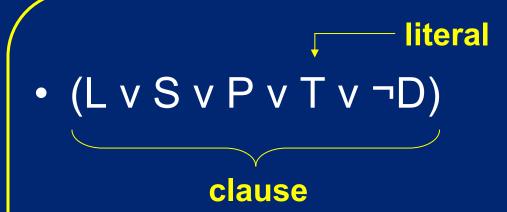
Scaling and Probabilistic Smoothing: Dynamic Local Search for Unweighted MAX-SAT

> Dave Tompkins & Holger Hoos University of British Columbia

> > AI 2003. Halifax, NS June 13th

Bioinformatics, Empirical & Theoretical Algorithmics Laboratory The University of British Columbia – All Materials © 2003.


Satisfaction

- Where do we go for Dinner?
- Jacques wants Poutine (P v ¬J)
- Bill wants Steak (S v ¬B)
- Dave wants Lobster or Steak or Poutine or Thai (L v S v P v T v ¬D)
- Restaurant X has Lobster & Steak: (L v ¬X) (S v ¬X)
- (P v ¬J) (S v ¬B) (L v S v P v T v ¬D) (L v ¬X) (S v ¬X)

SAT & MAX-SAT

 Objective: Find an assignment (L=1,S=0, etc..) that SATisfies:

 ALL clauses (SAT) or
 as many clauses as possible (MAX-SAT)

ß

Stochastic Local Search for SAT

- variable → clauses are satisfied assignment or unsatisfied
- $[101001011] \rightarrow (1) (1) (0) (1) (0) (0) (0)$
- Choose a variable to flip
- $[101011011] \rightarrow (1)(0)(1)(1)(1)(1)(0)(0)$
- $[101001010] \rightarrow (1) (0) (1) (0) (1) (1) (1) (1)$
- $[111001011] \rightarrow (1) (0) (0) (1) (1) (1) (1) (1)$

SAPS: Dynamic Local Search for Unweighted MAX-SAT Bioinformatics, Empirical & Theoretical Algorithmics Laboratory The University of British Columbia – All Materials © 2003.

Dynamic Local Search (DLS)

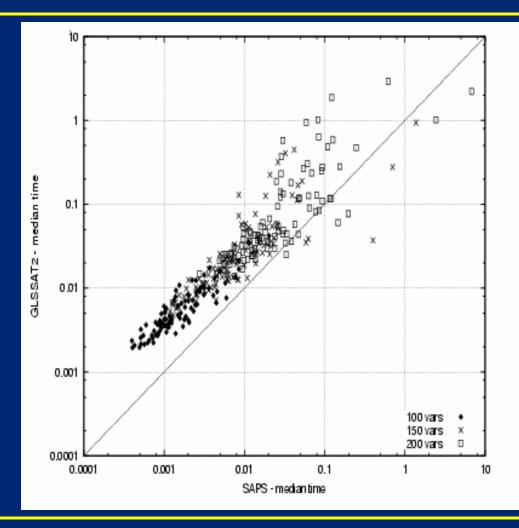
Minimisation problem: Search Space

Dynamic Local Search: "warp" the space

Scaling & Probabilistic Smoothing

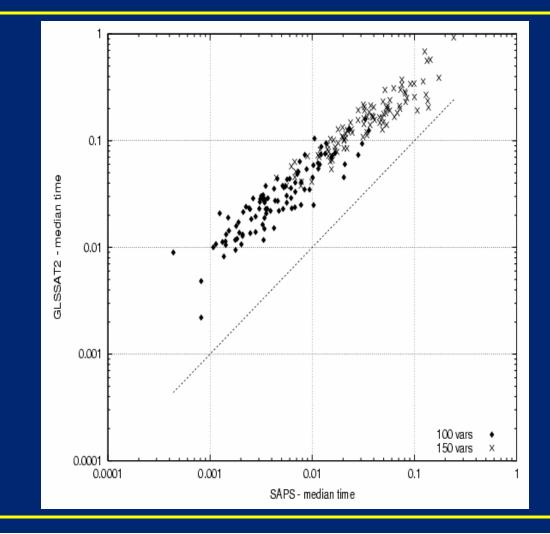
- Assign all clauses a clause penalty: clp (start = 1)
- When a Local Minimum is encountered:
 - Scaling Step:
 All <u>un</u>satisfied clauses are scaled by α clp_i ← α·clp_i
 - Smoothing Step: All clauses are smoothed (ρ) towards the mean $clp_i \leftarrow clp_i \cdot \rho + clp_{avg} \cdot (1 - \rho)$
- Smoothing Step performed with probability P_{smooth}

SAPS: Dynamic Local Search for Unweighted MAX-SAT Bioinformatics, Empirical & Theoretical Algorithmics Laboratory The University of British Columbia – All Materials © 2003.


SAPS For MAX-SAT

- SAPS: Scaling (α) and smoothing (ρ)
- SAPS amongst State-of-the-Art for SLS SAT
- Objective: Apply SPAS to unweighted MAX-SAT
- Weighted MAX-SAT: Each clause has a weight w_i
- Compare against another DLS algorithm: GLS2 (Mills & Tsang): current state-of-the-art MAX-SAT

Slightly over-constrained



ß

SAPS: Dynamic Local Search for Unweighted MAX-SAT Bioinformatics, Empirical & Theoretical Algorithmics Laboratory The University of British Columbia – All Materials © 2003.

Heavily over-constrained

ß

SAPS: Dynamic Local Search for Unweighted MAX-SAT Bioinformatics, Empirical & Theoretical Algorithmics Laboratory The University of British Columbia – All Materials © 2003.

Results on Unweighted MAX-SAT

Problem	ILS-YI			GLSSAT2			SAPS 1.0					
Set	steps	time	$\frac{q.90}{q.10}$	steps	time	$\left \frac{q.90}{q.10} \right $	α	steps	time	$\frac{q.90}{q.10}$	<i>f.b</i> .	<i>s.f.</i>
jnh	3,037	419.8	24.1	751	9.5	8.5	1.05	1,391	2.4	11.6	0.94	3.9
rnd100-500u	1,398	108.7	8.9	563	4.5	7.5	1.05	929	1.2	8.0	1.00	3.6
rnd125-625u	3,879	302.8	24.2	1,329	10.6	12.5	1.05	2,264	3.3	17.1	0.94	3.2
rnd150-750u	7,674	607.6	51.5	2,552	19.4	21.5	1.05	4,127	6.4	18.9	0.95	3.0
rnd175-875u	20,029	1,514.6	120.8	4,119	33.1	28.1	1.05	8,920	15.2	21.0	0.92	2.2
[rnd200-1000u]	31,968	2,440.8	29.7	5,301	44.2	23.5	1.05	13,343	21.1	18.3	0.91	2.1
rnd100-1000u	884	133.6	6.1	2,119	27.2	7.4	1.01	1,115	3.9	9.9	1.00	7.0
[rnd150-1500u]	3,237	499.7	15.5	11,035	148.1	4.8	1.01	7,723	34.2	10.0	1.00	4.3
bor-2u	76	5.6	18.1	88	1.1	14.1	1.05	73	0.1	71.2	0.80	7.7
bor-3u	740	65.3	32.0	425	4.7	30.9	1.05	487	1.1	39.3	1.00	4.5
rndu 1000a				20,812	832.4	6.5	1.05	27,434	67.4	7.8	0.90	12.3

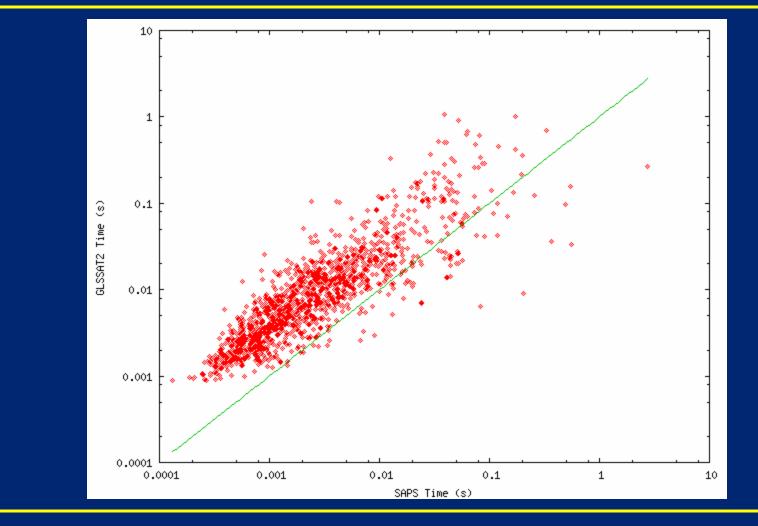
SAPS for Unweighted MAX-SAT

- Typical optimal $\alpha_{MAX-SAT}$ is much smaller (1.05) than typical optimised α_{SAT} (1.3)
- Key difference between SAT & MAX-SAT
 - Unsatisfied clauses in the solution!
 - Global minimum can "move"
- Harder instances require an even smaller value of α (1.01)
- Possible correlation to search space characteristics?

Moving to Weighted MAX-SAT

- We have two distinct clause "weights"

 MAX-SAT weights
 SAPS Clause Penalties


 We need some mechanism to combine them

 w_i + clp_i (or something like w_i + k·(clp_i/clp_{max})
 - $-w_i * clp_i$
 - GLS approach: util(i) = w_i / (1 + clp_i)

Weighted MAX-SAT Results

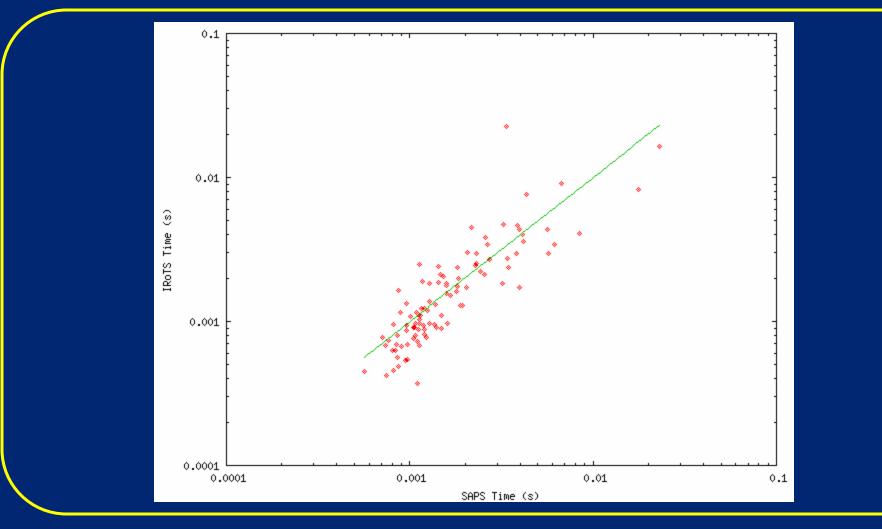
SAPS: Dynamic Local Search for Unweighted MAX-SAT Bioinformatics, Empirical & Theoretical Algorithmics Laboratory The University of British Columbia – All Materials © 2003.

Conclusions

SAPS is effective on unweighted MAX-SAT

 Only small changes in default parameters were necessary

Great potential for weighted MAX-SAT


Future Work - Hypotheses

- For MAX-SAT, a scaling α-reactive scheme would be more effective than a smoothing ρ-adaptive scheme
- A more clever approach to combining MAX-SAT weights and SAPS clause penalties may exist

Rots vs. SAPS

