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Overview

• Introduction

– The Propositional Satisfiability problem (SAT)

– Stochastic Local Search (SLS) for SAT

– Summary of key contributions– Summary of key contributions

• Body of Work

• Conclusions

– Review key contributions

– Future work
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Propositional Satisfiability

• Boolean variables are either (T)rue or (F)alse

– x1: Dave's PhD defence will have a positive outcome

– x2: Dave will celebrate tonight

formula(¬x1˅ x2) ˄ (x1˅¬x2)

clause
negative literal

formula
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• Objective: Given a formula (SAT instance)

find a satisfying assignment

satisfying assignments
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Many "Real" SAT Applications

Software Verification Sudoku
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Exponential Search Space

x1 x2
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Exponential Search Space

• n variables:

2n assignments

• 250 variables

x1 x2
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x1 x2 x3 x4

F F F F

F F F T

F F T F

F F T T

F T F F

F T F T

• 250 variables

≈ 1075 combinations 
≈ # atoms in the universe
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Stochastic Local Search (SLS) for SAT

randomly initialize all variables

while (formula not satisfied)

select a variable and “flip” it
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• Selecting a variable:
make = # of clauses that become satisfied if we flip x

break =                       ...                  unsatisfied …

score = make – break [GSAT: Selman, Levesque & Mitchell, 1992]
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UBCSAT Architecture

while (formula not satisfied)

select a variable and "flip" it
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UBCSAT Architecture

ChooseVariable

FlipVariable

CheckTerminate
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UBCSAT Algorithms

• All (typical) SLS algorithms 

can be seen as a series of 

procedures that happen at 

"event points""event points"

• When you select the 

algorithm, the appropriate 

procedures are "triggered"
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UBCSAT Algorithms

• Similar algorithms can

re-use existing triggers
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UBCSAT Reports

• Additional Reports and 

Statistics can be "activated" 

when needed
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UBCSAT Reports

• Facilitating empirical 

analysis is an important 

component of UBCSAT
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UBCSAT Efficiency

• UBCSAT is very efficient 

with little overhead

UBCSAT

algorithm

UBCSAT

Speedup

WalkSAT/SKC 1.5x – 2.2x

Novelty 1.3x – 2.0x

GSAT 1.7x – 7.6x

GWSAT 2.5x – 7.4x
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UBCSAT

A software framework for SLS algorithms

• Incorporates existing SLS algorithms

– highly efficient, accurate implementations

• Facilitate development of new SLS algorithms• Facilitate development of new SLS algorithms

• Advanced empirical analysis of algorithms

• Open-source

• Cornerstone of the dissertation
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SAT Search Space

• n-dimensional hypercube
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"2D" Search Landscape

# unsat

clauses

solution
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"2D" Search Landscape

# unsat

clauses

solution
local

minimum
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Intensification & Diversification
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Clause Penalties

• Each clause is assigned a penalty value

• Score is no longer just make – break

score = Σ c.penalty – Σ c.penaltyscore = Σmake c.penalty – Σbreak c.penalty

Original Idea:

– Breakout Method [Morris, 1993]

– GSAT+CW [Selman & Kautz, 1993]
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"Breakout" Approach

• When a local minimum occurs:

Σmake c.penalty ≤ Σbreak c.penalty

increment the penalty for unsatisfied clauses
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SAPS Algorithm

• Enhancement of existing algorithm

– Exponentiated Sub-Gradient (ESG)
[Schuurmans et. al, 2002]

• Multiplicative Scaling

c.penalty := c.penalty ∙ α

• Probabilistic Smoothing

with probability (Ps): 

c.penalty := c.penalty + (1-ρ) ∙ avg.penalty

• Scaling And Probabilistic Smoothing (SAPS)
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SAPS Algorithm

• Dominated the performance of its predecessor (ESG) 

• Still amongst the state-of-the-art solvers

• Led to the work in other chapters
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Dynamic Clause Penalties
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Clause Penalty Distributions
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Clause Penalty Analysis

• We identified instances with

"Problem Clauses"

– We constructed weighted instances...

... that were easier for SLS algorithms to solve... that were easier for SLS algorithms to solve

(80x faster for Adaptive Novelty+)
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Clause Penalty Analysis

• A quest for problem clauses

• Analyzed penalty behaviour

• Hardness of warped landscapes

• History ("memory") of the search• History ("memory") of the search

• Ultimately: problem clauses are rarely helpful

• Key element of CP algorithms: diversification
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Random Decisions

• Stochastic Local Search

• Quality of random decision

– SLS Algorithms are robust (existing random 

number generators are good enough)number generators are good enough)

• Quantity of random decisions

– Simple derandomizations can be effective

– SLS Algorithms exhibit 'chaotic'-like behaviour

– No real advantage to derandomizing
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Variable Properties

• Scoring Properties
make = # of clauses that become satisfied if we flip x

break =                       ...                  unsatisfied …

score = make – break

• Dynamic Properties
age :: # of steps since x was flipped

flips :: # of times x has been flipped

• Static Properties
numPosOcc :: # of clauses where x appears

numNegOcc ::                …             ¬x …
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Variable Expressions (VEs)

• combinations of variable properties

in mathematical expressions:

make – break

ageage

(make – break) + 3 ∙ log2(age) + age/flips

• Most existing SLS algorithms use straightforward VEs 

… we explore more complex VEs

• Our work was inspired by:

Variable Weighting Algorithm VW2 [Prestwich, 2005]
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Combining Properties

Select variable with minimum value of:

break + c∙flips
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Combining Properties

Select variable with minimum value of:

break + c∙flips
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Combining Properties

• Normalize properties values to [0...1] 

amongst the “candidate” variables

• Allow for non-linear normalization
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Modifying Existing Algorithms with VEs

• WalkSAT with more complex VE

• Speedup factor:

7.2x (steps)7.2x (steps)

3.1x (time)

• (compared to original WalkSAT)

> 4000x (steps)

> 2000x (time)
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Our New SLS Model

Filter VariablesFilter Variables Variable Expression(s)Variable Expression(s) Selection MechanismSelection Mechanism
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Filter VariablesFilter Variables Variable Expression(s)Variable Expression(s)
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Separation of:

VEs & Selection Mechanism

• Novelty Algorithm [McAllester, Selman & Kautz, 1997]

• Select “best” variable with maximum of:

(make – break)(make – break)

breaking ties by

(age)

• If the best variable has the minimum

(age)

then, with probability p, select 2nd best var.
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breaking ties by
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Our New SLS Model

Filter VariablesFilter Variables Evaluate VEsEvaluate VEs Select VariableSelect Variable
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Our New SLS Model

Algorithm Controller: Determine the Filter, VEs & VSM

Filter Variables Evaluate VEs Select Variable

Flip Selected Variable & Update State Information / Bookkeeping
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Software Implementation

• Design Architecture for Variable Expressions

(DAVE)

– Entire algorithm specified at runtime

• Controllers, filters, VEs, selection mechanisms• Controllers, filters, VEs, selection mechanisms

– Arbitrary complex VEs (interpreted)

– Sophisticated macro system

• Aids the use of automated configurators

• Extension of UBCSAT (2.0)
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New Model & DAVE

• Concept of VEs

• New Model

• New Architecture

• Demonstrated our work 

in conjunction with an 

automated configurator

• Speedup factor:

16.2x (steps)

9.0x (time)
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Future Work

• Extend our methods to other domains

• Incorporate the use of automated tools

• Dynamic instances, distributed systems

• Generalized clause penalty solver• Generalized clause penalty solver

• Problem clauses & encodings

• New algorithm constructions
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