
1. Introduction

Software development teams often work with a large number of software artifacts across
several different projects in a collaborative manner. However, As time passes and
software projects grow and teams change, identifying the most experienced developer to
fix a certain bug or develop a new feature can prove to be a difficult task. In this paper
we propose ExpertiseAnalyzer – a tool that leverages the Degree-of-Authorship to
identify the most experienced developers for any given file in a software project
repository.

2. Related work
2.1 Degree of Knowledge

T. Fritz et al. (2010) propose a model for capturing source code familiarity that
considers not only authorship data, but also interaction information. To achieve this
goal, the Degree-of-Knowledge (DOK) model calculates a real value for each source code
element (e.g., classes and methods) by combining the Degree-of-Authorship (DOA) and
Degree-of-Interest (DOI) as follows:

DOK = α FA ∗ FA + α DL ∗ DL + α AC ∗ AC + β DOI ∗ DOI

For a given developer and source code element, the DOA is defined based on
three factors: if the developer created the element (FA – First Authorship), how many
changes the developer made to the element after creating it (DL – Deliveries), and how
many changes were made to the element by other developers (AC – Acceptances). The
DOI is defined based on the amount of interaction (selections and edits) between a
developer and a source code element. An edit is identified by a keystroke in an editor
window, while a selection occurs when he touches the element (e.g., open a file).

To determine the weightings, the authors conducted an experiment with seven
professional Java developers that included gathering data from a project’s revision
history and monitoring and interviewing developer to understand their interaction with
code elements and their knowledge of it. The resulting DOK equation is the following:

DOK = 3.293 + 1.098 ∗ FA + 0.164 ∗ DL − 0.321 ∗ ln(1 + AC) + 0.19 ∗ ln(1 + DOI)

After conducting three exploratory case studies, the authors show that the DOK
model provides better results if compared to existing approaches for identifying and
measuring developer’s expertise.

2.2 Truck Factor

The Truck Factor (also known as bus factor) refers to the minimum number of
developers in a team that would have to be “hit by a truck/bus” (unexpectedly quit) to
cause the project to collapse. Since it is usually understood as a measurement of how
much information is concentrated in a certain number of team members, software
teams may try to increase it by using a number of different approaches, such as adopting
pair-programming as a way of sharing knowledge about a certain piece of software or
encouraging more extensive and up-to-date documentation.

Alvelino et. al. (2015) proposes the following greedy heuristic to calculate the
TruckFactor ​(TF) of 133 popular GitHub applications in [2]: to remove the author with
more files in the repository until more than half of the files are orphans (i.e., no
developer is assigned as its author), which the heuristic considers a sign that the project
is incapacitated. To determine the authorship of a file, Alvelino et. al. rely on the
Degree-of-Authorship (DOA) model as proposed by T. Fritz et al. (2011) in [1]. They
show that most systems have a low ​TruckFactor​, with 34% (45 systems) of them having
a TF of 1 and 30% (40 systems) of them having a TF of 2. Finally, they found that
systems with a large number of plug-ins cause their heuristic to overestimate the TF,
such as ​torvalds/linux ​(TF of 130 if considering Linux’s subsystem drivers but only 57
otherwise) and ​caskroom/homebrew-cask​ (TF of 250 if considering the files in
Library/Formula, but only 2 otherwise).

2.3 Expertise Browser

Mockus and Herbsleb (2002) propose an approach based on quantifying a developer’s
experience through what they call experience atoms (EAs), which represent the most
basic unit of experience considering the changes a person or organization makes to a
software artifact. It relies on revision control data to identify developers with expertise
in a certain area of a software, allowing its user to differentiate between developers who
worked briefly and and developers who have extensive experience with a particular
piece of code. To help a developer or organization find the experts on a software entity,
the authors also propose the Expertise Browser (ExB), which is a tool that allows its
users to query and visualize the people who have expertise on the given software
artifact. Finally, after deploying the tool in a large software development organization,

the authors show that while newer teams used the ExB to identify expertise, larger
teams tended to use it for finding people who possessed a certain expertise profile.

3. ExpertiseAnalyzer

ExpertiseAnalyzer​ is a command-line tool written in Java that leverages the
Degree-of-Authorship (DOA) as proposed by T. Fritz et al. (2010) to analyze a Git
repository and identify the most experienced developers for any given file. It also
determines the top-3 developers for either the entire repository or a specific branch
based on the number of times a developer was identified as a “top developer” for a file.
Some of the most important design decisions in this context are (i) how to treat pull
requests and merges; and (ii) how to deal with different branches and its commits.
ExpertiseAnalyzer​ does not consider commits that represent a response to a pull
request (merge) to avoid assigning authorship of a number of commits to the developer
conducting the merge process (Figure 1).

Figure 1 - Commit A is not processed because it is a response to a pull request (merge)

When dealing with the entire repository, each existing branch is considered and their
commits processed, but any commits that have already been processed are ignored. In
Figure 2, for example, when dealing with the entire project, commits A, B, C, and D
would be processed. If D was processed when traversing the ​master​ branch, however,
ExpertiseAnalyzer​ would not process it again when traversing the ​alt​ branch.

Figure 2 - Processing commits in project with two branches

As a first step to assess how our proposed approach compare to existing ones, we
conduct a brief preliminary comparative study of our approach as implemented in
ExpertiseAnalyzer​ and the greedy heuristic approach implemented by ​TruckFactor​,
since both of them are based on the Degree-of-Authorship. We run both tools on four
different public software projects hosted on GitHub: ​imageworks/OpenColorIO​,
imageworks/OpenShadingLanguage​, ​alembic/alembic​, and ​openexr/openexr​. For
each of them we list the most experienced developers according to ​ExpertiseAnalyzer
and the Truck Factor and the associated developers according to ​TruckFactor ​(Table 1).

 OpenColorIO
OpenShading

Language
alembic openexr

ExpertiseAn
alyzer

- Jeremy Selan
- Malcolm

Humphreys
- dbr

- Larry Gritz*
- fpsunflower

- Joe Ardent
- Lucas Miller

- Ryan Galloway

- Piotr Stanczyk
- Florian Kainz

- Drew Hess

TruckFactor

TF = 2
- Jeremy Selan

-
malcolmhumphreys

TF = 1
Larry Gritz

TF = 1
- Lucas Miller

TF = 3
- Piotr Stanczyk
- Florian Kainz

- Drew Hess

Table 1 - Most experienced developers according to ​ExpertiseAnalyzer​ and ​TruckFactor

Overall, ExpertiseAnalyzer seems to provide very similar results and identify the
same developers. From Table 1, a couple of apparent inconsistencies deserve further
explanation. Firstly, while the number of developers listed by the ​TruckFactor​ tool
varies according to the Truck Factor, ​ExpertiseAnalyzer ​always list up to three most
experienced developers. The one exception in Table 1 is the repository
OpenShadingLanguage​, for which ExpertiseAnalyzer listed Larry Gritz as both the first
and second most experienced developers. This is explained by the fact that a developer
is uniquely identified by his e-mail and Larry Gritz used two different e-mails to submit
changes. Secondly, for the repository ​alembic​, while ​ExpertiseAnalyzer​ identifies Joe
Ardent as the most experienced developer, the ​TruckFactor ​points to Lucas Miller.
From our observations, this discrepancy exists because the TruckFactor considers
merges as regular commits and assigns authorship to the developer who conducted the
merge process. By manually inspecting ​alembic​, we notice that Lucas Miller is the main
developer responding to pull requests and conducting the merges. OutThing, on the
other hand, ignores these commits in an attempt to achieve more realistic results.

4. References

[1] ​Thomas Fritz, Gail C. Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily Hill.
2014. Degree-of-knowledge: Modeling a developer's knowledge of code. ​ACM Trans.
Softw. Eng. Methodol.​ 23, 2, Article 14 (April 2014), 42 pages.
[2] Avelino G., Valente M. T., Hora A. (2015) What is the Truck Factor of popular
GitHub applications? A first assessment.
[3] Audris Mockus and James D. Herbsleb. 2002. Expertise browser: a quantitative
approach to identifying expertise. In ​Proceedings of the 24th International Conference
on Software Engineering​(ICSE '02). ACM, New York, NY, USA, 503-512.

