CS 554m controlled experiments I

Joanna McGrenere

learning goals

be able to answer the following:

what is the experimental method? what is an experimental hypothesis? how do I plan an experiment? why are statistics used? within- & between-subject comparisons: how do they differ? how do I compute a t-test? what are the different types of t-tests?

Acknowledgement: Some of the material in this lecture is based on material prepared for similar courses by Saul Greenberg (University of Calgary)

a good portion of the material in these lectures on experimental design should be familiar from ugrad stats class, although perhaps presented here from a slightly different perspective

also, most of this material is well covered in today's readings:

Newman & Lamming, Ch 10

Lazar, Feng, & Hochheiser, Ch 2 - 4

Who has run an experiment?

material I assume you already know and will not be covered (some additional slides at end)

types of variables samples & populations normal distribution variance and standard deviation

 often difficult to sift through data unless specific aspects are targeted (as in list above)

quantitative methods

2. controlled experiments

the traditional scientific method

- reductionist
 - clear convincing result on specific issues
- in HCI
 - insights into cognitive process, human performance limitations, ...
 - allows comparison of systems, fine-tuning of details ...

strives for

- lucid and testable hypothesis (usually a causal inference)
- quantitative measurement
- measure of confidence in results obtained (inferencial statistics)
- replicability of experiment
- control of variables and conditions
- removal of experimenter bias

desired outcome of a controlled experiment

statistical inference of an event or situation's probability:

"Design A is better *<in some specific sense* than Design B"

or, Design A meets a target:

"90% of incoming students who have web experience can complete course registration within 30 minutes"

steps in the experimental method

step 1: begin with a lucid, testable hypothesis

Example 1:

- H₀: there is no difference in the number of cavities in children and teenagers using crest and no-teeth toothpaste
- H₁: children and teenagers using crest toothpaste have fewer cavities than those who use no-teeth toothpaste

step 1: begin with a lucid, testable hypothesis

Example 2:

- H₀: there is no difference in user performance (time and error rate) when selecting a single item from a pop-up or a pull down menu, regardless of the subject's previous expertise in using a mouse or using the different menu types
- H₁: selecting from a pop-up menu will be faster and less error prone than selecting from a pull down menu

File	Edit	View	Insert	
New				
Open				
Close				
Save				

general: hypothesis testing

hypothesis = **prediction** of the outcome of an experiment.

framed in terms of **independent** and **dependent** variables:

a variation in the independent variable will cause a difference in the dependent variable.

aim of the experiment: prove this prediction do by: *disproving* the "null hypothesis"

H₀: experimental conditions have no effect on performance (to some degree of significance) \rightarrow null hypothesis

H₁: experimental conditions have an effect on performance (to some degree of significance) \rightarrow alternate hypothesis

step 2: explicitly state the independent variables

Independent variables

- things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison
- two different kinds:
 - treatment manipulated (can establish cause/effect, true experiment)
 - subject individual differences (can never fully establish cause/effect)

in toothpaste experiment

- toothpaste type: Crest or No-teeth toothpaste (treatment)
- age: <= 12 years or > 12 years (subject)

in menu experiment

- menu type: pop-up or pull-down (treatment)
- menu length: 3, 6, 9, 12, 15 *(treatment)*
- expertise: expert or novice (often subject, but can train an expert)

step 3: carefully choose the dependent variables

Dependent variables

- things that are measured
- expectation that they depend on the subject's behaviour / reaction to the independent variable (but unaffected by other factors)

in toothpaste experiment:

in menu experiment:

step 4: consider possible nuisance variables & determine mitigation approach

- undesired variations in experiment conditions which cannot be eliminated, but which may affect dependent variable
 - critical to know about them
- experiment design & analysis must generally accommodate them:
 - treat as an additional experiment independent variable (if they can be controlled)
 - randomization (if they cannot be controlled)
- common nuisance variable: *subject* (individual differences)

in toothpaste experiment:

in menu experiment:

step 5: design the task to be performed

tasks must:

be externally valid

external validity = do the results generalize?

... will they be an accurate predictor of how well users can perform tasks as they would in real life?

for a large interactive system, can probably only test a small subset of all possible tasks.

exercise the designs, bringing out any differences in their support for the task

e.g., if a design supports website **navigation**, test task should **not** require subject to work within a **single page**

be feasible - supported by the design/prototype, and executable within experiment time scale

step 5: design the task to be performed

in toothpaste experiment:

in menu experiment:

step 6: design experiment protocol

- steps for executing experiment are prepared well ahead of time
- includes unbiased instructions + instruments (questionnaire, interview script, observation sheet)
- double-blind experiments, ...

step 7: make formal experiment design explicit

simplest: 2-sample (2-condition) experiment

based on comparison of two sample means:

- performance data from using Design A & Design B
 - e.g., new design & status quo design
 - e.g., 2 new designs

or, comparison of one sample mean with a constant:

- performance data from using Design A, compared to performance requirement
 - determine whether single new design meets key design requirement

step 7: make formal experiment design explicit

more complex: factorial design

in toothpaste experiment:

- 2 toothpaste types (crest, no-teeth)
- x 2 age groups (<= 12 years or > 12 years)

in menu experiment:

2 menu types (pop-up, pull down)

- x 5 menu lengths (3, 6, 9, 12, 15)
- x 2 levels of expertise (novice, expert)

(more on this later)

step 8: judiciously select/recruit and assign subjects to groups

subject pool: similar issues as for informal studies

- match expected user population as closely as possible
- age, physical attributes, level of education
- general experience with systems similar to those being tested
- experience and knowledge of task domain

sample size: more critical in experiments than informal studies

- going for "statistical significance"
- should be large enough to be "representative" of population
- guidelines exist based on statistical methods used & required significance of results
- pragmatic concerns may dictate actual numbers
- "10" is often a good place to start

step 8: judiciously select/recruit and assign subjects to groups

- if there is too much variability in the data collected, you will not be able to achieve statistical significance (more later)
- you can reduce variability by controlling subject variability how?
 - recognize classes and make them an independent variable e.g., older users vs. younger users
 e.g., superstars versus poor performers
 - use reasonable <u>number</u> of subjects and random assignment

Expert

step 9: apply statistical methods to data analysis

examples: t-tests, ANOVA, correlation, regression (more on these later)

confidence limits: the confidence that your conclusion is correct

 - "The hypothesis that mouse experience makes no difference is rejected at the .05 level" (i.e., null hypothesis rejected)

- this means:

- a 95% chance that your finding is correct
- a 5% chance you are wrong

step 10: interpret your results

what you believe the results mean, and their implications

yes, there can be a subjective component to quantitative analysis

the planning flowchart

goal of experiment design

guard against ambiguous or misleading results

← a good (definitive) result

poor experiment design or results

less distinguishable results:

perhaps task was poorly chosen – or there's really no difference

poor experiment design

misleading results

e.g. subject assignment not controlled: one design tested on novices, other on experts, disguising actual trend

poor experiment design or results

large spread in values

perhaps conditions were not well controlled

as we have seen

individual (subject) differences may pose a **nuisance variable**:

variation in individual abilities can mask real differences in test conditions, if not analyzed properly

most common way to deal with:

account for each individual's performance in the two conditions (paired t-test, we'll cover more)

within/between subject comparisons

within-subject comparisons:

- subjects exposed to multiple treatment conditions
- \rightarrow primary comparison internal to each subject
- allows control over subject variable
- greater statistical power, fewer subjects required
- not always possible (exposure to one condition might "contaminate" subject for another condition; or session too long)

between-subject comparisons:

- subjects only exposed to one condition
- \rightarrow primary comparison is from subject to subject
- less statistical power, more subjects required
- why? because greater variability due to more individual differences

within/between subject comparisons

in toothpaste experiment

2 toothpaste types (crest, no-teeth) *between or within* x 2 age groups (<= 12 years *or* > 12 years) *must be between*

in menu experiment :

2 menu types (*pop-up*, *pull down*) between or within x 5 menu lengths (3, 6, 9, 12, 15) should be within x 2 levels of expertise (novice, expert) must be between

to summarize so far: how a controlled experiment works

- formulate an alternate and a null hypothesis:
 H₁: experimental conditions have an effect on performance
 H₀: experimental conditions have no effect on performance
- through experiment task, try to demonstrate that the null hypothesis is false (reject it),
 for a particular level of significance
- if successful, we can accept the alternate hypothesis, and state the probability *p* that we are wrong (the null hypothesis is true after all) → this is the result's confidence level
 - e.g., selection speed is significantly faster in menus of length 5 than of length 10 (p<.05)
 - → 5% chance we've made a mistake, 95% confident

statistical analysis

what is a statistic?

- a number that describes a sample
- sample is a subset (hopefully representative) of the population we are interested in understanding

statistics are calculations that tell us

- mathematical attributes about our data sets (sample)
 - mean, amount of variance, ...
- how data sets relate to each other
 - whether we are "sampling" from the same or different populations
- the probability that our claims are correct
 - "statistical significance"

example: differences between means

given: two data sets measuring a condition

• e.g., height difference of males and females, time to select an item from different menu styles ...

question:

• is the difference between the means of the data statistically significant?

null hypothesis:

- there is no difference between the two means
- statistical analysis can only reject the hypothesis at a certain level of confidence
- note: we never actually prove the null hypothesis true

the problem with visual inspection of data

there is almost always variation in the collected data differences between data sets may be due to:

- normal variation
 - e.g., two sets of ten tosses with different but fair dice
 - differences between data and means are accountable by expected variation
- real differences between data
 - e.g., two sets of ten tosses with loaded dice and fair dice
 - differences between data and means are not accountable by expected variation

t-test

a statistical test

allows one to say something about differences between two means at a certain confidence level

null hypothesis of the t-test: no difference exists between the means

possible results:

- I am 95% sure that null hypothesis is rejected
 - there is probably a true difference between the means
- I cannot reject the null hypothesis
 - the means are likely the same

different types of t-tests

comparing two sets of independent observations (between subjects)

usually different subjects in each group (number may differ as well)

Condition 1 Condition 2 S1–S20 S21–S43

paired observations (within subjects)

usually single group studied under separate experimental conditions data points of one subject are treated as a pair

Condition 1 Condition 2

S1–S20 S1–S20

different types of t-tests

non-directional vs directional alternatives

non-directional (two-tailed)

• no expectation that the direction of difference matters

directional (one-tailed)

only interested if the mean of a given condition is greater than the other

t-tests

Assumptions of t-tests

- data points of each sample are normally distributed
 - but t-test very robust in practice
- sample variances are equal
 - t-test reasonably robust for differing variances
 - deserves consideration
- individual observations of data points in sample are independent
 - must be adhered to (can you think of examples where they are not?)

Significance level

- decide upon the level before you do the test!
- typically stated at the .05 or .01 level
- .10 can be considered a trend, but is controversial

what the t-test is testing

(a) the two samples come from two different populations;

(b) the two samples are part of the same population.

two-tailed unpaired t-test

n: number of data points in the one sample (N = $n_1 + n_2$)

 $\Sigma {\rm X}:$ sum of all data points in one sample

 \overline{X} : mean of data points in sample

 $\Sigma(X^2)$: sum of squares of data points in sample s²: unbiased estimate of population variation t: t ratio

df = degrees of freedom = $n_1 + n_2 - 2$

N&L shows derivation of formula

How to maximize t?

Formulas

$$S^{2} = \frac{\sum (X_{1}^{2}) - \frac{(\sum X_{1})^{2}}{n_{1}} + \sum (X_{2}^{2}) - \frac{(\sum X_{2})^{2}}{n_{2}}}{n_{1} + n_{2} - 2}$$

$$t = \frac{X_1 - \overline{X_2}}{\sqrt{\frac{S}{n_1} + \frac{S}{n_2}}}$$

44

<N&L derivation> mean & sum of squares

degrees of freedom (df)

freedom of a set of values to vary independently of one another:

$$X = \{21, 20, 24\}$$
 N=3
 $\overline{X} = \frac{65}{3} = 21.6: - \overline{X}$ has N-1=2 df

once you know the mean of N values, only N-1 can vary independently

sample variance & standard deviation

</N&L derivation> calculating t

compute **combined variance** for the two samples:

$$s^2 = \frac{SS_1 + SS_2}{n_1 + n_2 - 2}$$

compute standard error of difference, s_{ed} :

$$S_{ed} = \sqrt{S^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
$$t = \frac{\left|\overline{X}_1 - \overline{X}_2\right|}{S_{ed}}$$

no, you won't have to memorize the formula for exams. but you *should* know how / when to use it.

compute *t*:

Leve	l of sig	gnifica	nce for	two-t	ailed t	est
<u>df</u>	.05	<u>.01</u>		df	.05	.01
1	12.706	63.657		16	2.120	2.921
2	4.303	9.925		18	2.101	2.878
3	3.182	5.841		20	2.086	2.845
4	2.776	4.604		22	2.074	2.819
5	2.571	4.032		24	2.064	2.797
6 7 8 9 10	2.447 2.365 2.306 2.262 2.228	3.707 3.499 3.355 3.250 3.169	Critica statisti	l value (c much i	(threshold reach to a	d) that t achieve
11	2 201	3 106	signifi	cance.		
11	2.201 2.170	2.055				
12 13	2.179	3.033	How c	loes crit	tical valu	Je
13	2.100	2.977	chang	e based	d on <i>df</i> a	and
15	2.131	2.947	confid	ence le	vel?	

example calculation

x ₁ :	= 3	4	4	4	5	5	5	6
x ₂ :	= 4	4	5	5	6	6	7	7

Step 1. Calculating s^2

hypothesis: there is no significant difference between the means at the .05 level

51

example calculation

Step 2. Calculating t

$$E = \frac{1}{x_1 - \frac{1}{x_2}} \sqrt{\frac{5^2}{N_1} + \frac{5^4}{N_2}} N_2$$

= $\frac{4.5 - 5.5}{\sqrt{2 \cdot (1.142A/g)}}$
= $\frac{1}{.5345}$
 $\pm \cdot 1.5 \pm 1$

Step 3: Looking up critical value of *t*

- Use table for two-tailed *t*-test, at *p*=.05, *df*=14
- critical value = 2.145
- because *t*=1.871 < 2.145, there is no significant difference
- therefore, we cannot reject the null hypothesis

i.e., there is no significant difference between the means

Condition one: 3, 4, 4, 4, 5, 5, 5, 6

Condition two: 4, 4, 5, 5, 6, 6, 7, 7

What the results would look like in stats software.

How does the outcome change for a confidence level of 0.10?

summary of the t-test

the point: establish a confidence level in the difference we've found between 2 sample means.

the process:

- 1. compute df
- 2. choose desired significance, p (aka α)
- 3. calculate value of the *t* statistic
- 4. compare it to the **critical value** of t given p, df: $t_{(p,df)}$
- 5. if $t > t_{(p,df)}$, can reject null hypothesis at p

what does this look like graphically?

null hypothesis rejection area:

- two-tailed: divided equally between left/right
- single-tailed: all on one side

region(s) for rejecting the null hypothesis:

the area of the normal distribution that equals the chance you might be wrong 55

you now know

How to answer the following:

what is the experimental method?
what is an experimental hypothesis?
how do I plan an experiment?
why are statistics used?
within- & between-subject comparisons: how do they differ?
how do I compute a t-test?
what are the different types of t-tests?

additional slides: material I assume you know

types of variables samples & populations normal distribution variance and standard deviation

types of variables (independent or dependent)

discrete: can take on finite number of levels

- e.g. a 3-color display can only render in red, green or blue;
- a design may be version A, or version B

continuous: can take any value (usually within bounds)

 e.g. a response time that may be any positive number (to resolution of measuring technology)

normal: one particular **distribution** of a continuous variable

populations and samples

statistical sample =
approximation of total possible set of, e.g.

- people who will ever use the system
- tasks these users will ever perform
- state users might be in when performing tasks_
- "sample" a representative fraction
- draw randomly from population
- if large enough and representative enough, the sample mean should lie somewhere near the population mean

confidence levels

"the sample mean should lie somewhere near the population mean"

how close?

how sure are we?

a confidence interval provides an **estimate of the probability** that the statistical measure is valid:

"We are **95%** certain that selection from menus of five items is faster than that from menus of seven items"

how does this work?

important aspect of experiment design

establishing confidence levels: normal distributions

fundamental premise of statistics:

predict behavior of a **population** based on a **small sample**

validity of this practice depends on the **distribution** of the population and of the sample

many populations are **normally distributed**: many statistical methods for **continuous dependent variables** are based on the assumption of normality

if your sample is normally distributed, your population is likely to be,

and these statistical methods are valid, and everything is a lot easier.

variance and standard deviation all normal distributions are not the same:

population variance is a measure of the distribution's "spread" all normal population distributions still have the same shape

how do you get the population's variance?

estimate the population's (true) **variance** from the (measured) sample's **standard deviation**:

what's the big deal?

if you know you're dealing with samples from a normal distribution,

and you have a good estimate of its variance (i.e. your sample's std dev)

then, you know the **probability** that a given sample came from that population (vs. a different one).

