CS 544 Experimental Design

What is experimental design?
What is an experimental hypothesis?
How do I plan an experiment?
Why are statistics used?
What are the important statistical methods?

Acknowledgement: Some of the material in this lecture is based on material prepared for similar courses by Saul Greenberg (University of Calgary)

Quantitative methods

- 1. User performance data collection
 - data is collected on system use
 - frequency of request for on-line
 what did people ask for help with?
 - frequency of use of different parts of the system
 - number of errors and where they occurred
 why does an error occur repeatedly?

why are parts of system unused

- time it takes to complete some operation
 what tasks take longer than expected?
- collect heaps of data in the hope that something interesting shows up
- often difficult to sift through data unless specific aspects are targeted (as in list above)

3

descriptive

statistics

Quantitative ways to evaluate systems

- Quantitative:
 - precise measurement, numerical values
 - bounds on how correct our statements are
- Methods
 - Controlled Experiments
 - Statistical Analysis
- Measures
 - Objective: user performance (speed & accuracy)
 - Subjective: user satisfaction

2

Quantitative methods ...

2. Controlled experiments

The traditional scientific method

- reductionist
 - clear convincing result on specific issues
- In HCI:
 - $\bullet\,$ insights into cognitive process, human performance limitations, ...
 - allows comparison of systems, fine-tuning of details ...

Strives for

- lucid and testable hypothesis (usually a causal inference)
- quantitative measurement
- measure of confidence in results obtained (inferencial statistics)
- replicability of experiment
- control of variables and conditions
- removal of experimenter bias

The experimental method

- a) Begin with a lucid, testable hypothesis
 - Example 1:
 - H₀: there is no difference in the number of cavities in children and teenagers using crest and no-teeth toothpaste
 - H₁: children and teenagers using crest toothpaste have fewer cavities than those who use no-teeth toothpaste

5

6

The experimental method

b) Explicitly state the independent variables that are to be altered

Independent variables

- the things you control (independent of how a subject behaves)
- two different kinds:
 - 1. treatment manipulated (can establish cause/effect, true experiment)
 - 2. subject individual differences (can never fully establish cause/effect)

in toothpaste experiment

- toothpaste type: uses Crest or No-teeth toothpaste
- <= 12 years *or* > 12 years

in menu experiment

- menu type: pop-up or pull-downmenu length: 3, 6, 9, 12, 15
- expertise: expert or novice

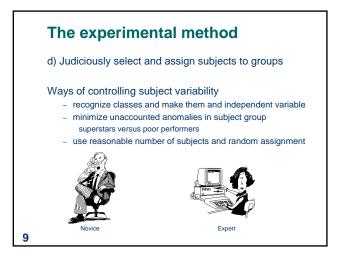
The experimental method

- a) Begin with a lucid, testable hypothesis
 - Example 2:
 - H₀: there is no difference in user performance (time and error rate) when selecting a single item from a pop-up or a pull down menu, regardless of the subject's previous expertise in using a mouse or using the different menu types

The experimental method

c) Carefully choose the dependent variables that will be measured

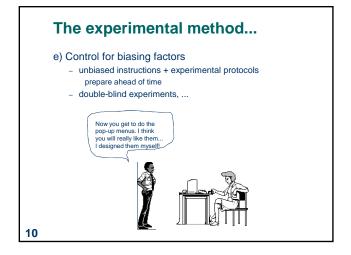
Dependent variables

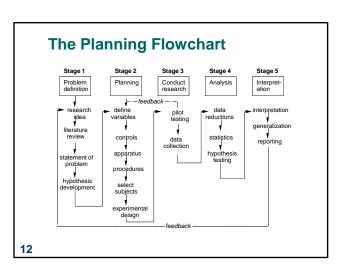

- variables dependent on the subject's behaviour / reaction to the independent variable

in toothpaste experiment

- number of cavities
- frequency of brushing

in menu experiment

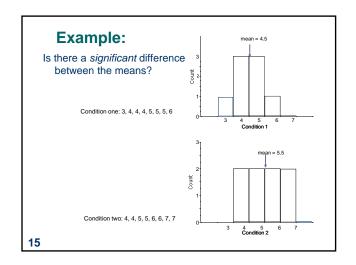

- time to select an item
- selection errors made



The experimental method f) Apply statistical methods to data analysis - Confidence level: the confidence that your conclusion is correct • "The hypothesis that mouse experience makes no difference is rejected at the .05 level" (i.e., null hypothesis rejected) • means: - a 95% chance that your finding is correct - a 5% chance you are wrong (α = .05)

what you believe the results mean, and their implications
 yes, there can be a subjective component to quantitative

g) Interpret your results



Statistical Analysis

- What is a statistic?
 - a number that describes a sample
 - sample is a subset (hopefully representative) of the population we are interested in understanding
- · Statistics are calculations that tell us
 - mathematical attributes about our data sets (sample)
 - mean, amount of variance, ...
 - how data sets relate to each other
 - whether we are "sampling" from the same or different populations
 - the probability that our claims are correct
 - "statistical significance"

13

Example: Differences between means

- Given: two data sets measuring a condition
 - eg height difference of males and females, time to select an item from different menu styles
- Question:

14

- is the difference between the means of the data statistically significant?
- Null hypothesis:
 - there is no difference between the two means
 - statistical analysis can only reject the hypothesis at a certain level of confidence
 - we never actually prove the hypothesis true

16

The problem with visual inspection of data

- There is almost always variation in the collected data
- Differences between data sets may be due to:
 - normal variation
 - eg two sets of ten tosses with different but fair dice
 - differences between data and means are accountable by expected variation
 - real differences between data
 - eg two sets of ten tosses with loaded dice and fair dice
 - differences between data and means are not accountable by expected variation

T-test

A statistical test

Allows one to say something about differences between means at a certain confidence level

Null hypothesis of the T-test:

• no difference exists between the means

Possible results:

- I am 95% sure that null hypothesis is rejected
 - there is probably a true difference between the means
- I cannot reject the null hypothesis
 - the means are likely the same

17

T-tests

- Assumptions of t-tests
 - data points of each sample are normally distributed
 - but t-test very robust in practice
 - sample variances are equal
 - t-test reasonably robust for differing variances
 - deserves consideration
 - individual observations of data points in sample are independent
 - must be adhered to
- Significance level
 - decide upon the level before you do the test!
 - typically stated at the .05 or .01 level

19

Different types of T-tests

Comparing two sets of independent observations

usually different subjects in each group (number may differ as well) Condition 1 Condition 2 S1-S20 S21-43

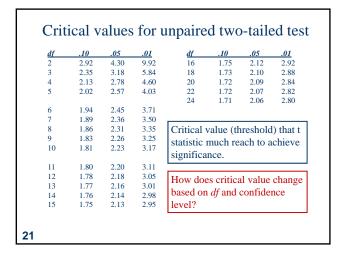
Paired observations

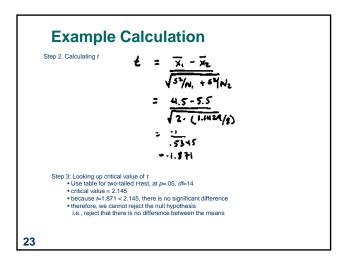
S1-S20

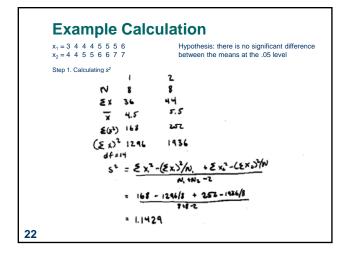
- usually single group studied under separate experimental conditions
- data points of one subject are treated as a pair Condition 1 Condition 2 S1-S20

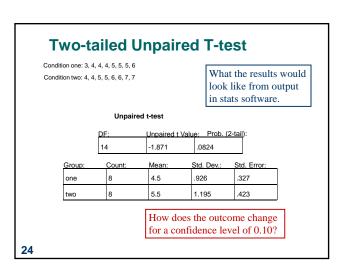
Non-directional vs directional alternatives

- non-directional (two-tailed)
 - no expectation that the direction of difference matters
- directional (one-tailed)
 - Only interested if the mean of a given condition is greater than the other


18


Two-tailed unpaired T-test


- n: number of data points in the one sample $(N = n_1 + n_2)$
- $\Sigma \text{X:}$ sum of all data points in one sample
- X: mean of data points in sample
- $\Sigma(X^2)$: sum of squares of data points in sample
- s2: unbiased estimate of population variation
- t: t ratio
- df = degrees of freedom = $n_1 + n_2 2$


How to maximize t?

$$s^{2} = \frac{\sum (X_{1}^{2}) - \frac{(\sum_{x_{1}})^{2}}{n_{1}} + \sum (X_{2}^{2}) - \frac{(\sum_{x_{2}})^{2}}{n_{2}}}{n_{1} + n_{2} - 2} \qquad t = \frac{\overline{X_{1}} - \overline{X_{2}}}{\sqrt{\sum_{x_{1}} + \sum_{x_{2}}^{2}}}$$

Choice of significance levels and two types of errors

- Type I error: reject the null hypothesis when it is, in fact, true (α = .05)
- $\bullet~$ Type II error: accept the null hypothesis when it is, in fact, false (β)

	H ₀ True	H ₀ False	
Reject H ₀	α (Type I error)	1 - β (Power)	
Not Reject H ₀	1 - α	β (Type II error)	

- Effects of levels of significance
 - very high confidence level (eg .0001) gives greater chance of Type II errors
 - very low confidence level (eg .1) gives greater chance of Type I errors
 - tradeoff: choice often depends on effects of result

25

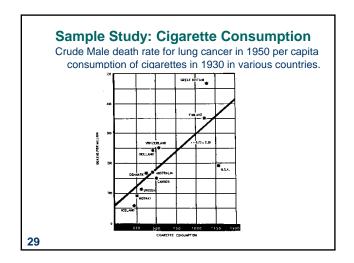
Choice of significance levels and two types of errors

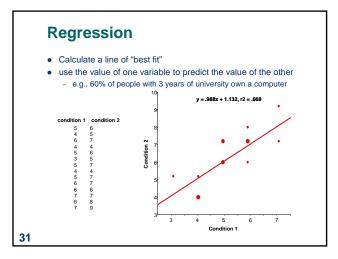
- Type I: (reject H₀, believe there is a difference, when there isn't)
 - extra work developing software and having people learn a new idiom for no benefit
- Type II: (accept H₀, believe there is no difference, when there is)
 - use a less efficient (but already familiar) menu
- Case 1: Redesigning a traditional GUI interface
 - a Type II error is preferable to a Type I error , Why?
- Case 2: Designing a digital mapping application where experts perform extremely frequent menu selections
 - a Type I error is preferable to a Type II error, Why?

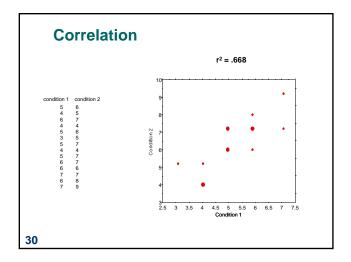
27

Choice of significance levels and two types of errors

 $\rm H_{\rm 0}$ There is no difference between Pie menus and traditional pop-up menus




- Type I: (reject H₀, believe there is a difference, when there isn't)
 extra work developing software and having people learn a new idiom for no benefit
- Type II: (accept H₀, believe there is no difference, when there is)
 use a less efficient (but already familiar) menu


26

Other Tests: Correlation

- Measures the extent to which two concepts are related
 - eg years of university training vs computer ownership per capita
- How?
 - obtain the two sets of measurements
 - calculate correlation coefficient
 - +1: positively correlated0: no correlation (no relation)
 - 0: no correlation (no relation
 -1: negatively correlated
- Dangers
 - attributing causality
 - a correlation does not imply cause and effect
 - cause may be due to a third "hidden" variable related to both other variables.
 - eg (above example) age, affluence
 - drawing strong conclusion from small numbers
 - unreliable with small groups
 - be wary of accepting anything more than the direction of correlation unless you have at least 40 subjects

Anova terminology

- Between subjects
 - a subject is assigned to only one factor level of treatment
 - problem: greater variability, requires more subjects
 Keyboard

	Keyboard		
Qwerty	Dvorak	Alphabetic	
\$1-20	S21-40	S41-60	

- Within subjects

33

- subjects assigned to all factor levels of a treatment
- requires fewer subjects
- less variability as subject measures are paired
- problem: order effects (eg learning)
- partially solved by counter-balanced ordering

,			
Dvorak	Alphabetic		
S1-20	S1-20		

F Statistic

$$F = BG = treatment + id + m.error = ?$$
 $WG = id + m.error$

- = 1, if there are no treatment effects
- > 1, if there are treatment effects

Within-subjects design: the id component in numerator and denominator factored out, therefore a more powerful design

35

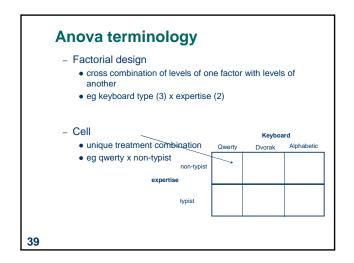
F statistic

- Within group variability (WG)
 - individual differences
 - measurement error

	rtcyboard			
) _	Qwerty	Alphabetic		
	5, 9, 7, 6, 	3, 9, 11, 2, 3, 10	3, 5, 5, 4, 2, 5	

- Between group variability (BG)
 - treatment effects
 - individual differences
 - measurement error
- Qwerty Dvorak Alphabetic

 5, 9, 3, 9, 11, 2, 5, 4, ...
 3, 7 3, 10 2, 5
- These two variabilities combine to give total variability
- We are mostly interested in between group variability because we are trying to understand the effect of the treatment


34

F statistic

- Similar to the t-test, we look up the F value in a table, for a given α and degrees of freedom to determine significance
- Thus, F statistic sensitive to sample size.
 - Big N → Big Power → Easier to find significance
 - Small N→ Small Power → Difficult to find significance
- What we (should) want to know is the effect size
 - Does the treatment make a big difference (i.e., large effect)?
 - Or does it only make a small difference (i.e., small effect)?
 - Depending on what we are doing, small effects may be important findings

Statistical significance vs Practical significance

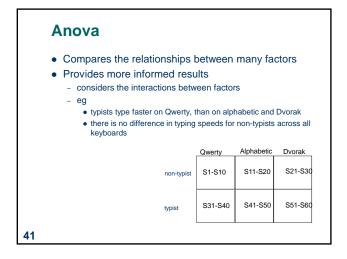
- when N is large, even a trivial difference (small effect) may be large enough to produce a statistically significant result
 - eg menu choice:
 mean selection time of menu A is 3 seconds;
 menu B is 3.05 seconds
- Statistical significance does not imply that the difference is important!
 - a matter of interpretation, i.e., subjective opinion
 - should always report means to help others make their opinion
- There are measures for effect size, regrettably they are not widely used in HCI research

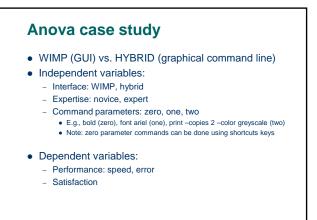
Single Factor Analysis of Variance

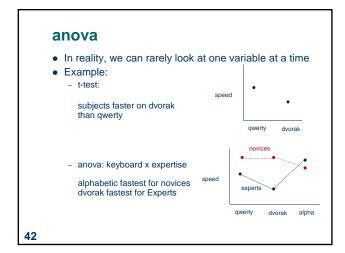
- Compare means between two or more factor levels within a single factor
- example:
 - dependent variable: typing speed
 - independent variable (factor): keyboard
 - between subject design

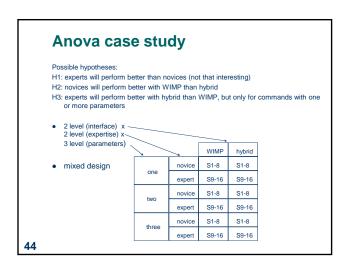
Qwerty	Alphabetic	Dvorak	
S1: 25 secs	S21: 40 secs	S51: 17 secs	
S2: 29	S22: 55	S52: 45	
S20: 33	S40: 33	S60: 23	

38

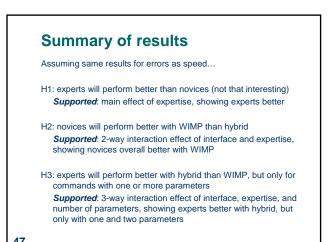

37

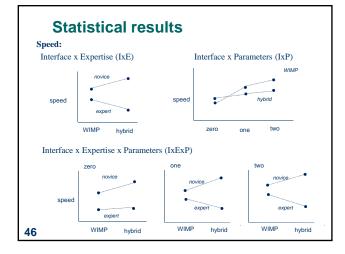

Anova terminology


- Mixed factor
 - contains both between and within subject combinations


		Qwerty	Dvorak	Alphabetic
expertise	non-typist	S1-20	\$1-20	S1-20
	typist	S21-40	S21-40	S21-40

Keyboard





Statistical results Speed F-ratio. Interface (I) 0.45.5* Expertise (E) < 0.05 main effects Parameters (P) 31.0** < 0.01 IxE 15.2* < 0.05 IxP 8.0* < 0.05 interactions ExP 5.0 <0.05 IxExP 14.1* 45

Conclusions

- Expertise makes a big difference
- WIMP interaction should be kept for novices
- Hybrid technique should be available for experts

You know now

- Controlled experiments can provide clear convincing result on specific issues
- Creating testable hypotheses are critical to good experimental design
- Experimental design requires a great deal of planning
- Statistics inform us about
 - mathematical attributes about our data sets
 - how data sets relate to each other
 - the probability that our claims are correct

49

For more information...

...I strongly recommend that you take EPSE 592: Design and Analysis in Educational Research (Educational Psychology and Special Education)

51

You now know

- There are many statistical methods that can be applied to different experimental designs
 - T-tests
 - Correlation and regression
 - Single factor Anova
 - Factorial Anova
- Anova terminology
 - factors, levels, cells
 - factorial design
 - between, within, mixed designs