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A literature review was conducted to understand the limitations of well-known
statistical analysis techniques, particularly analysis of variance. The review is
structured around six major points: (1) averaging across participants can be mis-
leading; (2) strong predictions are preferable to weak predictions; (3) constructs
and measures should be distinguished conceptually and empirically; (4) statistical
signi® cance and practical signi® cance should be distinguished conceptually and
empirically; (5) the null hypothesis is virtually never true; and (6) one experiment
is always inconclusive. Based on these insights, a number of lesser-known and
less-frequently used statistical analysis techniques were identi® ed to address the
limitations of more traditional techniques. In addition, a number of methodolo-
gical conclusions about the conduct of human factors research are presented.

1. Introduction

In ergonomics science, the statistical analysis of data almost always relies on analysis

of variance (ANOVA), which is a particular type of null-hypothesis signi® cance

testing (NHST). All have been taught these techniques and they are so commonly

used and so widely accepted that they are frequently applied to data without a

second thought. And, because the formulae for these statistical procedures have
been embedded in easy-to-use software, their application is faster and less eŒortful

than ever before. Having said that, consider the following quotations:

Null-hypothesis signi® cance testing is surely the most bone-headedly misguided procedure

ever institutionalised in the rote training of science students (Rozeboom 1997: 335).

The physical sciences, such as physics and chemistry, do not use statistical signi® cance

testing to test hypotheses or interpret data. In fact, most researchers in the physical

sciences regard reliance on signi® cance testing as unscienti® c (Schmidt and Hunter

1997: 39).

I believe that the almost universal reliance on merely refuting the null hypothesis as the

standard method for corroborating substantive theories . . . is a terrible mistake, is basic-

ally unsound, poor scienti® c strategy, and one of the worst things that ever happened in

the history of psychology (Meehl 1978: 817).

These quotes are extreme, but the undeniable scienti® c point is that the statistical

analysis techniques that are most familiar to, and most frequently used by, ergo-
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nomics scientists and practitioners have important limitations that could be over-

come if we also relied on alternative methods of statistical inference.

Critiques of NHST and ANOVA go back at least to the 1960s (e.g. Rozeboom
1960, Bakan 1966, Meehl 1967, Lykken 1968), resurfaced periodically in the 1970s

and 1980s (e.g. Meehl 1978, Hammond et al. 1986, 1987, Rosnow and Rosenthal

1989), and have appeared with increasing frequency and cogency during the past

decade (e.g. Cohen 1990, 1994, Meehl 1990, Loftus 1991, 1993b, 1995, 2001, Loftus

and Masson 1994, Hammond 1996, Thompson 1996, Harlow et al. 1997, Loftus and
McLean 1997). These critiques have been met with rebuttals (e.g. Serlin and Lapsley

1985, Chow 1996, Abelson 1997, Hagen 1997, Harlow et al. 1997). The discussion

has grown to the point where several journals have dedicated special sections to

discussing the pros and cons of this issue (e.g. Thompson 1993, Shrout 1997,

Chow 1998).

There is now a growing consensus that there are sound reasons to justify dis-
content with sole reliance on traditional methods of statistical data analysis. This

dissatisfaction has led some journal editors to take signi® cant actions to remedy the

situation. As editor of Memory & Cognition, Loftus (1993a) strongly encouraged

authors to adopt non-traditiona l data analysis and presentation methods. The edi-

tors of Educational and Psychological Measurement (Thompson 1994), Journal of
Applied Psychology (Murphy 1997), and Journal of Experimental Education

(Heldref Foundation 1997) went further, by requiring that authors report alternative

statistical results. The editor of the American Journal of Public Health, the top

journal in that discipline, even went so far as to ban statistical signi® cance testing

and any reference to p-values for a couple of years (Shrout 1997). More recently, the
American Psychological Association Board of Scienti® c AŒairs struck a Task Force

on Statistical Inference consisting of a number of world-class researchers in both

psychology and statistics t̀o elucidate some of the controversial issues surrounding

applications of statistics including signi® cance testing and its alternatives; alternative

underlying models and data transformation; and newer methods made possible by

powerful computers’ (Wilkinson et al. 1999: 594). There must be some substantive
issues at stake for several scholars and organizations to take such strong actions.

The authors’ experience has been that most ergonomics scientists are unaware of

the controversy surrounding traditional methods of statistical inference, of the im-

portant limitations of these methods, and that alternative methods can be adopted to

overcome some of these limitations (this opinion is empirically substantiated later,
albeit informally). The purpose of this article is to discuss all of these issues in the

context of ergonomics science. To be clear, the purpose is not to make an original

technical contribution to this literature nor is it to dismiss the use of the traditional

techniques. Instead, the aim is to bring the practical implications of this literature to

the attention of the ergonomics science community, so that we can suggest some
complementary ways of analysing data statistically.

2. Six issues in statistical inference

This literature review is organized into six sections, each of which identi® es a major

issue in statistical inference and a corresponding set of alternative methods.

Although some of these points may seem self-evident, the review will show that

they are frequently not heeded by ergonomics scientists. By making each of these
points explicit, new ways of analysing data can be identi® ed. These lesser-known
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statistical analysis techniques may, in turn, provide a diŒerent, and sometimes per-

haps more valuable, set of insights into data.

Before proceeding, several caveats need to be mentioned. First, some of the
limitations of ANOVA that are discussed are found only in more modern treatments

and usages, and not in the original Fisherian formulation. But, since it is the former,

rather than the latter, that is familiar to and generally adopted by most of the

intended readers, it seems nevertheless worthwhile to discuss these limitations.

Secondly, several of the alternative data analysis techniques discussed can be, but
are not usually, derived from information generated by an ANOVA. However,

regardless of how they are calculated, one of the main points is that alternative

methods of statistical inference provide valuable information that is complementary

to that which is usually reported using traditional techniques. Thirdly, in some cases,

the limitations identi® ed are not as much with ANOVA itself but rather with the way

in which it is generally used. For example, there is no reason why the information
usually provided by ANOVA cannot be supplemented by some of the complemen-

tary measures identi® ed. The main point is that this practice is not usually followed

in the human factors community, and that there are good reasons to change the way

in which we currently analyse our data. Finally, we do not claim to have identi® ed a

panacea for the problems with traditional techniques. The alternative methods pro-
posed, whilst useful and complementary, are not perfect. Furthermore, there is no

substitute for having a clear idea of a study’s objectives before determining the right

mix of statistical techniques to apply to the data.

2.1. Averaging across participants can be misleading

We will begin by discussing an issue with which many researchers are familiar but

that is, nevertheless, frequently overlooked. ANOVA involves averaging across par-

ticipants. As a result, it is commonplace for ergonomics scientists to assess statistical
signi® cance at an aggregate level of group means. Yet, taking an average only makes

statistical sense if the samples being aggregated are qualitatively similar to each

other. Without looking at each participant’s data individually, we do not know if

the group average is representative of the behaviour of the individuals. In fact, it is

possible for a group average to be a s̀tatistical myth’ in the sense that it is not
indicative of the behaviour of any single participant in the group.

Data from a 6-month longitudinal study conducted by ChristoŒersen et al. (1994)

can be used to illustrate this point in a salient fashion. Figure 1 shows a learning

curve illustrating the average time to complete a task as a function of experience. The

curve is based on data averaged over six participants. A power law ® t has been

superimposed on the aggregate data. Based on visual inspection alone, it can be
seen that there is a good ® t between the data and the power law curve. A regression

analysis showing a substantial r
2

value of 0.74 con® rms this impression. One might

conclude from this aggregate-level analysis that these data provide support for the

power law of practice (Newell and Rosenbloom 1981). However, such a conclusion

could be premature. Without looking at each participant ’s data it cannot be known
whether the elegant, aggregate power curve ® t would provide an equally good

account of the skill acquisition of each individual.

Figure 2 shows the learning curve data for one of the six participants. Again, a

best ® t power law curve has been superimposed, but this time on the raw data of an

individual, not the mean data of the group. The degree of ® t between the power law
of practice and this participant’s data is obviously poor. Thus, to use the group
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average as a basis for generalizing to individuals would be quite misleading in this

case.

Plateaus in learning curves and the dangers of aggregating data over participants

are hardly new insights (Bryan and Harter, 1897, 1899, Woodworth 1938). Yet, as

Venda and Venda (1995) pointed out, these insights are still frequently ignored by

many, although by no means all, ergonomics scientists. It is believed that, in part,

these oversights result from the fact that ANOVA encourages the aggregation of data
over participants. Consequently, a special, added eŒort must be made to examine the

Alternative methods of statistical inference 251

0

50

100

150

200

250

300

# of TRIALS

Figure 1. Learning curve averaged over six participants (ChristoŒersen et al. 1994).
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Figure 2. Learning curve for one of the six participants (ChristoŒersen et al. 1994).



data for each individual to see if what is true of the group is also true of the indi-

vidual.

Taking the dangers of aggregating over participants to heart can actually lead to
new and perhaps more compelling ways of analysing data. Several statistical

methods can be used to address the aforementioned problems, but here only one

is discussed. In cases where a within-participants design is adopted, each individual

can be viewed as an experiment and see if the theoretical predictions being tested

hold for each person. An example of this type of test is provided by Vicente (1992),
who compared the performance of the same participants with two diŒerent inter-

faces, one labelled P and the other labelled P ‡ F. There were theoretical reasons for

hypothesizing that the P ‡ F interface would lead to better performance than the P.

However, rather than just seeing if the group means of the two conditions diŒered,

Vicente also conducted a more detailed analysis to see if the theoretical prediction

held for each and every participant. The number of participants for whom the
hypothesized relationship …P ‡ F > P† held was counted and then this count was

analyzed statistically by conducting a sign test (Siegel 1956). In one analysis, the

P ‡ F interface led to better performance than the P for 11 out of 12 experts, a

statistically signi® cant result.

This example is important for two reasons. First, in at least some applied situa-
tions, it may be more important for ergonomics scientists and practitioners to know

how often an expected result is obtained at the level of the individual than at the level

of an aggregate. For example, say the performance impact of an advanced control

room for a nuclear power plant is being tested. Are we only interested in knowing

whether the mean performance of the new control room is better than that with the
old, or are we also interested in knowing the proportion of operators for which

performance with the new control room is better? It seems that the latter is also

valuable. After all, an ANOVA could show that the new interface leads to a statis-

tically signi® cant improvement in performance, but an analysis like the one con-

ducted by Vicente (1992) might reveal that the new interface only leads to better

performance for half of the operators (a non-signi® cant result with a sign test). In
this case, the aggregate level analysis is misleading, just as the aggregate data in

® gure 1 are. And, because of the potential hazard involved, designers might be wary

about introducing a new control room that will result in a performance decrement

for half of its operators. Secondly, this example also shows that non-parametric tests

(e.g. the sign test and the c
2

test), that are statistically less powerful than parametric
tests, can actually be used in innovative ways to test strong predictions. This topic is

discussed in more detail next.

2.2. Strong predictions are preferable to weak predictions

Empirical predictions can be ordered on a continuum from strong to weak (Vicente

1998). At the strong end, there are point predictions. To take a hypothetical example

from physics, a theory might predict that the gravitational constant, G, should be

6:67 £ 10
¡11

Nm
2
=kg

2
. An experiment can then be conducted to see how well the

data correspond to this point prediction. Slightly farther along the continuum, inter-

val predictions are found. To continue with the same example, a diŒerent theory

might only predict that 6 £ 1
¡11

Nm
2
=kg

2
< G < 7 £ 10

¡11
Nm

2
=kg

2
. An interval

prediction is weaker than a point prediction because it is consistent with a wider

range of results. Still farther towards the weaker side of the continuum, ordinal
predictions are found. For example, a third theory might only predict the direction
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of the force of gravity. In this case, all one would know is that gravity pulls objects

towards, rather than away from, the earth. Finally, at the weak end of the conti-

nuum, categorical predictions are found. For example, a very primitive theory might
merely predict that the force of gravity on the earth is statistically signi® cantly

diŒerent from zero, regardless of its direction (i.e. that gravity exists).

Meehl (1967, 1978, 1990) has repeatedly pointed out that a mature science should

strive to make predictions towards the strong end of this continuum, but that psy-

chology has generally failed to do so. The same claim can generally be made for

ergonomics science, although there certainly are exceptions. According to Meehl,
one of the causes of this lack of maturity is that researchers have let the constraints

of the statistical analysis techniques with which they are most familiar (i.e. ANOVA)

govern the strength of the predictions they make. And, because ANOVA is usually

used by behavioural researchers to determine if an eŒect is signi® cantly diŒerent

from zero (i.e. if the independent variable has no eŒect whatsoever), ergonomics
scientists frequently restrict themselves to testing categorical predictions. This area

is the weakest on the continuum and is, thus, indicative of a comparatively immature

scienti® c practice. Because we are so accustomed to following this procedure, we may

not even be aware that we are merely testing a categorical prediction. However, the

hypothetical example cited above shows just how weak such a test really is. Merely

predicting that gravity exists does not seem like an impressive scienti® c achievement.
Granted, pairwise comparisons of means can be used to test ordinal predictions at an

aggregate level, but this is still a far cry from the interval and point predictions

located on the strong end of the continuum described above.

It could be argued that most areas of human factors research have not reached

the level of theoretical maturity to make point or interval predictions. There is merit
to this objection, but, even so, it does not follow that we cannot or should not be

more ambitious than we have been in the past. Rather than letting familiar statistical

analysis techniques keep us from achieving a mature science, we should instead seek

out a diŒerent set of techniques that can be used to test stronger predictions, when-

ever they can be made. For a practical science like ergonomics, the value of quanti-

tative prediction is particularly important. Engineering design always involves trade-

oŒs, so, in making the case for ergonomics science, it is invaluable to know how big
an impact a particular design intervention will have on performance or safety

(Chapanis 1967).

The innovative work of Hammond et al. (1987) provides an example of how

ergonomics scientists can begin to make stronger predictions and how these can
be tested using untraditional statistical analysis techniques. Hammond et al. were

interested in comparing the e� cacy of intuitive and analytical cognition in expert

judgement. Accordingly, they conducted an experiment to investigate the impact of

two independent variables, depth task characteristics and surface task characteris-

tics, on the level of performance and the type of cognitive processing (i.e. intuition

vs. analysis) of 21 professional highway engineers. There were three levels for the

depth task characteristics dimension: (a) an aesthetics task that was intended to
induce intuition; (b) an highway capacity calculation task that was intended to

induce analysis; and (c) a safety judgement task that was intended to induce a

hybrid of intuition and analysis. Each of these tasks was presented in three diŒerent

formats, each with a diŒerent set of surface characteristics: (a) ® lm strips that were

intended to induce intuition; (b) formulae that were intended to induce analysis; and
(c) bar graphs that were intended to induce a hybrid of intuition and analysis. Each
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of the 21 highway engineers experienced each of the nine combinations of depth and

surface task characteristics.

From a traditional perspective, this experimental design ® ts neatly into a within-
participants 3 £ 3 randomized block factorial ANOVA. However, analysing the data

in this fashion would only allow the experimenters to test null hypotheses. Such a test

only amounts to an evaluation of a categorical prediction (equivalent to the fact that

gravity exists). Furthermore, the ANOVA would only evaluate the results at an

aggregate level of analysis, and, thus, could mask some important individual diŒer-
ences (see the previous section).

Hammond et al. (1987) addressed these de® ciencies in three ways. First, instead

of evaluating the NHSTs associated with ANOVA, they instead tested the prediction

that the results from the nine experimental conditions should occur in a particular

order predicted by the theory motivating their research. Note that this is a much

stronger prediction. Instead of just hypothesizing that the eŒect was diŒerent from
zero, Hammond et al. were committing to one speci® c ordering of their experimental

conditions. Also, because there was a total of nine conditions in their experiment,

there are many possible orderings that could conceivably occur …9! ˆ 362 880†. Only

one of these orderings is perfectly consistent with the prediction they were making.

Secondly, instead of testing this ordinal prediction at the level of a group aggregate,
they tested it individually for each of the 21 participants. That is, Hammond et al.

(1987) predicted t̀he exact order of appearance of a speci® c type of cognitive activity

for each engineer separately, over a set of nine conditions, each of which included a

sample of 40 highways. Thus, there were in eŒect 21 individual experiments, each of

which tested the . . . theory’ (p. 769). Because of the level of speci® city involved, the
risk of being wrong is again greater than with ANOVA, thereby resulting in a

stronger set of predictions. Thirdly, to test the predicted ordering on a partici-

pant-by-participan t basis, Hammond et al. relied on correlational analysis and À
2
-

based order table analysis. The technical details can be found in Hammond et al.’s

article, but the basic rationale is similar to that for the Vicente (1992) study described

in the previous section. Non-parametric tests were used to determine how often the
predicted order of results was observed at the level of individuals rather than at the

aggregate level of the group.

The study conducted by Hammond et al. (1987) provides a role model to show

how the maturity of ergonomics science can be enhanced by using alternative sta-

tistical analysis techniques to test stronger predictions than those that are usually
assessed using ANOVA alone.

2.3. Constructs and methods for measurement should be distinguished conceptually
and empirically

Even if we were able to make and evaluate stronger predictions, the level of science is

only as good as the empirical methods used. Of particular importance is the relation-

ship between the constructs that are used to make predictions and the methods of

measurement that are used to evaluate those predictions. This linkage is one of the
key epistemological foundations supporting any kind of scienti® c activity, including

ergonomics science (cf. Xiao and Vicente 2000). As Campbell and Fiske (1959)

pointed out in their seminal article over 40 years ago, there are certain basic criteria

that must be met before a pattern of experimental results can be interpreted in a

meaningful fashion. Reliability refers to the extent to which similar results are
obtained when the same construct is assessed using the same method of measurement
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under comparable conditions. If results cannot be replicated, then there is a lack of

reliability. Convergent validity refers to the extent to which similar results are

obtained when the same construct is assessed using diŒerent methods of measure-
ment under otherwise comparable conditions. If diŒerent methods give diŒerent

results, then the pattern of ® ndings is contaminated, and, thus, di� cult to interpret.

Instead of observing the eŒects of the construct of interest, you are instead observing

the eŒects of the way in which the construct was measuredÐ a much less interesting

phenomenon, unless you are a methodologist. Finally, discriminant validity refers to

the extent to which distinct results are obtained when diŒerent constructs are
assessed using the same measurement method under comparable conditions. If dif-

ferent constructs lead to similar results, then the pattern of ® ndings is again con-

taminated, and, thus, di� cult to interpret. Instead of observing diŒerential eŒects

across the various constructs of interest, you are instead observing similar eŒects

caused by the method of measurement.
A few hypothetical ergonomics science examples can help make these abstract

concepts more concrete. If an empirical investigation of the interaction between

spatial ability and mental workload for a particular work context were being per-

formed, how could the three criteria identi® ed by Campbell and Fiske (1959) be

operationalized? Beginning with the issue of reliability, whatever method used to

measure each construct should lead to consistent results under comparable con-
ditions. For example, the test for spatial ability should have a high test± retest corre-

lation. Otherwise, we cannot have much con® dence in our knowledge of one of the

key constructs in the experiment. Moving on to convergent validity, diŒerent

methods of measuring the same construct should lead to consistent results under

comparable conditions. For example, if there were two diŒerent methods for meas-
uring mental workload (e.g. a computer-based version and a paper-based version of

the same subjective rating scale), it would be ideal if those methods were to give the

same results for the same participant for a particular trial. If the two methods give

diŒerent results, then the variance in the data is being caused by the method of

measurement. In such a case, con® dent inferences cannot be made about the item

of interest, namely the construct of mental workload. As for the third criterion of

discriminant validity, the same measurement methods should lead to distinct results
for diŒerent constructs of interest. For example, a computer-based test of spatial

ability should be more strongly correlated with a paper-based test of spatial ability

than with a computer-based assessment of mental workload. If this criterion is not

met, then there is too high a correlation between tests that are intended to measure
diŒerent constructs. Once more, such a result would provide a very shaky foundation

for scienti® c knowledge.

In each of these three cases, the key objective is to determine whether the results

observed can be safely attributed to the content of the constructs of interest rather

than the form of the methods that are used to measure those constructs. Campbell

and Fiske (1959) refer to the latter as `methods variance’ . To make sure that methods

variance is not contaminating the results, a way is needed to evaluate reliability,
convergent validity, and discriminant validity empirically. To achieve this goal

requires that any one experiment has at least two constructs and at least two

methods of measurement. Using these insights, Campbell and Fiske proposed an

analysis technique that can allow experimenters to determine if they are measuring

the construct in which they are interested, rather than something entirely diŒerent.
This technique, called the Multitrait-Multimethod Matrix (MTMM), was originally
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developed for the speci® c case of investigating individual diŒerences (thus, the

emphasis on traits). More recently, the technique was extended by Hammond et

al. (1986) so that it can be applied to a much wider range of behavioral phenomena.
Campbell and Fiske (1959) used the MTMM technique to review the literature

on individual diŒerences. Their analysis painted `a rather sorry picture’ (p. 93) of the

validity of the measures that had been used in that literature. Most of the results that

had been generated were more likely to have been determined by the methods used

for measurement than by the traits that had been hypothesized to account for the

results. The MTMM technique provides a way of identifying such situations.
However, as Hammond et al. (1986) pointed out, the technique is rarely used in

experimental psychology. The same is true of ergonomics science; although some

researchers have investigated convergent validity using other techniques, studies of

all three threats to validity using the MTMM technique are exceedingly rare.

Researchers tend to analyse their data using other more familiar techniques, such
as ANOVA. However, those techniques do not provide an analytical means for

evaluating reliability, convergent validity, and discriminant validity, as does

MTMM. As a result, researchers cannot know if their results are being caused by

methods variance. Hammond et al. make a very strong case that this situation makes

it exceedingly di� cult to develop a cumulative scienti® c knowledge base. Instead, the

result is con¯ icting ® ndings because researchers have not determined empirically that
the preconditions for sound scienti® c knowledge have been satis® ed in their experi-

ments. The MTMM technique and its extensions provide a systematic means of

remedying this situation.

Lee’s (1992, Lee and Moray 1994) investigation of the relationship between

operator trust, self con® dence, and the use of automation is the only application
of MTMM in the ergonomics science literature of which we are aware. As such, it

can be used to illustrate the value of conceptually and empirically distinguishing

between constructs and methods of measurement. In Lee’s study, there were two

constructs of interest, the operators’ trust in the automation’s ability to control a

process and the operators’ self con® dence in their own ability to control a process.

There were also two methods of measurement, ratings on a subjective scale and the

frequency of operators’ monitoring behaviour. The matrix shown in table 1 can be
built from this experimental design. Note that Lee did not present the same con-

ditions more than once, so it is not possible to assess the reliability values along the

diagonal of table 1.

Nevertheless, it is possible to use MTMM to assess discriminant and convergent
validity. Convergent validity is exhibited if diŒerent methods lead to similar results

for the same construct under comparable conditions. There are two cells in table 1

that are relevant to assessing this criterion. The ® rst is the cell in the second row and

® rst column of table 1. One should expect to see a high correlation value in this cell

(indicated by a `4’ ) because trust measured by monitoring behaviour should lead to

results that are comparable to those obtained by measuring trust with a subjective

scale. The second relevant cell is in the fourth row and third column of table 1. One
should also expect to see a high correlation value in this cell because self con® dence

measured by monitoring behaviour should lead to results that are comparable to

those obtained by measuring self con® dence with a subjective scale.

Divergent validity is exhibited if the same or diŒerent methods lead to diŒerent

results for diŒerent constructs under comparable conditions. The remaining four
cells in the bottom left corner of table 1 are relevant to assessing this criterion.
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One should expect to see lower correlation values (indicated by a £) in these cells.

For example, ratings of self con® dence on a subjective scale and ratings of trust on a

subjective scale should be weakly correlated, if at all, because they are measuring

diŒerent constructs. If the data turn out to be strongly correlated, then one can infer

that methods variance is at play (i.e. that the results are determined more by the fact

that a subjective rating scale is being used as a method of measurement than by the

constructs that are of real interest).

Table 2 shows the results that Lee (1992) obtained using the MTMM technique.

A cursory examination shows that the criteria of discriminant and convergent valid-

ity were not consistently met in this study. For example, the highest correlation in

table 2, 0.42, is that between two diŒerent constructs (trust and self con® dence) when

they were measured with a common method (subjective scales). One would expect to

see a low correlation here because diŒerent constructs should lead to diŒerent results.
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Table 1. A multitrait-multimethod matrix relating trust and
self con® dence measured by subjective scales and frequency
of monitoring behaviour for Lee’s (1992, Lee and Moray
1994) study.

Trust Self-con® dence

SS MB SS MB

Trust SS
MB 4

Self-con® dence SS £ £
MB £ £ 4

4: a high correlation is expected in that cell (i.e. convergent
validity).

£: a very low correlation is expected in that cell (i.e. divergent
validity).

SS: subjective scales.
MB: monitoring behaviour.

Table 2. A multitrait-multimethod matrix relating trust and self con-
® dence measured by subjective scales and frequency of monitoring
behaviour (Lee 1992, Lee and Moray 1994). The values are the
means of z-transformed correlation coe� cients of individual opera-
tors. Abbreviations are as in table 1.

Trust Self-con® dence

SS MB SS MB

Trust SS
MB 0.15 (4)

Self-con® dence SS 0.42 (£) 0.04 (£)
MB 70.07 (£) 70.08 (£) 0.04 (v)

4: a high correlation was expected in that cell (a sign of convergent
validity).

£: a very low correlation was expected in that cell (a sign of divergent
validity).



The fact that there is a comparatively large correlation suggests that methods vari-

ance is contaminating the results. As another example, there is a very low correla-

tion, 0.04, between the two methods of measuring self con® dence. One would expect
to see a high correlation here because diŒerent methods for measuring the same

construct should lead to the same results. The fact that there is a very low correlation

suggests that methods variance is again contaminating the results.

This example provides a concrete illustration of how the MTMM technique can

be used to evaluate discriminant and convergent validity in ergonomics science.
Unless these criteria are satis® ed, the results obtained from any study cannot lead

to sound scienti® c knowledge. If the results obtained by Lee (1992, Lee and Moray

1994) and those reviewed by Campbell and Fiske (1959) and Hammond et al. (1986)

are any indication, then the ergonomics science literature is likely to be full of results

that are caused by methods variance rather than by the substantive, theoretical issues

that motivated the research. The MTMM technique provides a means of identifying,
and, thus, beginning to remove, such obstacles to scienti® c progress.

2.4. Statistical signiWcance and practical signiWcance should be distinguished

conceptually and empirically

It is a truism in ergonomics science and practice that statistical signi® cance is not the

same as practical signi® cance (Chapanis 1967). This truism has a sound basis in

statistics (although, as will be discussed shortly, it is frequently ignored). For ex-

ample, the NHSTs that are usually associated with ANOVA are measures of statis-
tical signi® cance, or, more precisely, the probability that the data could have arisen,

given that the null hypothesis is true. This type of test does not tell us much that is

likely to be very useful in determining the practical signi® cance of a ® nding. To

assess the latter, information is needed about magnitude, and it is useful to distin-

guish between two types: (a) measures of association strength; and (b) measures of
eŒect size (Snyder and Lawson 1993). Using measures of magnitude and some cri-

terion from the domain of interest regarding what magnitude is important for

applied purposes, it is possible to assess the practical signi® cance of a result. Such

pragmatic information is of great importance to an intrinsically applied discipline,

like ergonomics science. Nevertheless, it is much more common to see tests of sta-
tistical signi® cance than tests of strength of association or eŒect size reported in the

literature. In this subsection, the value added provided by data analysis techniques

that provide magnitude information will be discussed.

Because of the central role that they play in multiple linear regression, measures

of association strength are probably more familiar to readers, so will be discussed ® rst

(see Snyder and Lawson 1993 for more details). The most common statistic (and the
simplest to calculate) is the proportion of the total variance explained by a particular

eŒect, usually referred to in ANOVA as eta-squared. Despite the fact that eta-

squared is easy to calculate from the information in an ANOVA table (it is simply

a ratio of sums of squares), it is rare to see such information reported. Moreover,

because the emphasis has been on signi® cance tests, ergonomics scientists sometimes
only report the result of the F-test and do not provide the information from the

ANOVA table that could be used by other researchers to calculate the strength of

association. This practice is unfortunate because an F- or p-value does not provide

any information about the magnitude of an eŒect. In contrast, eta-squared provides

an estimate of how strong the association is between the independent variable(s) of
interest and the dependent variable chosen. When combined with criteria from a
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particular domain of interest, this statistic can help in making inferences about

practical signi® cance.

For example, if one is interested in the ergonomics science problem of worker
selection, it is known from the individual diŒerences literature that it is unusual for a

particular selection test to account for say 20% of the variance in the data. Thus, if

an eta-squared value is obtained that is greater than this benchmark value, then it is

known that the result is practically signi® cant (i.e. it may be used to develop a better

basis for worker selection). Note that the result may or may not be statistically
signi® cant. If the sample size is small, it is possible to have a comparatively large

eta-squared value (e.g. a selection test accounting for more than 20% of the vari-

ance) and results that are not statistically signi® cant. Such a result could, never-

theless, be considered practically signi® cant. Conversely, if the sample size is large, it

is possible to obtain statistically signi® cant results and yet have a comparatively very

low eta-squared value (e.g. a selection test accounting for only 1% of the variance).
Such a result would be of little practical value (i.e. it could not be used to develop a

useful basis for worker selection). The bottom line is that measures of association

strength, like eta-squared, provide a more complementary set of insights into the

results than do the statistical signi® cance tests that are typically reported with

ANOVA.
There are various types of statistics that can be used to obtain information about

association strength. For example, omega squared is an estimate of the population

strength of association. It can be computed from knowledge of the F-statistic,

number of treatment levels (p), and sample size (n) as follows:

!
2 ˆ …p ¡ 1†…F ¡ 1†

…p ¡ 1†…F ¡ 1† ‡ np
:

Some sample statistics of association, like eta-squared, are biased estimates, meaning
that they tend to overestimate systematically the proportion of variance explained.

To be conservative, it is more appropriate to use unbiased estimates of strength of

association that compensate for this tendency to overestimate. Snyder and Lawson

(1993) describe several such statistics, and readers are referred there to obtain more

details. But, regardless of the particular measure used, the fundamental point
remains the sameÐ measures of association strength provide information that com-

plements that provided by statistical signi® cance tests, and the former information is

of greater interest in determining practical signi® cance.

A similar argument holds for the second type of magnitude information. EVect

size (Cohen 1988, 1990, 1994, Rosnow and Rosenthal 1989, Abelson 1995, Rouanet

1996) is a measure of the magnitude of an eŒect, and, thus, can also be used along
with domain-speci ® c criteria to indicate the degree of practical importance of ergo-

nomics science results. Note that eŒect size and statistical signi® cance provide com-

plementary information: ìt is very important to realize that the eŒect size tells us

something very diŒerent from the p-level. A result that is statistically signi® cant is

not necessarily practically signi® cant as judged by the magnitude of the eŒect’
(Rosnow and Rosenthal 1989: 1279).

In an applied science like ergonomics, eŒect size plays a critical role. As Chow

(1996: 8) observed: `a signi® cant result may be a trivial one in practical terms.

Alternatively, an important real-life eŒect may be ignored simply because it does

not reach the arbitrary chosen level of statistical signi® cance’ . Despite this truism, an
informal survey of the ergonomics science literature (see below) reveals that statis-
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tical signi® cance is reported far more frequently than is eŒect size. Once again, it is

believed that this is indicative of an over-reliance on NHST and ANOVA. Neither of

these statistical techniques provides direct measures of eŒect size.
Because of the foundational importance of practical signi® cance to ergonomics

science, it is important that eŒect sizes are calculated in addition to assessing statis-

tical signi® cance. Several ways of calculating eŒect size have been proposed in the

literature. For example, Cohen (1988) has proposed the standardized mean diŒer-

ence statistic, d, as a generalizable measure of eŒect size. Based on the results that are

typically found in behavioural research, Cohen has suggested that d ˆ 0:2 is indica-
tive of a small eŒect, d ˆ 0:5 is indicative of a medium sized eŒect, and that d ˆ 0:8
is indicative of a large eŒect. These nominal values provide a starting point for

evaluating the practical signi® cance of research results.

Like the other points made earlier, the distinction between statistical signi® cance

and eŒect size is best conveyed by an example (adapted from Rosnow and Rosenthal
1989). Consider two hypothetical experiments, both conducted to evaluate the

impact of two types of training programmes, T1 and T2, on human performance.

In one experiment (with n ˆ 80), T1 is found to lead to signi® cantly better perform-

ance than T2…t…78† ˆ 2:21; p < 0:05†. In another experiment (with n ˆ 20), no sig-

ni® cant diŒerence between T1 and T2 is observed …t…18† ˆ 1:06; p > 0:30†. By relying

solely on these tests, we might be tempted to conclude that the second experiment
failed to replicate the results of the ® rst. Such a conclusion would cast doubt on the

practical impact of T1 on human performance.

Calculating eŒect size adds new information that can help put the results in a

more realistic light. In this hypothetical example, the magnitude of the eŒect is

actually the same for both experiments …d ˆ 0:50†, despite the fact that the p-
values for the two experiments diŒered considerably. How is this possible?

Because the second experiment had a smaller sample size, the power to reject the

null hypothesis at ¬ ˆ 0:05 was very low, only 0.18. In contrast, the ® rst experiment

had a much larger sample size, and, thus, its power was 0.6Ð over three times greater

than that in the second experiment. These results clearly show the diŒerence between

statistical signi® cance and eŒect size, and, thus, why it is important to calculate eŒect

size.

2.5. The null hypothesis is virtually never true

There is another reason for not relying solely on the results produced by NHST and
ANOVA. As odd as it may sound, there are very good reasons to argue that the null

hypothesis is almost never really true in behavioural research. This point has been

made by many noted researchers (e.g. Meehl 1967, 1978, 1990, 1997, Cohen 1990,

1994, Loftus 1991, 2001, Abelson 1995, Thompson 1996, Steiger and Fouladi 1997),

but its implications have not been taken as seriously as they should be in ergonomics

science.

Consider a typical ergonomics experiment comparing the eŒect of two treatments
(e.g. two interfaces, two training programmes, or two selection criteria) on human

performance. One group of participants is given Treatment X, whereas another is

given Treatment Y. The null hypothesis in such a study is that there is no diŒerence

whatsoever between the population means for the two treatment groups. Can we

really consider such a hypothesis seriously? For example, can we realistically expect
that the eŒects of two diŒerent interfaces are exactly the same to an in® nite number
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of decimal points? Meehl (1967) was perhaps the ® rst of many to point out that the

answers to questions such as this one are almost sure to be `no’:

Considering . . . that everything in the brain is connected with everything else, and that

there exist several `general state-variables’ (such as arousal, attention, anxiety and the like)

which are known to be at least slightly in¯ uenceable by practically any kind of stimulus

input, it is highly unlikely that any psychologically discriminable situation which we apply

to an experimental subject would exert literally zero eŒect on any aspect of performance

(p. 162).

One way to illustrate the implausible nature of the null hypothesis is to consider the

insight that is gained by using NHST with very large sample sizes. Meehl (1990)

describes a data set obtained by administering a questionnaire to 57 000 high school

seniors. These data were analysed in various ways using À
2

tables, with each analysis

looking at the interaction between various categorical factors. In each case, the null
hypothesis was that there was no interaction between the categories being compared.

A total of 105 analyses were conducted. Each analysis led to statistically signi® cant

results, and 96% of the analyses were signi® cant at p < 0:000 001. As Meehl

observed, some of the statistically signi® cant relationships are easy to explain theor-

etically, some are more di� cult, and others are completely ba‚ ing. To take another

example, with a sample size of 14 000, a correlation of 0.0278 is statistically signi® -
cant at p < 0:001 (Cohen 1990). Figures such as these show that the scienti® c knowl-

edge that is gained solely by refuting the null hypothesis is minimal, at best. The

same types of problems can occur in studies with low sample size as well (Chapanis

1967)

If the null hypothesis is almost always false, then the act of conducting a NHST
means something very diŒerent than what we usually thinks it means. Rather than

being a generator of scienti® c insight, the NHST instead becomes an indirect indi-

cator of statistical power. For example, if a data set does not yield results that are

signi® cant at p < 0:05, then the likely interpretation is not that the alternative

hypothesis is incorrect, but that the sample size of the experiment was too low to

obtain an acceptable level of power. After all, as the Meehl (1990) and Cohen (1990)

examples show, if one has the fortitude and resources to include enough participants
in experiments, then virtually any null hypothesis can be rejected. Thus, the value of

just conducting a NHST is minimal. As Cohen (1994: 1001) has pointed out, ìf all

we . . . learn from a research is that A is larger than B …p < 0:01†, we have not learned

very much. And this is typically all we learn’ .
Accepting the fact that the null hypothesis is virtually never true in behavioural

research, what are the implications for the statistical analysis of data? The short

answer is that it would be useful to have other data analysis techniques that oŒer

more insights than a NHST or ANOVA alone. Two related techniques have fre-

quently been suggested to ful® l this role, power analysis and con® dence intervals

(Cohen 1990, 1994, Loftus 1993b, 1995, 2001, Loftus and Masson 1994, Abelson

1995, Meehl 1997, Steiger and Fouladi 1997).
Rather than using the results of a NHST as a surrogate measure of statistical

power, researchers would be better oŒif they calculated power directly before an

experiment is conducted to obtain a proper sample size. The resulting measure

provides an explicit indication of the sensitivity of an experiment to detect an

eŒect of interest. In addition to its preferred a priori role in determining the
sample size for a planned experiment, the calculation of power is also valuable in
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a post hoc role where the failure to reject the null hypothesis is used as evidence to

falsify a particular theory. In these situations, it is essential that statistical power be

calculated. After all, the failure to reject the null hypothesis could simply be caused
by the fact that too small a sample size was used to detect the eŒect of interest.

Therefore, to keep ergonomics scientists from `falsifying’ theories simply by not

including enough participants in their experiment, it would be useful to present

calculations of power. Doing so would provide additional information over that

obtained just by conducting a NHST or ANOVA.

Con® dence intervals provide another data analysis technique that can be used to
obtain greater insight into experimental results. Whereas the results of a NHST

merely show the probability that the data could have arisen given that the null

hypothesis were true, con® dence intervals directly provide information about the

range of values within which population parameters are likely to be found. As

such, they have several advantages over NHST. First, con® dence intervals provide
a graphical representation of results rather than an alphanumeric representation (see

the example, below). This format makes it easier for researchers to extract informa-

tion from their data analysis. Secondly, the width of a con® dence interval provides

an indication of the precision of measurement. Wide con® dence intervals indicate

imprecise knowledge, whereas narrow con® dence intervals indicate precise knowl-

edge. This information is not provided by the p-value given by a NHST. Thirdly, the
relative position of two or more con® dence intervals can provide qualitative infor-

mation about the relationships across a set of group means. If two con® dence

intervals do not overlap, then the means are signi® cantly diŒerent from each other

statistically, otherwise they are not. Whilst this information can be gained from a

standard NHST, con® dence intervals add information about the order of means
across groups, information that cannot be found in, for instance, an ANOVA

table. Finally, con® dence intervals also allow us to assess the statistical signi® cance

of individual eŒects. If a con® dence interval on a group mean includes zero, then the

treatment did not have a signi® cant eŒect. (To achieve a similarity between NHST

and con® dence intervals, the type I error rate for the NHST should be equal to 1Ð

the con® dence coe� cient.) Therefore, the plotting of con® dence intervals provides

researchers with more insights into their data than could be obtained by NHST or
ANOVA alone.

The informativeness of con® dence intervals can be illustrated with a simple ex-

ample borrowed from Steiger and Fouladi (1997). Figure 3 shows data from three

hypothetical experiments, each consisting of two conditions. Thus, each con® dence
interval in the ® gure is for the diŒerence between a pair of means. Each experiment

was performed in the same domain and using measures with approximately the same

amount of variability. Note that the con® dence intervals from experiments 1 and 3

do not include zero. In these two cases, a NHST would indicate that the diŒerence in

means is signi® cantly diŒerent from zero, leading to a decision to reject the null

hypothesis. In experiment 2, the con® dence interval includes zero. Thus, in this case,

a NHST would indicate that the diŒerence in means is not signi® cantly diŒerent
from zero. Thus, the con® dence intervals in ® gure 3 provide all the information that

can be obtained directly from a NHST, the diŒerence being that that information is

presented graphically.

However, additional information not directly available from a NHST can also be

obtained from con® dence intervals. For example, based on the results presented
above, the NHST might lead us to believe that the results from experiment 2 do
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not agree with those from the other two experiments. The con® dence intervals

provide a graphical basis for reaching a diŒerent interpretation. Experiment 1 had

a very large sample size and a very high level of precision, resulting in a very narrow

con® dence interval band. However, precision should not be confused with magni-

tude. Figure 3 clearly shows that the eŒect size in experiment 1 is comparatively very

small. The only reason why the null hypothesis was rejected was because the meas-

urement precision was so great. Thus, the results from experiment 1 are precise but

small in magnitude.

In contrast, experiment 2 has a very wide con® dence interval band that indicates

poor measurement precision. However, it could very well be that the magnitude of

the diŒerence in means in experiment 2 is larger than that in experiment 1, but that

the power was just inadequate to detect that eŒect. Thus, the results from experiment

2 are imprecise, and, thus, it is not known with any certainty if they are large or small

in magnitude.

Finally, experiment 3 also has a relatively wide con® dence interval band indicat-

ing poor measurement precision. Nevertheless, this con® dence interval does not

overlap with that from experiment 1, indicating that the magnitude of the diŒerence

in means in experiment 3 is greater than that in experiment 1. Thus, the results from

experiment 3 are comparatively imprecise but larger in magnitude.

The important point to take away from this hypothetical example is that con-

® dence intervals provide much more information than do NHSTs alone.

Furthermore, that information is provided in a graphical format, thereby making

it easier for ergonomics scientists and practitioners to pick up meaningful patterns

perceptually (e.g. width of bands, overlap across bands, inclusion of the zero point).

In this hypothetical example, the added information leads to a very diŒerent in-

terpretation than may have been obtained by reliance on NHST alone.

In summary, power analysis and con® dence intervals are rarely-used, but very

valuable, statistical analysis techniques. Together, they allow us to gain richer

insights into data, and thereby allow us to go beyond merely rejecting the null
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hypothesis. Note that con® dence intervals can be calculated for eŒect sizes and

measure of strength of association as well, thereby combining the respective advan-

tages of each of these techniques into one statistical procedure (Fowler 1985,
Rosnow and Rosenthal 1989, Cohen 1990, 1994). In this way, information would

be obtained about the precision of knowledge of eŒect size or strength of association,

information that is surely to be of practical value in ergonomics science and practice

(see previous subsection).

2.6. One experiment is always inconclusive

This ® nal point cuts across the comparative advantages and disadvantages of any

particular set of statistical analysis techniques. No matter how carefully it is
designed, no matter how sophisticated the equipment, no matter how clever the

researcher, and no matter what statistical analysis techniques are used, any one

experiment alone can never provide de® nitive results. The origin of this limitation

is a logical one. Empirical research relies on inductive inference, and as any philo-

sopher or logician knows, induction provides no guarantees.
The same conclusion can be obtained empirically from the history of science. To

take but one example, several times experimental results were obtained that suppo-

sedly falsi® ed Einstein’s special theory of relativity (Holton 1988). Each time, sub-

sequent research revealed that it was the experiments and not the theory that were at

fault. The important point, however, is that this conclusion was not apparent at the

time that the results were generated. For example, 10 years passed before researchers
identi® ed the inadequacies of the equipment used in one of the experiments that had

supposedly falsi® ed special relativity. By implication, when an anomalous result is

® rst obtained, only additional research can determine how best to interpret the

result. In Einstein’ s words: `whether there is an unsuspected systematic error or

whether the foundations of relativity theory do not correspond with the facts one
will be able to decide with certainty only if a great variety of observational material is

at hand’ (cited in Holton 1988: 253). In short, despite widespread belief to the

contrary, there is no such thing as a `critical experiment’ because empirical knowl-

edge is inductive and, thus, quite fragile when viewed in isolation (Chapanis 1967).

Like the other points that are reviewed above, this insight is far from new, but it too
has not been given the attention that it deserves.

As several authors have pointed out (e.g. Dar 1987, Rosnow and Rosenthal 1989,

Cohen 1990, Thompson 1996, Rossi 1997, Schmidt and Hunter 1997), the way in

which NHST and ANOVA are used in practice tends to cause researchers to over-

look this epistemological limitation. In the extreme, the attitude is: ìf a statistical test

is signi® cant at p < 0:05, then the research hypothesis is true, otherwise it is not’ .
If valid, such an inferential structure would make life easier for researchers.

Unfortunately, what NHST really evaluates is the probability that the data could

have arisen given that the null hypothesis were true, not the probability that the null

hypothesis is true given the data that were obtained (Cohen 1994). Although both of

these quantities are conditional probabilities, they are logically very diŒerent from
each other. NHST only allows us to make inferences of the ® rst kind. Therefore, as

surprising as it may sound, s̀igni® cance tests cannot separate real ® ndings from

chance ® ndings in research studies’ (Schmidt and Hunter 1997: 39), a statistical

fact that should really give us considerable pause.

Researchers frequently ignore the fact that there is no objective, mechanical
procedure for making a dichotomous decision to evaluate the validity of research
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® ndings (e.g. Chow 1996, 1998). This attitude can unwittingly have a devastating

eŒect on a body of literature. A case study described by Rossi (1997) provides an

incisive, if somewhat depressing, example. He reviewed the literature on a psycho-
logical phenomenon known as s̀pontaneous recovery of verbal associations’ . During

the most intensive period of experimental investigation (1948± 1969), about 40 arti-

cles were published on this topic. However, only about half of these studies led to a

statistically signi® cant eŒect of spontaneous recovery. Consequently, most textbooks

and literature reviews concluded that the data were equivocal, and, thus, that the

empirical evidence for spontaneous recovery was unconvincing. Eventually, the col-
lective wisdom became that spontaneous recovery was an ephemeral phenomenon,

and, as a result, research in the area was essentially abandoned.

Rossi (1997) conducted a retrospective analysis of the collective ® ndings in this

body of literature. Data from 47 experiments with an aggregate of 4926 participants

were included in the analysis. Only 43% of these studies reported statistically sig-
ni® cant results at p < 0:05. This low percentage of signi® cant results led researchers

to doubt the existence of the spontaneous recovery eŒect. However, when the experi-

ments were analysed as a whole, there was statistically signi® cant evidence in support

of the spontaneous recovery eŒect …p < 0:001†. Rossi also conducted an eŒect size

analysis and a power analysis across these studies. The results indicate that the

average eŒect size was relatively small …d ˆ 0:39† and that the average power was
quite low (0.38). Together, these ® ndings explain why the signi® cant eŒects were in

the minority. Because researchers were dealing with a small eŒect and their studies

had low power, many experiments failed to detect a statistically signi® cant eŒect.

Together, these facts add up to a fascinating illustration of how naive attitudes

about both statistical tests and the value of replication can have a deep impact on a
body of literature. As Rossi (1997) pointed out, researchers did not report any eŒect

sizes, so they did not know that they were dealing with a small eŒect. Similarly, no

study reported power, so researchers were not aware that their experiments had low

power. With this veil of ignorance as background, researchers (incorrectly) inter-

preted the results from each experiment using a dichotomous decision criterion: if

p < 0:05, then the result is valid, otherwise it is not. However, as Rosnow and

Rosenthal (1989: 1277) have observed, `dichotomous signi® cance testing has no
ontological basis . . . surely, God loves the 0.06 nearly as much as the 0.05’ (see

also Cowles and Davis 1982). Because of the combination of small eŒect and low

power, 57% of the experiments did not generate results that passed the naõ È ve (and

indefensible) dichotomous decision criterion. This, combined with a lack of appre-
ciation for the importance of replication across studies, led researchers to abandon

what turned out to be a legitimate, albeit small, psychological eŒect.

What can be concluded from the spontaneous recovery case study? First, the case

shows, once again, the value of calculating eŒect size and power so that researchers

can better interpret their results. Secondly, the case also illustrates how misleading

and unproductive it is to use the p < 0:05 criterion (or any other dichotomous

decision rule) as the gatekeeper of scienti® cally acceptable knowledge. As Rossi
(1997: 183) pointed out, `the inconsistency among spontaneous recovery studies

may have been due to the emphasis reviewers and researchers placed on the level

of signi® cance attained by individual studies . . . A cumulative science will be di� cult

to achieve if only some studies are counted as providing evidence’ . Thirdly, and

relatedly, the spontaneous recovery case study also brings home the importance of
replication across multiple studies. It is the pattern of results across studies that is
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most important for building scienti® c knowledge. In the words of Abelson (1995:

77), `Research conclusions arise not from single studies alone, but from cumulative

replication’ . Even if no single result reaches statistical signi® cance at the p < 0:05
value, the entire pattern of results can still be statistically signi® cant when viewed as

a whole. The converse point is equally valid: `A successful piece of research doesn’t

conclusively settle an issue, it just makes some theoretical proposition to some degree

more likely. Only successful future replication in the same and diŒerent settings . . .
provides an approach to settling the issue’ (Cohen 1990: 1311).

How many cases like the one reviewed by Rossi (1997) are there in the ergo-

nomics science literature? It is very di� cult to answer this question. Nevertheless,

there is one thing of which we can be sure: Making decisions on a dichotomous basis

using NHST alone will only make it more likely for such problems to plague the

ergonomics science literature. It is for this reason that an increasing number of noted

researchers have felt the need to point to the importance of replication to building
sound, cumulative knowledge (e.g. Rosnow and Rosenthal 1989, Meehl 1997,

Schmidt and Hunter 1997). This lesson is perhaps the most important one of all

amongst the ones that have been reviewed.

3. Is all of this obvious?

Seasoned ergonomics scientists might object that the six points in the previous sec-

tion are obvious, and, thus, that this review does not make a signi® cant contribution

to the literature. If this is indeed the case, then one would expect that the vast
majority of the empirical articles published in Human Factors, the ¯ agship journal

of the discipline in the US, would exhibit an awareness of most of these points. To

test this hypothesis empirically, an informal review was conducted of all of the

articles published in volume 40 of Human Factors.

3.1. Method

For each of the empirical articles in that volume, the number that reported: (a) an

individual participant analysis of any kind (corresponding to point 1 in the literature

review); (b) an analysis of a particular order of means, an interval magnitude, or a

point prediction (point 2); (c) an MTMM analysis (point 3); (d) an analysis of
association strength or eŒect size (point 4); and (e) power or con® dence intervals

(point 5) were counted. This procedure is not fool-proof (e.g. MTMM is not the only

way to assess reliability, convergent validity, and discriminant validity), but it pro-

vides a more than adequate basis for an informal survey.

3.2. Results
Figure 4 illustrates the number of articles that used various data analysis methods in

the sample. A number of patterns clearly stand out. First, ANOVA is, by far, the

most frequently used method of data analysis. It was used in 33 of the articles that

were surveyed, twice as frequently as the next most popular method of data analysis.

Secondly, only one study reported an individual analysis of each participant’s behav-
iour as opposed to relying just on group means, thereby showing that point 1 in this

review is rarely recognized in practice. Thirdly, only a handful of articles used non-

parametric tests, and, even in these rare cases, the tests were not used to make more

stringent predictions, thereby showing that point 2 is not widely put into practice.

Fourthly, no article reported a MTMM analysis, thereby suggesting that point 3 in
this literature review is not put into practice. Fifthly, no article reported an analysis
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of eŒect size or association strength, thereby suggesting that point 4 is also not put

into practice. Finally, only one article presented a graph of con® dence intervals and

no article presented a power analysis, thereby showing that point 5 is also rarely put
into practice.

3.3. Discussion

Perhaps seasoned ergonomics scientists are indeed aware of all of the points in this

review, but, if so, then this informal survey convincingly shows that there is a dis-
crepancy between what is acknowledged to be true and the way in which we behave

(the authors include themselves in this lot). The recommendations made in this

article have very rarely found their way into ergonomics science. Even with all of

the important limitations that are associated with it, ANOVA remains far and away

the de facto standard for data analysis in ergonomics science.

4. Conclusions

The purpose of this literature review is not to point a ® nger at ergonomics scientists
who have relied solely on NHST or ANOVA to analyse data. The authors are just as

guilty of uncritically using traditional methods of data analysis as anyone else. After

all, these are the techniques that have been taught, are well known by journal editors

and reviewers, and are supported by software packages. Thus, there are numerous

pressures that cause many to continue to use the traditional methods. Nevertheless,
one of the main points of this article is that, by following these pressures, ergonomics
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scientists areÐ perhaps in many cases unknowinglyÐ incurring a substantial scienti-

® c cost:

When passing null hypothesis tests becomes the criterion for successful predictions, as well

as for journal publications, there is no pressure on the . . . researcher to build a solid,

accurate theory; all he or she is required to do, it seems, is produce `statistically signi® cant’

results (Dar 1987: 149).

The data analysis methods advocated here can lead to a more mature science of

ergonomics, but they require one to follow a path of greater eŒort. For example,

some of the methods reviewed require that experiments are designed diŒerently. If we

are going to conduct individual level analyses like Hammond et al. (1987) did, then

we need to rely more on within-participants designs. If we are going to use the

MTMM advocated by Campbell and Fiske (1959), we need to include multiple

constructs and multiple methods in a single experiment. If we are going to be able

to make point or interval predictions, we need to develop stronger theories to guide

experimentation. If we are going to develop a more cumulative knowledge base, we

need to engage in more replication than done in the past. Thus, a change in data

analysis techniques is not a cosmetic modi® cation to be taken lightly. Instead, it

requires some deep changes in the ways in which ergonomics science is conducted.

Because of the enormity of this task, most ergonomists typically ® nd it easier to

stick to that with which they are most comfortable. Meehl (1990) describes a typical

reaction to the critiques of NHST and ANOVA that he has made over the years:

Well, that Meehl is a clever fellow and he likes to philosophize, ® ne for him, it’s a free

country. But since we are doing all right with the good old tried and true methods of

Fisherian statistics and null hypothesis testing, and since journal editors do not seem to

have panicked over such thoughts, I will stick to the accepted practices of my trade union

and leave Meehl’s worries to the statisticians and philosophers (p. 230).

In short, to eŒect a change in the way ergonomics scientists and practitioners ana-

lysze their research data will not be easy.

In this article, a step has been taken toward facilitating positive change by: (a)

describing the limitations of traditional methods of analysis, especially ANOVA; (b)

explaining why those limitations are relevant to ergonomics science and practice; (c)

describing other methods of data analysis that address some of those limitations; and

(d) citing many references that readers can consult to obtain the mechanical details

on how to perform these less-familiar analyses (see Bailar and Mosteller (1988) and

Wilkinson et al. (1999) for additional guidance and explanations). It is the authors’

hope that ergonomics scientists and practitioners will consider using some of these

techniques the next time that they conduct empirical research. Although the eŒort

required will admittedly be higher than usual, through such incremental eŒorts we

can progress toward more sound and cumulative scienti® c knowledge.

5. Postscript

`Much of what we have said has been said before, but it is important that our

graduate students hear it all again so that the next generation of . . . scientists is

aware of the existence of these pitfalls and of the ways around them’ (Rosnow and

Rosenthal 1989: 1282)
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