T

F T F

F T T

T F F

T F T

x1 x2 x3 x4

F F F F

F F F T

F F T F

F F T T

F T F F

F T F T

• 250 variables

≈ 1075 combinations
≈ # atoms in the universe

T F T

T T F

T T T

F T F T

F T T F

F T T T

T F F F

T F F T

T F T F

T F T T

T T F F

T T F T

T T T F

T T T T

2-3

Stochastic Local Search (SLS) for SAT

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5

T F F T T

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5

T F F T T

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5

T F F T T

T F F F T

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5

T F F T T

T F F F T

T T F F T

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5

T F F T T

T F F F T

T T F F T

F T F F T

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

2-4

Stochastic Local Search (SLS) for SAT

x1 x2 x3 x4 x5 (¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it

x1 x2 x3 x4 x5

T F F T T

T F F F T

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

(¬x1˅x2˅¬x5)˄(¬x1˅¬x2˅x4)˄(¬x4˅¬x5)˄(¬x1˅x2˅x3˅¬x4)

• Selecting a variable:
make = # of clauses that become satisfied if we flip x

break = ... unsatisfied …

score = make – break [GSAT: Selman, Levesque & Mitchell, 1992]
2-4

Key Contributions

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it

3-1

UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it

3-1

UBCSAT Architecture

ChooseVariable

FlipVariable

CheckTerminate

3-1

UBCSAT Algorithms

• All (typical) SLS algorithms

can be seen as a series of

procedures that happen at

"event points""event points"

• When you select the

algorithm, the appropriate

procedures are "triggered"

3-1

UBCSAT Algorithms

• Similar algorithms can

re-use existing triggers

3-1

UBCSAT Reports

• Additional Reports and

Statistics can be "activated"

when needed

3-1

UBCSAT Reports

• Facilitating empirical

analysis is an important

component of UBCSAT

3-1

UBCSAT Efficiency

• UBCSAT is very efficient

with little overhead

UBCSAT

algorithm

UBCSAT

Speedup

WalkSAT/SKC 1.5x – 2.2x

Novelty 1.3x – 2.0x

GSAT 1.7x – 7.6x

GWSAT 2.5x – 7.4x

3-1

UBCSAT

A software framework for SLS algorithms

• Incorporates existing SLS algorithms

– highly efficient, accurate implementations

• Facilitate development of new SLS algorithms• Facilitate development of new SLS algorithms

• Advanced empirical analysis of algorithms

• Open-source

• Cornerstone of the dissertation

3-2

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

SAT Search Space

• n-dimensional hypercube

4-1

"2D" Search Landscape

unsat

clauses

solution

4-2

"2D" Search Landscape

unsat

clauses

solution
local

minimum

4-2

Intensification & Diversification

4-3

Clause Penalties

• Each clause is assigned a penalty value

• Score is no longer just make – break

score = Σ c.penalty – Σ c.penaltyscore = Σmake c.penalty – Σbreak c.penalty

Original Idea:

– Breakout Method [Morris, 1993]

– GSAT+CW [Selman & Kautz, 1993]

4-4

"Breakout" Approach

• When a local minimum occurs:

Σmake c.penalty ≤ Σbreak c.penalty

increment the penalty for unsatisfied clauses

4-5

"Breakout" Approach

• When a local minimum occurs:

Σmake c.penalty ≤ Σbreak c.penalty

increment the penalty for unsatisfied clauses

• Eventually, will no longer be in a local minimum

score = Σmake c.penalty – Σbreak c.penalty

4-5

"Breakout" Approach

• When a local minimum occurs:

Σmake c.penalty ≤ Σbreak c.penalty

increment the penalty for unsatisfied clauses

• Eventually, will no longer be in a local minimum

score = Σmake c.penalty – Σbreak c.penalty

4-5

SAPS Algorithm

• Enhancement of existing algorithm

– Exponentiated Sub-Gradient (ESG)
[Schuurmans et. al, 2002]

• Multiplicative Scaling

c.penalty := c.penalty ∙ α

• Probabilistic Smoothing

with probability (Ps):

c.penalty := c.penalty + (1-ρ) ∙ avg.penalty

• Scaling And Probabilistic Smoothing (SAPS)
4-6

SAPS Algorithm

• Dominated the performance of its predecessor (ESG)

• Still amongst the state-of-the-art solvers

• Led to the work in other chapters

4-7

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

Dynamic Clause Penalties

5-1

Clause Penalty Distributions

5-2

Clause Penalty Analysis

• We identified instances with

"Problem Clauses"

– We constructed weighted instances...

... that were easier for SLS algorithms to solve... that were easier for SLS algorithms to solve

(80x faster for Adaptive Novelty+)

5-3

Clause Penalty Analysis

• A quest for problem clauses

• Analyzed penalty behaviour

• Hardness of warped landscapes

• History ("memory") of the search• History ("memory") of the search

• Ultimately: problem clauses are rarely helpful

• Key element of CP algorithms: diversification

5-4

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

Random Decisions

• Stochastic Local Search

• Quality of random decision

– SLS Algorithms are robust (existing random

number generators are good enough)number generators are good enough)

• Quantity of random decisions

– Simple derandomizations can be effective

– SLS Algorithms exhibit 'chaotic'-like behaviour

– No real advantage to derandomizing

6-1

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

Variable Properties

• Scoring Properties
make = # of clauses that become satisfied if we flip x

break = ... unsatisfied …

score = make – break

• Dynamic Properties
age :: # of steps since x was flipped

flips :: # of times x has been flipped

• Static Properties
numPosOcc :: # of clauses where x appears

numNegOcc :: … ¬x …
7-1

Variable Properties

• Scoring Properties
make = # of clauses that become satisfied if we flip x

break = ... unsatisfied …

score = make – break

• Dynamic Properties
age = # of steps since x was flipped [TABU, Glover 1986]

flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]

• Static Properties
numPosOcc = # of clauses where x appears

numNegOcc = … ¬x …
7-1

Variable Properties

• Scoring Properties
make = # of clauses that become satisfied if we flip x

break = ... unsatisfied …

score = make – break

• Dynamic Properties
age = # of steps since x was flipped [TABU, Glover 1986]

flips = # of times x has been flipped [HSAT, Gent & Walsh 1992]

• Static Properties

7-1

Variable Expressions (VEs)

• combinations of variable properties

in mathematical expressions:

make – break

ageage

(make – break) + 3 ∙ log2(age) + age/flips

• Most existing SLS algorithms use straightforward VEs

… we explore more complex VEs

• Our work was inspired by:

Variable Weighting Algorithm VW2 [Prestwich, 2005]
7-2

Combining Properties

Select variable with minimum value of:

break + c∙flips

7-3

Combining Properties

Select variable with minimum value of:

break + c∙flips

7-3

Combining Properties

• Normalize properties values to [0...1]

amongst the “candidate” variables

• Allow for non-linear normalization

7-4

Modifying Existing Algorithms with VEs

• WalkSAT with more complex VE

• Speedup factor:

7.2x (steps)7.2x (steps)

3.1x (time)

• (compared to original WalkSAT)

> 4000x (steps)

> 2000x (time)

7-5

Our New SLS Model

Filter VariablesFilter Variables Variable Expression(s)Variable Expression(s) Selection MechanismSelection Mechanism

7-6

Our New SLS Model

Filter VariablesFilter Variables Variable Expression(s)Variable Expression(s)

7-6

Separation of:

VEs & Selection Mechanism

• Novelty Algorithm [McAllester, Selman & Kautz, 1997]

• Select “best” variable with maximum of:

(make – break)(make – break)

breaking ties by

(age)

• If the best variable has the minimum

(age)

then, with probability p, select 2nd best var.

7-7

Separation of:

VEs & Selection Mechanism

• Novelty Algorithm [McAllester, Selman & Kautz, 1997]

• Select “best” variable with maximum of:

(VE1)(VE1)

breaking ties by

(VE2)

• If the best variable has the minimum

(VE3)

then, with probability p, select 2nd best var.

7-7

Our New SLS Model

Filter VariablesFilter Variables Evaluate VEsEvaluate VEs Select VariableSelect Variable

7-8

Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

Filter Variables Evaluate VEs Select Variable

Flip Selected Variable & Update State Information / Bookkeeping

7-8

Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

Filter VariablesFilter Variables Evaluate VEsEvaluate VEs Select VariableSelect Variable

Flip Selected Variable & Update State Information / BookkeepingFlip Selected Variable & Update State Information / Bookkeeping

7-8

Algorithm Controllers

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

ControllerController

7-9

Algorithm Controllers

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

ControllerController

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

ControllerController

7-9

Algorithm Controllers

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

ControllerController

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

FILTFILT VEsVEs VSMVSM

ControllerController

ControllerController

Sub-ControllerSub-Controller

Sub-ControllerSub-Controller

Sub-ControllerSub-Controller

7-9

Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

Filter Variables Evaluate VEs Select Variable

Flip Selected Variable & Update State Information / Bookkeeping

7-10

Software Implementation

• Design Architecture for Variable Expressions

(DAVE)

– Entire algorithm specified at runtime

• Controllers, filters, VEs, selection mechanisms• Controllers, filters, VEs, selection mechanisms

– Arbitrary complex VEs (interpreted)

– Sophisticated macro system

• Aids the use of automated configurators

• Extension of UBCSAT (2.0)

7-11

New Model & DAVE

• Concept of VEs

• New Model

• New Architecture

• Demonstrated our work

in conjunction with an

automated configurator

• Speedup factor:

16.2x (steps)

9.0x (time)
7-12

Key Contributions

1. Developed UBCSAT

2. Created SAPS, a Clause Penalty (CP)

algorithm

3. Analyzed CP algorithm behaviour3. Analyzed CP algorithm behaviour

4. Analyzed random decisions in SLS algorithms

5. Introduced a new conceptual model for SLS

algorithms with Variable Expressions (VEs)

– Developed a new Design Architecture (DAVE)

Primary Goal

"to advance the state-of-the-art

for SLS algorithms for SAT"

• Explicitly: develop new SLS algorithms that can • Explicitly: develop new SLS algorithms that can

outperform existing algorithms

• Implicitly: advance our understanding of current

algorithms and introduce tools for developing new

algorithms

Future Work

• Extend our methods to other domains

• Incorporate the use of automated tools

• Dynamic instances, distributed systems

• Generalized clause penalty solver• Generalized clause penalty solver

• Problem clauses & encodings

• New algorithm constructions

8-1

Selected Publications
• Dave A. D. Tompkins and Holger H. Hoos. Dynamic Scoring Functions with Variable

Expressions: New SLS Methods for Solving SAT in SAT 2010, p. 278-292, 2010.

• Dave A.D. Tompkins and Holger H. Hoos, On the Quality and Quantity of Random Decisions

in Stochastic Local Search for SAT in AI 2006, p. 146-158, 2006.

[Awarded Best Paper]

• Dave A.D. Tompkins and Holger H. Hoos, UBCSAT: An Implementation and • Dave A.D. Tompkins and Holger H. Hoos, UBCSAT: An Implementation and

Experimentation Environment for SLS Algorithms for SAT and MAX-SAT in SAT 2004, p.

306-320, 2005. [Google Scholar citations: 62]

• Dave A. D. Tompkins and Holger H.Hoos. Warped Landscapes and Random Acts of SAT

Solving in AI&M 2004. [Google Scholar citations: 25]

• Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos, Scaling and Probabilistic

Smoothing: Efficient Dynamic Local Search for SAT in CP 2002, p. 233-248, 2002.

[Google Scholar citations: 119]

8-2

Special Thanks To:

• Supervisor:

– Holger H. Hoos

Special Thanks To:

• Committee members:

– Will Evans, Alan Hu (& Lee Iverson)

• Co-Authors:

– Holger H. Hoos & Frank Hutter– Holger H. Hoos & Frank Hutter

• Additional technical help

– Kevin Smyth, Lin Xu, Chris Fawcett

• BETA lab members

• Proofreaders

• Family & friends

Special Thanks To:

Questions...

