How to give good presentations

Antoine Ponsard
Outline

How to give good presentations

How to manage stress

Tips for giving great presentations
Outline

How to give good presentations

How to manage stress

Tips for giving great presentations
HOW NOT TO SUCK at giving presentations
#1

Don’t start with the slides

freakin
A presentation is a speech. Treat it as such.
12 minutes talk
NB we should use vis keyword-buzzword throughout (to describe the encoding)

- **intro**
 - our names
 - our topic in a sentence or two
 - “...and so we created PaperQuest”.

- **data**
 - CHI and UIST paper (from Autodesk)
 - year, authors, title, abstract
 - references and citations seen as link (network data)
 - 3501 papers, 27587 links = internal references (to give a sense of magnitude)
 - citation count from Google Scholar

- **task:**
 - multi-level decision process (exploration)
 - not supporting:
 - keyword search (assumption: 1 or more seed papers)
 - organizing your references

- **metaphor**
 - core (“read papers in the red area. Ha, get it?”)
 - fringe
 - sorted by algorithm
 - “as you look at and read papers you expand your fringe, which is sorted by a heuristic to suggest things that may be interesting to you”

- **demo #1**
 - JS and d3, lots of custom controls
 - core, fringe, to read
 - sliders to adjust size
 - select 3 interesting ones
 - semantic zoom (map with each level metaphor)
 - discard one paper after reading it
 - back to half zoom
 - add papers to toRead
 - add one paper to core
 - maybe one slide with a zoomed view of the encodings (butterfly vs half-moon)
Plan according to time limit
Shut up! Shut up! Shut up! Shut up!
NEVER a good idea
Any topic can be presented in any amount of time.
As little text as possible
Multitasking is a myth. We are serial thinkers.

— Douglas Coupland
Why Visualization?

- There is no problem if we just care about assessing performance on a painstakingly annotated benchmark data set by only looking at a classification rate.

- However, if we want a richer understanding of identity of the new relations, and the degree of uncertainty associated with those relations, we need something more...
Why visualization?

So far:
- classification rate on an annotated dataset

We want to understand:
- identity of the new relations
- the degree of uncertainty
Why visualization?

So far:
- classification rate on annotated dataset

We want:
- identity of new relations
- degree of uncertainty
The Problem With SDAZ

- Initialized by clicking and holding down mouse

- Zoom-out or in based on distance of mouse cursor to screen center (an analog for speed)
 - This speed changes when approaching the target due to limit dexterity
 - The constantly changing zoom-level is high cognitive load
 - The objects changing (especially in semantic zooming) can overload visual working memory
 - Mouse Speed/Zoom Level change is aggravated when user overshoot the target
SDAZ

Some Dumb Acronym Zoetic

Initiated by click & drag

Level of zoom based on distance(mouse, center of screen)
Problems

1. Limited dexterity -> speed change close to target
2. Everything changing -> high cognitive load
3. Very confusing if overshooting target
“Due to recent economic conditions, picture worth has dropped to an all time low of 842 words.”
Use as many as you can
#4

Rehearse, rehearse, rehearse, rehearse
of times you give a presentation

1 2 3 4 5 6

terrible

less terrible

ok

good

great
Don’t learn your speech by heart except first few sentences.
Stand up! Practice your body language.
#5

Don’t look at your slides

freakin
Say “Thank you” at the end
#1 Don’t start with the slides
#2 Plan according to time limit
#3 As little text as possible
#4 Rehearse, rehearse, rehearse
#5 Don’t look at your slides
#6 Say “Thank you” at the end
Use a clean, simple template
Future Work

- To-do list
 - How about if there is no value for a property? Or say that it doesn’t exist.
 - Comparison for any element with any property.
 - Corresponding connection among different panels.
 - Compatibility and performance under different browsers.
Data Set

- **Raw Survey Data Format:**

<table>
<thead>
<tr>
<th>Column</th>
<th>Variable</th>
<th>Field Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>_STATE</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>IDATE</td>
<td>8</td>
</tr>
<tr>
<td>88</td>
<td>_DIABETE2</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>_ASTHMA2</td>
<td>2</td>
</tr>
</tbody>
</table>

- State-wise survey data for different diseases (grouped on income, gender, race, age, education etc.)
- Behavioural risk factors (smoking, obesity etc.)
- Prevalence trend (data trend over time)
Augmented Reality

- Hybrid of VR and reality
- Interactive in real time
- Registered in 3-D
Mind your browser

533c Project update by Mohanr (16 Nov 2009)

- The Problem

- The Solution
 - What others have done
 - What I am trying to do
Mind your browser

533c Project update by Mohanr (16 Nov 2009)
THE VISUALIZATION APPROACH

- Issue #1: No standard visualization task
- Solution: Interactive creation of multiple layered time series plots
Analysis of landing site

- Finding yearly pattern
- Finding seasonal pattern
 - Winter, Spring, Summer, Fall
 - Used color coding
 - Added date and season in the nodes

- Finding sites of landing
The Problem – Current Method

- Collaboration around table:
 - Paper maps
 - Paper cutouts of elements
 - Masking tape to place elements in map
 - Manually compute outputs in spreadsheet

- Issues:
 - No way to “save” at any point
 - Hard to compare different solutions
 - Labour intensive calculation; prone to user error
Limit transitions & animations

“fancy”
Yes they look good
It’s amazing what we can do with CGI these days!
But beware of motion sickness
And don’t let them play forever
Control your slides yourself
Use a
#1 Don’t start with the slides
#2 Plan according to time limit
#3 As little text as possible
#4 Rehearse, rehearse, rehearse
#5 Don’t look at your slides
#6 Say “Thank you” at the end
#7 Use a clean, simple template
#8 Limit transitions & animations
#9 Control your slides yourself
Outline

How to give good presentations

How to manage stress

Tips for giving great presentations
FEAR of speaking in public
Stressed — "Sublime" — Excited

Unpleasant — "Relax" — Pleasant

Deactivated — Calm — Activated
Strategies

Relax
- deep, slow breath
- talk to someone
- drink (water)
- pee (before)

Sublime
- “I can do it”
- listen to positive, energizing music
CONFIDENCE in:

- yourself
 - giving presentations
 - giving *this* presentation
 - live 6 months in the mountains with only a knife
- practice
- rehearse
Outline

How to give good presentations

How to manage stress

Tips for giving great presentations
preparing your speech

designing your slides

delivering your presentation
Preparing your speech

Know your audience

3-minutes elevator pitch
identify 3 key messages

Tell a story
Sign-posting & summary

Why? Less visible structure in oral communication

Tell them what you’re going to tell
Tell them
Tell them what you’ve told them

Overview

Breadcrumbs?

Summary
Student Task Management

Integrate Calendar & Todos

Task Visualization
Thank you.
preparing your speech

designing your slides

delivering your presentation
Visual Design Principles

- PROXIMITY
 - GROUP RELATED ITEMS TOGETHER

Alignment

- Repetition
 - ties together separate parts (principle of similarity)

Contrast

if two items are not exactly the same, make them different
Visual Design Principles

- PROXIMITY
 - GROUP RELATED ITEMS TOGETHER

Alignment

- Repetition
 - ties together separate parts (principle of similarity)

Contrast

if two items are not exactly the same, make them different
Visual Design Principles

- **PROXIMITY**
 - Group related items together

ALIGNMENT

- all elements should be visually connected
 - Repetition
 - ties together separate parts (principle of similarity)

Contrast

if two items are not exactly the same, make them different
Visual Design Principles

❖ PROXIMITY

➢ Group related items together

ALIGNMENT

all elements should be visually connected

❖ Repetition

✓ ties together separate parts (principle of similarity)

Contrast

if two items are not exactly the same, make them different
Proximity

- PROXIMITY
 - Group related items together

ALIGNMENT

All elements should be visually connected

- Repetition
 - Ties together separate parts (principle of similarity)

Contrast

If two items are not exactly the same, make them different
Proximity

- PROXIMITY
 - Group related items together

ALIGNMENT all elements should be visually connected

- Repetition
 - ties together separate parts (principle of similarity)

Contrast

- if two items are not exactly the same, make them different
Proximity

- **PROXIMITY**
 - Group related items together

Alignment all elements should be visually connected

- Repetition
 - ties together separate parts (principle of similarity)

Contrast

if two items are not exactly the same, make them different
Alignment

- **PROXIMITY**
 - Group related items together

ALIGNMENT all elements should be visually connected

- Repetition
 - ties together separate parts (principle of similarity)

Contrast
 - if two items are not exactly the same, make them different
Alignment

- **PROXIMITY**
 - group related items together

ALIGNMENT
all elements should be visually connected

- **Repetition**
 - ties together separate parts (principle of similarity)

Contrast
if two items are not exactly the same, make them different
Alignment

- **PROXIMITY**
 - group related items together

ALIGNMENT
all elements should be visually connected

- **Repetition**
 - ties together separate parts (principle of similarity)

Contrast
if two items are not exactly the same, make them different
Alignment

- **PROXIMITY**
 - group related items together

ALIGNMENT

 all elements should be visually connected

- **Repetition**
 - ties together separate parts (principle of similarity)

Contrast

 if two items are not exactly the same, make them different
Alignment

- **PROXIMITY**
 - group related items together

ALIGNMENT
- all elements should be visually connected

- **Repetition**
 - ties together separate parts (principle of similarity)

Contrast
- if two items are not exactly the same, make them different
Repetition

- **PROXIMITY**
 - group related items together

ALIGNMENT
all elements should be visually connected

- Repetition
 - ties together separate parts (principle of similarity)

Contrast
if two items are not exactly the same, make them different
Repetition – be consistent

- **Proximity**
 - group related items together

Alignment
- all elements should be visually connected

- **Repetition**
 - ties together separate parts (principle of similarity)

Contrast
- if two items are not exactly the same, make them different
Repetition – be consistent

- **proximity**
 - Group related items together

Alignment
- All elements should be visually connected

- **Repetition**
 - Ties together separate parts (principle of similarity)

Contrast
- If two items are not exactly the same, make them different
Proximity
 • group related items together

Alignment
 • all elements should be visually connected

Repetition
 • ties together separate parts (principle of similarity)

Contrast
 • if two items are not exactly the same, make them different
Proximity
• group related items together

Alignment
• all elements should be visually connected

Repetition
• ties together separate parts (principle of similarity)

Contrast
• if two items are not exactly the same, make them different
Proximity
 group related items together

Alignment
 all elements should be visually connected

Repetition
 ties together separate parts (principle of similarity)

Contrast
 if two items are not exactly the same, make them different
Contrast

Proximity
 group related items together

Alignment
 all elements should be visually connected

Repetition
 ties together separate parts (principle of similarity)

Contrast
 if two items are not exactly the same, make them different
Contrast

Proximity
 group related items together

Alignment
 all elements should be visually connected

Repetition
 ties together separate parts (principle of similarity)

Contrast
 if two items are not exactly the same, make them different
Contrast
if two items are not exactly the same, make them different

Repetition
ties together separate parts (principle of similarity)

Alignment
all elements should be visually connected

Proximity
group related items together
Purpose

Organize

Proximity
- group related items together

Alignment
- all elements should be visually connected

Unify

Repetition
- ties together separate parts (similarity)

Visual interest

Contrast
- if two items are not the same, make them different
Purpose

Organize

Proximity
- group related items together

Alignment
- all elements should be visually connected

Unify

Repetition
- ties together separate parts (similarity)

Visual interest

Contrast
- if two items are not the same, make them different
preparing your speech
designing your slides
delivering your presentation
Before

- try your laptop in the room before
- launch your presentation quickly
- have a backup
- beware of videos
- prepare websites in full screen, and alt-tab
Great first impression

- dress well
- walk in with energy, smiling
- know the first few sentences by heart
- impeccable first slide
 - starting joke
Buckets.

NBA Shot Visualization

Peter Beshai
CPSC 547 Project
Dec. 12, 2014
DimpVis: Exploring Time-varying Information Visualizations by Direct Manipulation

Brittany Kondo, Christopher Collins
VIS 2014
On the Fringe:
A Visualization Tool
to Support Literature Review

Francisco Escalona
Antoine Ponsard
CPSC 547
Direct manipulation

file.txt

folder
Engage

Be engaged—*or at least, fake it.*

Look at them in the eyes

Steady your voice

Pause.
Accept questions
(unless time is limited)

Prepare questions in advance

Even better:
make the audience ask the questions you want!
#1 Don’t start with the slides
#2 Plan according to time limit
#3 As little text as possible
#4 Rehearse, rehearse, rehearse
#5 Don’t look at your slides
#6 Say “Thank you” at the end
Thank you.

Any questions?

All slides used as examples in this presentation come from previous CPSC 547 projects
http://www.cs.ubc.ca/~tmm/courses/547-14/