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Abstract

When modelling uncertain beliefs with graphical models we are often presented
with “natural” distributions that are hard to specify. An example is a distribu-
tion of which instructor is teaching a course when we know that someone must
teach it. Such distributions over a set of nodes can be easily described if we con-
dition on a child of these nodes as part of the specification. This conditioning is
not an observation of a variable in the real world but by fixing the value of the
node, existing inference algorithms perform the calculations needed to achieve
the desired distribution automatically. Unfortunately, although it achieves this
goal it has side effects that we claim are undesirable. These side effects create
dependencies between other variables in the model. This can lead to different
beliefs throughout the model, including the constrained variables, than would
otherwise be expected if the constraint is meant to be local in its effect. We de-
scribe the use of conditioning for these types of distributions and illuminate the
problem of side effects, which have received little attention in the literature. We
then present a method that still allows specification of these distributions easily
using conditioning but counterbalancing side effects by adding other nodes to
the network.
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Chapter 1

Introduction

The essence of knowledge is, having it, to apply it;
not having it, to confess your ignorance.

∼ Confucius

In directed graphical models conditioning of nodes to particular values usually
corresponds to an observation of the value of some variable in the real world.
There is another use of conditioning, however, that is often applied but seldom
discussed in the literature. That is, to specify joint distributions or constraints
across the parents of the conditioned node. This method is a straightforward
way to specify constraints as many computations are handled automatically by
the existing inference algorithms for graphical models. This thesis discusses the
properties of conditioning including the possibly undesired creation of dependen-
cies in the network not implied by the original constraints called conditioning
side effects. We present a method to counteract side effects efficiently while
maintaining the effectiveness and expressive simplicity of conditioning.

The nature of this topic is intimately tied to the language and rules of
graphical models and Bayesian probability. As such, it is difficult to delve deeply
into a definition until the appropriate background material has been covered,
this will be done in chapter 2. For now, we begin with a simple, intuitive
example to provide an idea of the topic and some general motivation for why it
is important.

Example 1 Consider a model of three university instructors, Alice, Bob and
Cindy, and an Artificial Intelligence (AI) course. The model has the following
components:

1. An instructor’s interest in the topic of AI: The binary variable IX repre-
sents whether or not instructor X is interested in the topic of AI.

2. Whether an instructor wants to teach the AI course: This is modelled by
the binary variable WX for instructor X. The belief that X wants to teach
the course is dependant upon their interest in the topic, IX .

3. A constraint on teaching : At least one instructor must teach the course.

4. Whether an instructor will teach the course: This is modelled by the binary
variable TX for instructor X. Our belief that X will teach the course is
dependent upon whether the instructor actually wants to teach it, WX , and
whether someone else is already teaching the course.
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5. Research productivity of instructors : This is modelled by the binary vari-
able RX for instructor X. If RX is true it means that instructor X will
complete their research goals for this semester. Our belief in the value of
RX is dependent upon whether or not they end up teaching the AI course,
TX , which will reduce the time they can spend on research.

The frame of reference for this work is the knowledge engineering task of the
person who must model a distribution such as the one above. The distributions
we are in interested have the following two distinct components across some
subset of the variables:

undirected component : This is a constraint on the values of the set of vari-
ables, or any type of undirected, joint distribution over them. In example
1 this type of distribution is specified in point 3 as a simple “or” of the
states of the variables TA,TB and TC . This is a simultaneous constraint.
It is fundamentally not a directed relationship, the teaching status of each
instructor affects all of the others.

directed component : Each constrained variable also has a directed com-
ponent which specifies its distribution when the constraint is satisfied by
some other variable. The directed component of the model of these vari-
ables is expressed in the example by points 4.

The goal is to combine these two components to produce a coherent model.
We show in chapter 3 that there are ways to combine the two by forcing a
directionality onto the undirected component. We argue that conditioning is a
much more natural method that is very likely to be used by knowledge engineers.
This method takes advantage of existing properties of graphical models to easily
specify these distributions. It involves creating an artificial variable, fixed to one
value to induce the constraint onto the variables. We show how this technique
can be used in directed graphical models, such as Bayesian networks. We also
highlight a problem with this technique which is not discussed in the literature.

If the constrained variables are conditionally dependent on other variables in
the model then conditioning creates new dependencies between all of the influ-
encing variables. These dependencies are not necessarily implied by the desired
distribution and are called side effects of conditioning. In example 1 the use of
conditioning to combine points 3 and 4 creates dependencies amongst the IX
and WX variables. This could allow us to reduce our belief that Bob is inter-
ested in AI if we find out that Cindy is interested in AI. But the distribution
for example 1 does not support this inference. Cindy and Bob’s interests are
unconditionally independent from each other. Only the teaching variables are
constrained. It is perfectly possible that they are all interested in AI or that
they all find it quite dull. The new dependencies tell us however that condi-
tioning induces a belief that their is a kind of total level of interest in AI. If
some instructors are less interested then it must be that others are more inter-
ested, since one of them must teach the course. This is not supported by the
desired distribution for example 1. The probabilities for teaching are already
conditioned on the fact that the constraint is satisfied by someone else.
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The contribution of this thesis is to illuminate this subtle problem and pro-
vide a solution for it. We show that a conditioned node used in this way is
fundamentally different from a normal node with evidence entered that corre-
sponds to the observation of some variable. It turns out that in the types of
distributions we’ve described it is often the case that the constraint is meant to
remain local in its effect. In chapter 3 we will define the method of conditioning
used to induce these constraints or undirected distributions. The notion of side
effects of conditioning is explored fully in chapter 4. In chapter 5 we define how
side effects can be counteracted through a process called shielding. A technique
for implementing this shielding without unnecessary cost to the complexity of
inference is presented in the form of cloned anti-networks in chapter 6. This is
followed by a chapter containing implementation details and results on several
example networks.



4

Chapter 2

Background

We now provide a brief overview of notation used in this work and probabilis-
tic graphical models. If you are already familiar with graphical models you
may want to only skim this chapter. For others it hopefully provides a good
introduction to the area.

2.1 Variables, Nodes and Sets

We begin with the building blocks of all graphical models, random variables.
These are represented as circular nodes in a graph. Each variable, X , in the
graph has a domain of possible values it can take on, dom(X)

Random variables, or nodes in a network, are presented in capitalized italics
whereas sets of nodes are in boldface, as in Ci ∈ C. Specific values of nodes are
shown in lowercase italics, such as ci to mean C = ci. When the domain of a
variable is Boolean we simply use the lowercase name for true and false as in ci
and lnotci to mean C = true and C = false respectively.

For a set of nodes X = {X1, . . . , Xn} we define the domain of the set to be

dom(X) = X1 ×X2 × · · · ×Xn (2.1)

For a set of nodes in a graphical model this means that each x ∈ dom(X) is
a unique assignment of values to all the nodes in X.

2.2 Bayesian Networks

A Bayesian Network (Bayes net, belief network) [16] is a directed, acyclic graph
with a node for each random variable. The network defines a probability distri-
bution over the set of random variables, X = {X1, . . . , Xn}. The set of parents
of a node Xi, denoted pa(Xi), are all the variables on which Xi is conditionally
dependent. This is indicated in the graph by directed arcs going from each
element of pa(Xi) into Xi, see figure 2.3. We refer to the ancestors of a node,
anc(Xi) as the transitive closure of pa(Xi), thus any node reachable from Xi

going upwards only in the graph. The descendants of Xi are defined similarly,
desc(Xi) is all the nodes reached by following links downwards in the graph.

Each node Xi has an associated conditional probability distribution (CPD)
over Xi and its parents defining p(Xi|pa(Xi)). The structure of the graph
encodes a statement of independence that a node is independent of all its non-
descendants given the values of its parents. This CPD can be represented by a
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A B C

(a)
A

B

C

(b)

A

B

C

(c)

Figure 2.1: Structures that allow effects to pass through

table which has a number of entries that is exponential in the number of parents
of the node. If a node has no parents then a prior distribution is specified as
p(Xi) and we define that p(Xi|pa(Xi)) = p(Xi).

The joint probability distribution of the entire network is then given by the
chain rule

P (X) =
∏

Xi∈X

p(Xi|pa(Xi)). (2.2)

2.2.1 Inference in Bayesian Networks

The task of inference is to compute the marginal probability of a node, p(Xi|e),
given the distribution modelled by the network and any evidence, e, which may
have been observed. When the state of a variable, Xi, is observed this is entered
as evidence in the Bayes net by fixing the value of Xi to the one observed and
shading the node in the graph. The updated marginal probability of a node is
then given in general by

p(Xi) =
∑

X−Xi

p(X1, . . . , Xn). (2.3)

How the effect of evidence propagates throughout the Bayes net is very
important for the discussions that follow. It can be described graphically with
a simple set of rules called the Bayes Ball algorithm [19].

We can think of the probabilistic influence as propagating outwards in all
directions along the edges connected to each node. Figures 2.1 and 2.2 show the
three basic structures from which all Bayes nets can be built and the effect of
evidence as it propagates through the network. Case 2.1(c), called a v-structure,
is particularly important for the topic of this work. It shows that the parents
of conditioned node become interdependent. This feature is what allows us to
use conditioning to induce joint distributions. In conjunction with cases 2.1(a),
2.1(b) and 2.2(c) the computed beliefs of nodes throughout the network can be
affected. If two nodes are blocked from affecting each other according to these
rules then the nodes are said to be d-separated [16].

There are many algorithms used to carry out inference in Bayes nets, for
good overviews see [13][4][22]. We describe two of them here that are pertinent
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A B C

(a)
A

B

C

(b)

A

B

C

(c)

Figure 2.2: Structures that do not allow effects to pass through.

to our discussion.

2.2.2 Variable Elimination

Variable elimination [23][5] is a method of performing inference which is used in
this work. The method essentially comes down to recognizing that the posterior
distribution of a query node, G, can be computed by using the joint probability
of the entire network and summing out all nodes other than the query node.

Given a query node G, a set of observations entered as evidence into nodes
e and m remaining nodes Y = X − {G} − e we have:

p(G|e) =
p(G, e)

p(e)

=
p(G, e)

∑

G p(G, e)
(2.4)

where (2.5)

p(G, e) =
∑

Y1,...,Ym

p(G, e, Y1, . . . , Ym) (2.6)

In a given Bayes net, then, inference can proceed by summing out, or elim-
inating, all unobserved, non-query variables. The algorithm by Zhang & Poole
[23] uses factors to store the intermediate sums in this process. The order of
elimination that is chosen can have a significant impact on the complexity of
the algorithm though it does not affect the correctness of the final answer.

Example 2 In the network shown in figure 2.3, the elimination order used is
A E F C D. The computation of the marginal probability of query node G given
evidence b is shown in (2.7).

The factors produced at each step are subscripted with the nodes that have
been eliminated to produce them and have the remaining free variables in brack-
ets. So for example, once the node A is eliminated it produces the factor fA(C).
The factors are represented as tables just as the CPDs for nodes but factors
have no conditional meaning. Factors can be multiplied together with CPDs
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A B

C D

E F G

Figure 2.3: An example Bayesian network with node B conditioned to true.

or other factors to produce new factors in the same way that CPD tables are
multiplied, element by element given the elimination ordering. The algorithm
proceeds accoring to the following equation:

p(G, b) =
∑

A,C,D,E,F

p(A, b, C,D,E, F,G)

=
∑

A,C,D,E,F

p(G|D)p(D|b)p(F |C,D)p(E|C)p(C|A, b)p(A)p(b)

=
∑

D

p(G|D)p(D|b)
∑

C

∑

F

p(F |C,D)
∑

E

p(E|C)
∑

A

p(C|A, b)p(A)p(b)

=
∑

D

p(G|D)p(D|b)
∑

C

∑

F

p(F |C,D)
∑

E

p(E|C)fA(C)

=
∑

D

p(G|D)
∑

C

∑

F

p(F |C,D)fAE(C) (2.7)

=
∑

D

p(G|D)
∑

C

fAEF (C,D)

=
∑

D

p(G|D)fACEF (D)

= fACDEF (G)

We appeal to the intuition of this algorithm throughout our work and to the con-
cept of factors. For efficient implementations we are interested in the following
algorithm.
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2.2.3 Junction Tree Algorithm

The junction tree algorithm [11][9] performs essentially the same calculations
as the variable elimination approach but avoids duplicated computations over
multiple queries through the use of a tree structure for caching. The tree is
constructed based on the structure of the Bayes net by a method called trian-
gulation which has two steps. The first step involves creating undirected arcs
between all nodes with common children in the BN. This is known as moraliza-
tion since all the parents in the network are being forced to “marry”. In the
second step, additional arcs are added to the graph until there are no remaining
cycles with more than three nodes without arcs crossing between nodes in the
cycle. The resulting graph, with the directionality of any arcs removed, is called
fully triangulated or chordal.

This graph is then used to construct a tree by finding all of the maximal
cliques in the graph and creating a node in the tree labelled with the nodes in
that clique. A clique is a set of nodes such that each node in the set is connected
to every other node in the set. A clique is maximal if it is not a subset of any
other clique in the graph. The clique-nodes in the tree are furthermore connected
in such a way so as to satisfy the junction tree property. This is simply that if
any two clique-nodes in the tree contain some variable X , then X must also be
present in all clique-nodes on the connecting path between them.

The algorithm passes messages between clique-nodes that represent the
marginal distributions of the variables those cliques have in common. This is
continued until all neighbouring cliques agree on their marginal distributions,
generally in two passes through the tree. At this point all of the marginal
distributions of the nodes in the network are cached in the clique-nodes of the
junction tree, ready to be queried efficiently. This algorithm is widely used in
many implementations of Bayesian networks because of its speed and efficiency
in many practical cases. The complexity of the algorithm, however, is still
exponential in the size of the largest clique in the network. Thus, minimizing
the size of the largest clique is very important, an issue we return to for our
solution in section 5.2.2.

2.3 Related Work

The work presented here clearly builds on the prodigious literature of graphical
models as a whole and deals with a fundamental feature of them, conditioning on
evidence. Very little in that literature, however, refers to the two fundamental
concepts of this work, using conditioning to specify a distribution and side effects
that arise from such conditioning.

There is also a strong relationship between the expression of joint distribu-
tions using conditioning and undirected distributions such as those in Markov
Random Fields [16]. Work has been done by Buntine on chain graphs [3] at-
tempting to merge directed and undirected models. The use of conditioning has
similar possible applications for using both modelling paradigms. This work fo-
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cusses on a fully directed representation whereas Buntine’s always grounds back
to undirected models. Our work also relies fully on existing inference algorithms
for directed graphical models rather than devising a new one. Yedidia et al. [22]
present the MRF-BN relationship using factor graphs which has similarities to
the affect of conditioned nodes in a network. They do not discuss, however, the
use of conditioning as a modelling tool as we do.

The literature on constraint satisfaction, see [12], is also somewhat related as
c-nodes can be used as constraints. Their application goes beyond constraints
however to the creation of any undirected joint distributions.
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Chapter 3

Using Conditioning to

Induce Distributions

We begin with a simplified version of example 1 without the IX or WX variables
in order to focus on the use of conditioning without the concern of side effects.
We describe three different ways to model the types of distributions discussed
in the introduction using Bayesian networks. In these models we have a prior,
conditional distribution for some nodes that applies when a constraint is satisfied
or not present. We must distinguish these priors, which are provided to the
modeler, from the distributions actually entered into the Bayesian network in
order to achieve the correct, constrained distribution. We use Pr(X) to denote
the prior distribution of node X and p(X) to refer to the CPD used within the
Bayes net to model the combined distribution for X .

Example 3 Consider a model of three university instructors, Alice, Bob and
Cindy, and an Artificial Intelligence (AI) course. The model has the following
components:

1. A constraint on teaching : At least one instructor must teach the course.

2. Whether an instructor will teach the course: This is modelled by the binary
variable TX for instructor X. Our belief that X will also be teaching
the course once the constraint has been satisfied by another instructor is
specified as a prior distribution, Pr(TX), the same for each instructor:

Pr(tX) Pr(¬tX)
.1 .9

3. Research productivity of instructors : This is modelled by the binary vari-
able RX for instructor X. If RX is true it means that instructor X will
complete their research goals for this semester. Our belief in the value of
RX is dependent upon whether or not they end up teaching the AI course,
TX , which will reduce the time they can spend on research. This belief
is represented by the distribution Pr(RX |TX), and is the same for each
instructor:

TX Pr(rX |TX) Pr(¬rX |TX)
true .5 .5
false .8 .2



Chapter 3. Using Conditioning to Induce Distributions 11

TA TB TC

RA RB RC

Figure 3.1: A Bayesian network with a directed clique to model example 3.

The constraint in this example has the effect of making the TX nodes com-
pletely interdependent. We would expect that since at least one of the TX
variables is true that all other things being equal they should each have at least
a 1

3 chance of teaching the course plus there additional likelihood of being the
second or third instructor on the course. If we observe that, for example, Alice
is not teaching the course, then the responsibility for satisfying the constraint
is spread between Bob and Cindy giving them each a probability of at least
1
2 . Our beliefs in the research productivity of each instructor is influenced by
these changes as well. So our model specifies that Alice not teaching the course
reduces our belief that Bob or Cindy will be productive since it is more likely
they will be busy teaching.

3.1 Method 1 : Directed Clique

Since the nodes TA, TB, TC are interdependent we can think of modelling them
with a fully connected clique of nodes, allowing each node to have information
about all the other constrained nodes. Directed models are acyclic so we need
to force a direction onto the constraint by specifying an arbitrary ordering and
computing the appropriate CPD for each constrained node based on the states
of all “previous” nodes. For the order (TA, TB, TC), the final node, TC , has all
the other constrained nodes as its parents, as shown in figure 3.1.

To compute the CPDs for this network it helps to consider that we are
constraining the joint distribution of the three nodes so we can view the model
as the Bayesian network shown in figure 3.2 with one node for the marginal
probability of the teaching variables. The marginal of the prior distributions
are shown in table 3.1(a)

Now we need to apply the constraint to this < TA, TB, TC > node. The “or”
constraint in example 3 makes the case where all three variables are false in
table 3.1(a) infeasible, so we replace it with probability zero. We renormalize
this to yield p(TA, TB, TC) shown in table 3.1(b).

We can now compute the CPDs to for the directed clique structure in the
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RA RB RC

TA, TB, TC

Figure 3.2: Bayes net for example 3 modelling the joint distribution of nodes
TA, TB and TC .

TA TB TC Pr(TA, TB, TC)
t t t .1 × .1 × .1 = .001
t t f .1 × .1 × .9 = .009
t f t .1 × .9 × .1 = .009
t f f .1 × .9 × .9 = .081
f t t .9 × .1 × .1 = .009
f t f .9 × .1 × .9 = .081
f f t .9 × .9 × .1 = .081
f f f .9 × .9× .9 = .729

(a) Computed marginal of the prior distri-
butions, Pr(TA, TB , TC). This is before the
constraint is applied. The case (f, f, f) is
inconsistent with the “or” constraint.

TA TB TC p(TA, TB, TC)
t t t .0037
t t f .0332
t f t .0332
t f f .2989
f t t .0332
f t f .2989
f f t .2989
f f f 0.0

(b) Posterior distribution p(TA, TB, TC) of
the teaching nodes after the constraint is
applied.

Table 3.1: Marginal probabilities for teaching variables prior and posterior to
the application of the constraint

Bayes net shown in figure 3.1 by marginalizing out the appropriate variables as
follows and then normalizing:

p(TA) ∝
∑

TB ,TC

p(TA, TB, TC) (3.1a)

p(TB|TA) ∝
∑

TC

p(TA, TB, TC) (3.1b)

p(TC |TA, TB) ∝ p(TA, TB, TC) (3.1c)

Remember that this needs to be done just to specify a distribution consistent
with example 3, we are actually performing inference on portions of the network
during specification. The complete conditional probability tables are shown in
figure 3.3. After performing inference the computed beliefs are as shown in
figure 3.4 as displayed in the Bayesian network software package Netica [7]. All
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Figure 3.3: Conditional probability tables for directed clique.
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Figure 3.4: Beliefs after inference for directed clique shown in Netica. Proba-
bilities expressed as percentages.

probabilities are expressed as percentages in Netica.

3.2 Method 2 : Chain of Sufficient Statistics

Notice in the clique method that we create ever larger tables as we move along
the clique ordering. The final node will always have all other nodes in the clique
as its parents. The second method is very similar to a clique but reduces the
number of arcs needed by taking advantage of the fact that we do not need all
the information, only the sufficient statistics of previous nodes. In the case of
example 3 this can be expressed by binary nodes, S1 and S2. They need only
indicate whether or not any previous TX nodes satisfy the constraint as shown
in figure 3.5.
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TA TB TC

RA RB RC

S1 S2

Figure 3.5: A Bayesian network using a chain of sufficient statistics to model
example 3.

The TX nodes are computed as follows:

p(TA) ∝
∑

TB ,TC

p(TA, TB, TC) (3.2a)

p(TB|S1) ∝
∑

TC

p(S1, TB, TC) (3.2b)

p(TC |S2) ∝ p(S2, TC) (3.2c)

The sufficient statistics represent the distributions of all previous nodes in each
computation.

The node S2 summarizes the TA and TB nodes so that TC only needs one
input. In example 3 the resulting complexity is the same as using the clique
method. However, with a larger network having more T nodes this structure
only increases linearly in table size, whereas the clique method increases expo-
nentially. Consider a network with six TX nodes. The clique method would
leave the final node in the clique with five parents and 26 entries. In the chain
representation, however, each successive Si node would suffice to summarize
the only pertinent information, which is if any of the previous TX nodes is true.
Each TX node would only have one parent and 22 entries in its table.

The computed tables using the chain method for example 3 are shown in
figure 3.6. After performing inference the posterior beliefs are as shown in
figure 3.7. Note that the posterior beliefs are identical to those using the clique
method in 3.4.

3.3 Method 3 : Conditioning

Each of the previous methods correctly result in the distribution required by
example 3 but specifying them requires carrying out inference on a portion of the
network using the marginal distribution of all constrained nodes. The resulting
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Figure 3.6: Conditional probability tables for chain method.
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TA TB TC

RA RB RC

C

Figure 3.8: A Bayesian network using a conditioned node C to model example
3.

graph forces a direction on to an undirected constraint by allowing the influence
to flow from each TX node towards TC so that they can become interdependent.

Conditioning provides a much simpler way to specify this distribution. A
node, C, is added to the network to represent the constraint and is conditioned
to be true, see figure 3.8. This entered evidence does not correspond, however,
to an observation in the real world. The new node, known as a conditioned
node or c-node, is true by definition and is part of the original specification
of the joint distribution of the network. Figure 3.9 shows the CPDs for this
network. These are the prior distributions given in example 3. So, p(TB) in
the network is simply the Pr(TB) distribution given to us. There is no need for
calculations to come up with correct tables to enter into the Bayesian network
since the normal process of inference will perform the calculations of (3.1) and
(3.2) automatically. This induces the required distribution on the TX nodes
as shown in figure 3.10 which behaves identically to the other two methods for
example 3.

Conditioning is compelling for several reasons :

simultaneous constraint : The entire constraint is captured in one table. No
artificial ordering of the variables needs to be created by the modeler.
Note also that for a constraint such as “or”, this conditioned node could
be modelled by a more compact function instead of a table [1].

separation of priors and constraints : The two components of the distri-
bution, directed and undirected, can be specified separately. These cor-
respond to the prior distributions tables and the constraints in example
3. The inference mechanism deals with combining them automatically. If
the modeler is given a distribution divided in this way then conditioning
is completely straightforward to use.

natural modelling : Conditioning is a method that comes naturally out of the
use of directed graphical models. Modelers know that entering evidence
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Figure 3.9: Conditional probability tables for Bayes net with conditioning.
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into a network has an effect on the parents of the conditioned node, they
see it whenever an observation is made. It is natural to try to use this to
more easily specify distributions that do not translate well into a directed
language. No computations are needed by the modeler to specify the
distribution.
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Chapter 4

Side Effects of Conditioning

Now we return the ancestor variables modelling interest in AI and desire to teach
from example 1 to demonstrate the problem of side effects of conditioning.

When the constrained nodes have ancestors, the use of conditioning to spec-
ify distributions creates side effects in the network. We demonstrate this using
example 4.

Example 4 Consider a model of three university instructors, Alice, Bob and
Cindy, and an Artificial Intelligence (AI) course. The model has the following
components:

1. An instructor’s interest in the topic of AI: The binary variable IX rep-
resents whether or not instructor X is interested in the topic of AI. Our
belief that X is interested in teaching the course is specified as a prior
distribution, Pr(IX ) given by:

X Pr(iX) Pr(¬iX)
Alice .3 .7
Bob .7 .3

Cindy .6 .4

2. Whether an instructor wants to teach the AI course: This is modelled by
the binary variable WX for instructor X. The belief that X wants to teach
the course is dependant upon their interest in the topic, IX , represented
by Pr(WX |IX), and is the same for all three instructors:

IX Pr(wX |IX) Pr(¬wX |IX)
true .75 .25
false .1 .9

3. A constraint on teaching : At least one instructor must teach the course.

4. Whether an instructor will teach the course: This is modelled by the binary
variable TX for instructor X. Our belief that X will also be teaching the
course once the constraint has been satisfied is dependant upon their desire
to teach the course and is represented by, Pr(TX |WX):

WX Pr(tX |WX) Pr(¬tX |WX)
true .1 .9
false .01 .99
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IA IB IC

WA WB WC

TA TB TC

RA RCRC

Figure 4.1: Bayesian network modelling example 1 with a directed clique.

5. Research productivity of instructors : This is modelled by the binary vari-
able RX for instructor X. If RX is true it means that instructor X will
complete their research goals for this semester. Our belief in the value of
RX is dependent upon whether or not they end up teaching the AI course,
TX , which will reduce the time they can spend on research. This belief
is represented by the distribution Pr(RX |TX), and is the same for each
instructor:

TX Pr(rX |TX) Pr(¬rX |TX)
true .5 .5
false .8 .2

4.1 Modelling Ancestors with a Directed

Clique

With the ancestors of the constrained TX nodes added back in we can again
model the distribution using a directed clique of nodes, shown in figure 4.1.
Notice that eachWX node has a dependency connecting to its TX node as before
but there are three additional influences indicated as well. These influences,
shown with bold arrows, express the fact that the distribution of each WX node
is pertinent to our beliefs about each TX node.

To see this, consider p(WC), our belief in Cindy’s desire to teach the AI
course. If we have found by talking to Cindy that she does not want to teach
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AI, this should reduce our belief that Cindy will teach the course, since teaching
a course is influenced by the instructor’s interest in the topic. This allows us to
then infer that it is more likely that either Alice or Bob will teach the course
since someone must teach it. However, if we think back to the Bayes ball rules
described in section 2.2.1 we see that the nodes TB−TC−WC form a v-structure,
with no observation at the bottom node, TC . This means that effects from WC

will not propagate to TB. The same is true of the effect of WB on TA. But if we
are certain that Bob wants to teach the course then it is less likely that Alice
or Cindy will end up teaching it. The bold arcs added to the network in figure
4.1 compensate for this problem by allowing all the ancestor nodes to influence
all the constrained nodes.

The CPDs for the TX nodes now need to be computed for the network in
figure 4.1 to take the influence of these ancestors into account as we did in (3.1).
Since the values of the WX nodes now inform every combination of TX values
we determine a marginal distribution of the priors across all WX and TX nodes,
Pr(TA, TB, TC ,WA,WB ,WC). In this distribution we then enforce the con-
straint, assigning a probability of zero to each case where all TX nodes are false.
This gives us the posterior after the constraint p(TA, TB, TC ,WA,WB,WC).
With this we can compute the conditional probability distributions for each
TX node as follows:

p(TA|WA,WB) ∝
∑

TB ,TC ,WC

p(TA, TB, TC ,WA,WB,WC) (4.1a)

p(TB|TA,WB,WC) ∝
∑

TC ,WA

p(TA, TB, TC ,WA,WB,WC) (4.1b)

p(TC |TA, TB,WC) ∝
∑

WA,WB

p(TA, TB, TC ,WA,WB,WC) (4.1c)

(4.1d)

After normalizing we arrive at the distributions shown in figure 4.2 with the
resulting beliefs in each node after inference shown in figure 4.3.

The chain method has a very similar specification and results in the same
distribution, it is not shown here.

4.2 Modelling Ancestors with Conditioning

Figure 4.4 shows the model for example 4 using a conditioned node, C, that
is a child of all nodes that need to be constrained. Again, specification of the
CPDs for this network, shown in figure 4.5, is much more straightforward than
the clique method. Each node for the given variables is simply assigned a CPD
equal to the prior distributions provided in example 4. The CPD for C is one
that matches the constraint given.

The posterior beliefs after performing inference on all nodes are shown in fig-
ure 4.6. As discussed in the Introduction conditioning in this network produces
side effects which distort the resulting distribution. We can see the difference
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Figure 4.2: Conditional probability tables using the clique method to model example 4.
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Figure 4.4: Model using a conditioned node C for example 1
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Figure 4.6: Resulting beliefs after inference is performed. Side effects of condi-
tioning lead to a different distribution

by comparing to the distribution found by the clique method, figure 4.3, where
all the tables are computed without the use of evidence. If we think of the rules
of 2.1 once again it is clear why this occurs. The evidence in C allows all nodes
in the network to influence each other, so they all become dependent to some
degree.

The problem is that we are using a mechanism, conditioning, provided by the
infrastructure of Bayesian networks that is assumed to have a certain meaning,
that is, observation of a variable in the model. But C is not a variable in our
model. It is an expression of the undirected component of the distribution of
the TX nodes. It is straightforward to use a node in this way in a Bayes net
as it makes specification much easier and yields the desired distribution across
the TX nodes. The constraint holds as expected and it may not be immediately
clear that the posteriors computed by the model with conditioning are incorrect
if they are not compared to other models.

Due to this subtlety it is important to create an antidote for this problem,
in more complex models it will be even harder to detect. We want to stop the
propagation of influence up from a conditioned node after it has affected its
parents. The process of doing this will be referred to as shielding the IX nodes
from the side effects of the conditioning of C. This is the subject of the next
chapter.



Chapter 4. Side Effects of Conditioning 26

true

false

70.2

29.8

true

false

63.9

36.1

true

false

 100

   0

true

false

74.9

25.1

true

false

32.8

67.2

true

false

53.8

46.2

true

false

17.0

83.0

true

false

45.0

55.0

true

false

40.2

59.8

true

false

80.4

19.6

true

false

74.3

25.7

true

false

16.6

83.4

true

false

   0

 100

WA WB WC

TA TB TC

RA RB RC

IA IB IC

C

(a)

true

false

20.1

79.9

true

false

10.0

90.0

true

false

74.0

26.0

true

false

31.7

68.3

true

false

70.5

29.5

true

false

29.5

70.5

true

false

30.0

70.0

true

false

70.0

30.0

true

false

   0

 100

true

false

55.5

44.5

true

false

50.7

49.3

true

false

64.8

35.2

WA WB WC

TA TB TC

RA RB RC

IA IB IC

(b)

Figure 4.7: Cindy’s disinterest in AI has different effects.
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4.2.1 Descendants

A note on the descendants of the constrained nodes, the RX nodes in example
4. We do not need to shield the effects of conditioning from these nodes. This is
because they are defined as being influenced by our beliefs in TX . These in turn
are influenced by beliefs in WX and IX . So, a constraint on who can teach the
course will influence our belief in the research productivity of the instructors.
Determining the interest in AI of an instructor will also influence our belief in
their research productivity. However, the computation of that belief yields
different actual probabilities than desired. This is due to the propagation of
belief amongst the IX and WX nodes which only occurs because of conditioning
side effects.
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Chapter 5

Shielding Against Side

Effects

To remove the problem of side effects and maintain the useful properties of con-
ditioning we want to devise a way to shield part of the network by counteracting
the influence of the conditioning node. In this chapter we define some notation
to aid this discussion and present a definition for what successful shielding will
look like.

5.1 Conditioned, Effect and Shield Sets

In order to make it easier to refer to different parts of a network we define three
sets of nodes. Each set contains one of three node types; conditioned, affected or
shield nodes. Note that these are not partitions of the network. These three sets
indicate what part a node plays in creating the distribution across the network,
a simple network is shown in figure 5.1.

c-node A node that is created in order to induce an undirected distribution
across its parents through conditioning. A c-node has the following prop-
erties:

• it has no children.

• it is always binary, since one value is always observed a larger domain
would never be used.

• it has evidence of true entered into it by definition. This is what we
mean by saying it is conditioned to one of its values.

• The effect of a c-node is intended to be local to its parents and by ex-
tension to all of its descendants, no other nodes should be influenced
by the conditioning. It represents the undirected or constrained dis-
tribution across its parent nodes.

A given Bayesian network can contain multiple c-nodes.

e-node A c-node produces a direct effect on this node. This is simply the set of
parents of the c-node , pa(Ci) for a c-node Ci. We define the effect set for
each c-node as all the nodes affected by it, that is, ECi

= {E1
Ci
, . . . , EmCi

}
where Ci has m parents.
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Figure 5.1: Shield and effect sets of nodes are: SC = {J,K}, EC = {L,M}

s-node A shield node is the first line of defence against the propagation of side
effects. We define a set SCi

for each c-node, Ci, as all nodes in the set of
“grandparents” of Ci that are not also an affected node of Ci, that is,

SCi
= pa(ECi

) − ECi
.

We exclude ECi
since it is possible that linking between e-nodes could

cause some e-nodes to be grandparents of Ci. . If there are k of these
nodes then the members of the set are SCi

= {S1
Ci
, . . . , SkCi

}.

To be shielded from the side effects of C means that after inference the
following holds for each s-node :

p(SjC |C = true) = p(SjC)

That is, in the absence of any other evidence, SjC should behave as if the
node C were not conditioned.

In a network containing c-nodes, the specification of the network is not
complete until all the c-nodes are conditioned to true and some method has
been introduced to shield the nodes in SC that should not be affected by this
conditioning.

5.1.1 Affected Network

We will also refer to the portion of the network that the c-node affects as the
affected network. This is all of the nodes that are influenced by the conditioning
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of C and the node C itself. It follows from our previous definitions that this set
contains all the e-nodes and their descendants, which are not shielded.

EC ∪ desc(EC) (5.1)

5.2 Defining Shielding

Our goal now is to implement some unobstructive method of shielding. By
unobstructive we mean that it is a solution that requires no modification of
standard Bayes net inference algorithms. Ideally, a modelling tool allowing
specification of distributions using c-nodes would be able to implement some
method to shield conditioning side effects without the modeler needing to know
how it was implemented in their network. The solution we describe can be
entered into any existing Bayesian network modelling package to produce the
desired distribution.

5.2.1 Anti-nodes

We begin with the idea that what conditioning has wrought, perhaps it can
undo as well. Figure 5.2 shows a simple network with two anti-nodes, Â1 and
Â2, one for each s-node to be shielded. We will use this “hat” notation for all
nodes added to counter side effects. The CPD of each anti-node is computed so
that it shields its parent from the side effects of C, that is, the following holds:

p(J |c, â1, â2) = p(J) (5.2a)

p(K|c, â1, â2) = p(K) (5.2b)

Although this can maintain the individual distributions p(J) and p(K) in
this network they are unable to deal with more complex distributions. Without
conditioning we have that

p(J |K) = p(J)

but with conditioning and the anti-nodes

p(J |K, c, â1, â2) 6= p(J |c, a1, a2).

Anti-nodes, then, are not connected enough to compensate for these effects.
What we need is an expression that encompasses the total influence of the nodes
in the affected network.

5.2.2 Anti-factors

Side effects are an influence on the joint distribution of the s-nodes. So, to
counter this influence we create another conditioned node, Ĉ with parents SC =
{J,K}, see figure 5.3, and determine if there is a CPD that will exactly counter
C’s effects. Consider how inference will proceed using variable elimination:
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A B D

J K

L M

Q R

S

C

(a) A basic example of a conditioned network.

A B D

J K

L M

Q R

S

Â1 Â2

C

(b) Network with antinodes added.

Figure 5.2: A first try at shielding with anti-nodes.
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A B D

J K

L M

Q R

S

Ĉ

C

Figure 5.3: A factor produced for a c-node has a corresponding anti-factor on
its s-nodes.
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p(J,K, c, ĉ) =
∑

A,B,D,L,M

p(J |A,B)p(A)p(B)p(K|B,D)p(D)

× p(ĉ|J,K)p(L|J)p(M |K)p(c|L,M)

=
∑

A,B,D

p(J|A,B)p(A)p(B)p(K|B,D)p(D) (5.3)

× p(ĉ|J,K)fL,M(J,K)

If the affected network is eliminated first, the factor fL,M (J,K) is produced

leaving us with the unknown distribution of the Ĉ node and the remainder of
the network shown in bold. This remaining portion is simply p(J,K). We assign
the CPD for Ĉ then as

p(ĉ|J,K) =
1

Z

1

fL,M (J,K)

p(¬ĉ|J,K) = 1 −
1

Z

1

fL,M (J,K)

where Z =
∑

J,K fL,M (J,K) is a normalization constant that ensures these

values are in the range [0,1]. The node Ĉ, called an anti-factor, when conditioned
to true, will cancel out with the factor fL,M (J,K). During inference this will
yield:

p(J,K, c, ĉ) = p(J,K)

General Anti-factors

In general, we create an anti-factor node, Ĉ, with parents SC such that

p(ĉ|SC) =
1

Z

1

fEC
(SC)

p(¬ĉ|SC) = 1 −
1

Z

1

fEC
(SC)

where Z =
∑

EC
fEC

(SC). With Ĉ conditioned to true the following is the
definition of shielding:

p(SC, c, ĉ) = p(SC)

Instructor Example

Figure 5.4 shows the CPD computed for the anti-factor in our instructor exam-
ple. The values come from the antifactor of the affected network given by

f̂TA,TB ,TC
(IA, IB, IC) =

1

Z

1

fTA,TB ,TC
(IA, IB , IC)

. (5.4)
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J p(l = t|J)
t .59
f 0

(a)

K p(m = t|K)
t 0
f .33

(b)

L M p(c = t|L,M)
t t 1
f t 1
t f 1
f f 0

(c)

J K fL,M(J,K)
t t .59
f t 0
t f .7194
f f .33

(d)

Table 5.1: CPDs can lead to a factor containing zeros.

We can see the resulting posterior distribution in figure 5.5. Notice that the this
matches exactly with the distribution shown using the clique method in figure
4.3.

Inverting Zero

There appears to be a problem with the computation of an anti-factor, we cannot
invert a factor containing a zero. For example, consider the network from figure
5.3 using the CPDs from table 5.1.a-c.

Using these CPDs to compute the factor resulting from eliminating L and M
we arrive at the result shown in 5.1(d). The computation for the case resulting
in zero is shown below:

fL,M(¬j, k) =
∑

L,M

p(L|¬j)p(M |k)p(c|L,M)

= p(l|¬j)p(m|k)p(c|l,m) + p(¬l|¬j)p(m|k)p(c|¬l,m)

+ p(l|¬j)p(¬m|k)p(c|l,¬m) + p(¬l|¬j)p(¬m|k)p(c|¬l,¬m)

= 0 × 0 × 1 + 1 × 0 × 1 + 0 × 1 × 1 + 1 × 1 × 0

= 0

Theorem 1 For a factor fEC
to contain zeroes it is sufficient that for each

ec ∈ dom(EC)

• some node x ∈ eC has p(x|SC) = 0

• or p(c|eC) = 0

Furthermore, it is necessary that for some eC it is the case that p(c|eC) = 0.
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Figure 5.4: CPD for the antifactor Ĉ for example 1
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Figure 5.5: Posterior distributions after inference with conditioning and a shielding anti-factor node Ĉ for example 1.
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Proof: We can see from the form of the computation for the factor that the
first two cases are sufficient to make the final answer zero.

fEC
(SC) =

∑

ec∈dom(EC)

p(c|ec)
∏

x∈ec

p(x|SC) (5.5)

As long as one of the probabilities is always zero then each term in the
sum will be zero.

To see that it is also necessary for the c-node to be zero at some point,
consider if it were not so. Assume p(c|ec) never equals zero for any instan-
tiation of ec, yet some entry in the factor is still zero. Since p(x|SC) is a
probability, there are no negative values and the only way for the sum to
equal zero is for each and every term to be zero. For EC = {E1

C , . . . , E
n
C},

all binary nodes, there are 2n instances of ec. If each node has proba-
bility zero for one of its values it must have probability one for the other
value. There will still be one instance of ec where every p(x|SC) term has
a probability of one. For this instance the only way to obtain a zero would
be to have p(c|ec) = 0. Which breaks our assumption. Therefore there
cannot be a zero in the factor without p(c|ec) = 0 at some point. �

The importance of this situation should not be overstated. The meaning of
a factor containing a zero is that for some instance of the values of the parents,
the s-nodes in our case, the combined probability of the affected network for
that instance is zero. The affected network, the combined distribution of the e-
nodes and their ancestors including the conditioned node, is basically saying this
assignment of values to the s-nodes is impossible. By trying to shield the side
effects in this case we are trying to say that the impossible is possible. Since the
only way we have of canceling out a probabilistic influence is through scaling, we
simply cannot do it in this situation, nor should we try. The affected network
has essentially imposed a hard constraint directly onto the values of SC and the
multiplication by zero has destroyed information that cannot be recovered.

Complexity

Simple and effective as anti-factors are, they do have a drawback. We are
creating one new node to represent a factor of many nodes. Thus it is possible
that the node Ĉ will have a much higher inwards arity than any other node in the
network, see figure 5.6. If we think of inference using the junction tree algorithm
what happens is that now there is new clique in the network containing the anti-
factor node and all of the s-nodes. There was not necessarily a clique this large
previously. Since inference is exponential in the size of the largest clique in the
junction tree this method could easily lead to large increases in computation
time arbitrarily influenced by the size of SC.

In the next chapter we propose another solution, cloned anti-networks, that
will get around this difficulty while retaining the shielding properties of the
anti-factor.
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A B

C

D E F G

L M N

Ĉ

(a) A Bayes net, N , with anti-factor and a large SC

set.

LMNC

ABL DEM FGN

(b) Original junction tree for N

without node Ĉ

ABDE

FGĈ

ABDE

FGN

ABD

EMN
ABLMN LMNC

(c) Junction tree for N

Figure 5.6: Antifactors can cause significant increase in the size of cliques in the
junction tree if SC is large.
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Chapter 6

Cloned Anti-networks

To reduce the size of the clique created by the anti-factor we create instead a
conditional structure in the network that has the same effect as a single anti-
factor node. The most straightforward way to do this is to duplicate the existing
conditional structure of the affected network and somehow compute the CPDs
for these nodes so that the factor produced equals the anti-factor. This way,
the shielding will still take place without creating a new clique arbitrarily larger
than any existing clique.

6.1 Definition

Given a Bayesian network with c-node C and sets EC and SC defined in the
usual way, we define the cloned anti-network for C as the set of nodes

ÊC = {Êi
C
|dom(Êi

C
) = dom(Ei

C
), pa(Êi

C
) = pa(Ei

C
)}

plus the node Ĉ satisfying dom(Ĉ) = dom(C) and pa(Ĉ) = pa(C), see figure
6.1.

The nodes in the anti-network are referred to as the clones of their counter-
parts in the original network.

The requirement for a solution is that the CPDs of the nodes in ÊC and Ĉ

are assigned such that they satisfy the following:

f
ÊC

(SC) =
∑

Ê1

C
,...,Ên

C

p(Ê1
C|pa(Ê1

C)), . . . , p(ÊnC|pa(Ê
n
C))p(c|Ê1

C, . . . , Ê
n
C)

∝
1

∑

E1

C
,...,En

C

p(E1
C
|pa(E1

C
)), . . . , p(En

C
|pa(En

C
))p(c|E1

C
, . . . , En

C
)

∝
1

fEC

(SC) (6.1)

Ensuring this is not as straightforward as in the anti-factor case unfortu-
nately. We need to specify the conditional probabilities of an entire subnetwork
so that when the affected nodes are eliminated they yield a particular, known
factor. In a sense we are performing variable elimination in reverse. We already
know the factor but need to set the CPDs in a such a way that we arrive at it.
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A B D

ECÊC

J K

LL̂ MM̂

Q R

S

SC

CĈ

Figure 6.1: Effect sets in a Bayesian network with an anti-network.

6.2 Junction Tree Complexity

Consider the network with maximum independence among the s-nodes, figure
6.2(a) and how it will be triangulated. After moralization, see figure 6.2(b),
there is a cycle of length 6. Moralization will always link the nodes in EC

to each other and the nodes in ÊC to each other in this way. E-nodes also
always share a parent with their copy in the anti-network. Therefore, these
kinds of cycles will always arise unless no e-nodes have any parents, in which
case shielding is unnecessary. In order to fully triangulate the graph we can cut
the route short for each e-node by linking it to its clones in the anti-network,
as in figure 6.2(c).

A more complex example is shown in figure 6.3. The links between an e-
node and its clone will ensure, as in this example, that occurrences of an e-node
in the original junction tree will now also contain the anti-network clone of
that node. In the worst case this will create a clique that is twice the size
of cliques in the tree without an anti-network. Consider however that if an
anti-factor is used instead then an even larger clique would be created in this
example. An anti-factor as a child of all s-nodes would create a clique of size
seven. In some networks there could be very low connectivity between the s-
nodes before shielding. After shielding with an antifactor, all s-nodes would
be linked and form a clique together with the anti-node. Linking all of the s-
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J K

LL̂ MM̂

CĈ

(a) The original Bayesian network

J K

LL̂ MM̂

CĈ

(b) Network after moralization has a cycle
of length 6.

J K

LL̂ MM̂

CĈ

(c) Joining e-nodes to their anti-network counterparts removes the cycles.

Figure 6.2: Adding an anti-network and its effects on triangulation of the net-
work.
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nodes together is the simplest way to be sure all effects can be compensated for.
However, using anti-networks, cliques will only be created where needed due to
the dependencies amongst the s-nodes. Therefore, depending on the network
structure, anti-networks could provide significant complexity advantages over
the use of anti-factors.

6.3 A General Solution

In this section we present how to populate the CPDs of the nodes in the anti-
network in order to enable shielding as we have described. We begin with a
simple example network showing what is known about the nature and existence
of a solution. We will then derive a general form applicable to any network and
show the same results. Implementation details of the solution, using constrained,
nonlinear, optimization and resulting networks are discussed in chapter 7.

6.3.1 Base Example

Consider the example network shown in figure 6.4, all nodes are binary. We use
the concept of a cloned anti-network to cancel out the side effects of C in the
portion of the network including and above SC = {J,K}, the shield set. The
parameters of the anti-network need to be set so that the factor produced after
elimination of its nodes during inference conforms to:

f̂
L̂,M̂

(J,K) =
1

Z

1

fL,M (J,K)
(6.2)

Where Z =
∑

J,K fL,M(J,K) is the normalization constant used to keep the
anti-factor entries in the range [0, 1].

To deal with the parameters more compactly we will adopt the following
notation. The free parameters of the system are p(Ĉ = true|L,M), p(L̂ =
true|J) and p(M̂ = true|K). These will be represented by the variables γlm, φj
and ψk respectively. The subscripts of these variables indicate the values of
their parent nodes with 1 indicating true and 2 indicating false with the parents
ordered from left to right in the graph. The set of all these variables is X =
{γ11, γ12, γ21, γ22, φ1, φ2, ψ1, ψ2}. The values of the factor for the anti-network,
given by equation (6.2), which are constants, will be represented in the same
manner by πjk. Since all the variables in X represent probabilities, dom(x) =
[0, 1] for all x ∈ X. Similarly, dom(πjk) = [0, 1] for all j, k due to Z in equation
(6.2).

Thus the table for Ĉ is

L̂ M̂ p(ĉ|L̂, M̂)
t t γ11

t f γ12

f t γ21

f f γ22
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A B

CĈ

D E F G

LL̂ MM̂ NN̂

(a) Bayesian network with multiple connections be-
tween e-nodes and s-nodes.

ABL CLMN

EFMN

DEFM EFGN

L

MN

EFN
EFM

(b) Junction tree network if the
anti-network were not present.

ABLL̂

DEFMM̂

EFGN̂N

LL̂NM L̂MM̂NN̂ EFMM̂NN̂

CLMN L̂M̂N̂Ĉ

LL̂ EFN̂N

LMN L̂M̂N̂

L̂MN MM̂NN̂ EFMM̂

(c) Junction tree for network with anti-network present.

Figure 6.3: A more complex network showing how connectivity between e-nodes
and s-nodes can lead to clique almost twice as large as those present without
the anti-network.



Chapter 6. Cloned Anti-networks 44

A B D

J K

LL̂ MM̂

Q R

S

CĈ

Figure 6.4: Bayesian network with cloned anti-network.

Now our formulation is:

f
L̂M̂

(J,K) =
1

Z

1

fL,M (J,K)
︸ ︷︷ ︸

π

=
∑

L̂,M̂

p(ĉ|L̂, M̂)
︸ ︷︷ ︸

γ

p(L̂|J)
︸ ︷︷ ︸

φ

p(M̂ |K)
︸ ︷︷ ︸

ψ

(6.3)

Which expands out in the following way, we express the formula as a set of
functions, gjk(X), that are equal to zero.

πjk = γ11φjψk + γ21(1 − φj)ψk + γ12φj(1 − ψk) + γ22(1 − φj)(1 − ψk)

0 = γ11φjψk + γ21(1 − φj)ψk + γ12φj(1 − ψk) + γ22(1 − φj)(1 − ψk) − πjk
(6.4)

gjk(X) = γ11φjψk + γ21ψk − γ21φjψk + γ12φj − γ12φjψk + γ22 − γ22φj−

γ22ψk + γ22φjψk − πjk (6.5)

There are four multivariate, polynomial functions over eight variables and we
need to find X such that gjk(X) = 0 for all j and k.
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Lower and Upper Bounds

Consider the situation where all of the γ variables equal zero. This is equivalent
to a constraint that none of the parents of the c-node are true. Our conditioning
to true in this case would be a zero probability event. This is only used for the
purposes of having a lower bound for the gjk(X) function. In equation 6.4 we
see that every term but the constant contains a γ variable and so the result will
be all zeros leaving gj,k(X) = −πj,k. The other variables, φj and ψk, have no
affect in this case, so we can set them all to zero as well.

Since we are only interested in the point where gjk(X) = 0 there is no risk
of attempting to condition on a zero probability outcome. The only situation
when gjk(X) = 0 will be if πjk = 0 as well. This is a degenerate case of the zero
factor discussed in theorem 1.

Now consider the case where all variables are set to one. In equation 6.4 we
see that all but two of the terms contain a (1−φ) or (1−ψ) which are both zero
under this assignment. We are left with gjk(X) = 1 − πjk. Since πjk ∈ [0, 1]
this shows that

gjk(0) ≤ 0 ≤ gjk(1).

We also know that polynomials are always continuous over the real numbers
and so by the Intermediate Value Theorem each function is guaranteed to have
a solution xjk ∈ X such that

q11(x11) = 0

q12(x12) = 0

q21(x21) = 0

q22(x22) = 0

Conjecture

In order for the solution to fully satisfy the requirements it must also be the
case that x11 = x12 = x21 = x22. That is, all four functions must cross zero
at the same point. Unfortunately, we have not yet been able to prove that
this is always the case. However, based on our experimental results we believe
that this is so, and leave it as a conjecture. We have found solutions for some
networks and we see no obvious reason why some network structures would lend
themselves to solution by this method more than others.

6.4 General Formulation

Everything that was said for this specific example is also true in general. Figure
6.5 portrays the general case. The following formula represents the joint
probability of the shield nodes and their ancestors, A = anc(SC)
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C Ên
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Figure 6.5: A general Bayesian network structure with anti-network.

p(A ∪ SC) =
∑

Ê1

C
...Ên

C
,E1

C
...En

C

p(A)p(SC|A)p(ĉ|ÊC)p(Ê1

C|SC) . . . p(Ên

C|SC)×

p(c|EC)p(E1

C
|SC) . . . p(En

C
|SC)

= p(A)p(SC|A)
∑

Ê1

C
...Ên

C

p(ĉ|ÊC)p(Ê1

C|SC) . . . p(Ên

C|SC)×

∑

E1

C
...En

C

p(c|EC)p(E1

C
|SC) . . . p(En

C
|SC)

= p(A)p(SC|A)f
ÊC

(SC)fEC
(SC)

We thus require that

f
ÊC

(SC) =
1

Z

1

fEC
(SC)

where Z =
∑

SC

fEC
(SC)

When this is true the factor f
ÊC

(SC) computed from the anti-network will
fully cancel out the corresponding portion of the original network, thus elimi-
nating the side effects caused by the conditioning of C.

As in the basic example we adopt a variable notation to represent the free pa-
rameters and characterize the nonlinear equations. This will help us understand
the space of the problem and the feasibility of finding solutions.

We will represent particular instances of assignments of values to the affected
clone nodes and shield nodes by:

e ∈ dom(ÊC) s ∈ dom(SC)
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The variables γe represent an instance of p(ĉ = t|e) under the current assign-
ment of values to e-nodes given by e. Similarly, φj

e,s represents p(ej|pas(Ê
j
C))

for the jth e-node where the relation pas(Ê
1
C) indicates the value of the par-

ents of node Ê1
C within the current assignment s. We will also represent

the constant values of the factor for the anti-network under the current as-
signment of s-nodes with πs = 1

Z

1
f
ÊC

(s) . The set of all these variables is

X = {γe, φ
j
e,s} ∀e ∈ dom(ÊC), s ∈ dom(SC), j ∈ [1, |ÊC|]

1

Z

1

f
ÊC

(s)
= f

ÊC
(s)

πs =
∑

e∈dom(ÊC)

p(ĉ|e)p(e1|pas(Ê
1
C)) . . . p(en|pas(Ê

n
C))

0 =
∑

e∈dom(ÊC)

p(ĉ|e)

n∏

j=1

p(ej|pas(Ê
j
C)) − πs (6.6)

gs(X) =
∑

e∈dom(ÊC)

γe

n∏

j=1

(φje,s)
(ej=t)(1 − φje,s)

(ej=f) − πs (6.7)

Since the sum ranges over all values of the e-nodes, not just true ones, we
need the indicator power (e.g. (ej = t)), for the φ parameters in order to choose
the appropriate form, negated or not, based on the value of ej . If ej = t then
the exponent is 1. If ej = f then it equals 0.

We now have |SC| multivariate, polynomial functions given by gs which we
will call the shield functions. The goal is to find a solution X such that gs(X) = 0
for all s ∈ dom(SC).

Size of Nonlinear System

Each equation contains the same γ variables, one in each term except for the
final constant, πs, and there are |dom(ÊC)| terms. Each equation then contains
a certain number of φ variables. It will be the same number in each equation but
different depending on the values of the parents given the current assignment s.
In total, each e-node contributes |dom(pa(ÊjC))| variables to the entire system
of equations, one for each unique assignment of its parents nodes. Thus the
total number of variables is

nv = |dom(ÊC)| +

|ÊC|
∑

j=1

|dom(pa(ÊjC))| (6.8)

The number of equations is simply the number of assignments of s, which
is |dom(SC)|. We cannot say anything more specific about the relationship
between variables and equations. Depending on the domain sizes of nodes in
ÊC and SC and their connectivity there could be less, more or an equal number
of variables as there are equations.
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Lower Bound

Consider the point where all γ and all φ variables are set to zero. The the sum
in equation (6.7) will clearly always result in zero thus leaving us with

gs(0) = −πs (6.9)

Since πs ∈ [0, 1] for all s ∈ dom(SC) this shows that

gs(0) ≤ 0 for all s ∈ dom(SC) (6.10)

Upper Bound

Consider now the point when all γ and φ variables are set to one. In equation
(6.7) we see that every term produced by the sum contains a φj

e,s or a (1−φj
e,s)

term. The latter terms will all result in zero with this assignment. This leaves
only one term produced by the instance e when all e-nodes are true. Since all
the γ variables are also set to one, this term results in 1, giving us

gs(1) = 1 − πs (6.11)

And since πs ∈ [0, 1]
qs(1) ≥ 0 (6.12)

We know that polynomials are always continuous over the real numbers and
so by the Intermediate Value Theorem each function is guaranteed to have a
solution X′ such that gs(X

′) = 0 for all s ∈ SC.

Conjecture

Unfortunately, we cannot yet prove the final step that there is some assignment
of variables X∗ such that gs(X

∗) = 0 for all s ∈ SC, that is, that all of the X′

are in fact, the same assignment.
We leave it as a conjecture that this is so, to be proven in future work. Note

however, that if it is the case that certain classes of networks or distributions do
not have solutions, anti-factors are still apply generally. Anti-networks would
then still be a useful method of improving the complexity of a shielded network
when the given model allows.
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Chapter 7

Finding a Solution

The form that we have now arrived at is one with many nonlinear functions
across many unknowns. We have explored several analytical possibilities for
finding a solution based on the problem domain but so far have found none
that apply to any sufficiently large set of networks. A search approach has
yielded more useful results. We have opted to use optimization techniques to
find a solution since they are well understood with easy to access algorithms for
anyone wanting to implement shielding. They also allow the easy specification
of constraints which will be useful for our problem. We first provide a brief
overview of the theory of constrained optimization and how it is used in the
MATLAB optimization toolbox software package, which is the implementation
that we use.

7.1 Constrained Optimization Background

The topic of constrained optimization is a wide-ranging and complex one. Here
we give only the briefest overview to indicate what is necessary for our problem.
If you wish to find out more a very clear description of these techniques and
many others is provided in [15].

A constrained optimization problem, also called a nonlinear programming
problem, is of the following form

min
x∈ℜn

G(x) such that

{

ci(x) = 0

cj(x) ≥ 0
are satisfied. (7.1)

Where c is a vector of constraint functions to be satisfied and i ∈ [1,m], j ∈
[m+ 1, n] where n is the number of constraints.

7.1.1 The KKT Conditions

Many algorithms for solving nonlinear programming problems centre around
the Karush-Kuhn-Tucker conditions [10]. They state that given linear indepen-
dence among the active constraint gradients at a local solution x∗, the following
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conditions, in addition to 7.1, are necessary for optimality of x∗:

∇G(x∗) −

n∑

k=1

λ∗k∇ck(x
∗) = 0, (7.2)

λ∗j ≥ 0, for all j ∈ [1,m], (7.3)

λ∗kck(x
∗) = 0 for all k ∈ [1, n]. (7.4)

When a solution is found, the KKT conditions tell us that the gradients of the
objective function and constraints will cancel each other out given some set of
lagrange multipliers given by λ. Note that this only holds for active constraints,
that is, when ck(x

∗) = 0 for all k ∈ [1, n]. Thus any inequality constraints where
cj(x) > 0 will be left out by having λj = 0.

7.1.2 Sequential Quadratic Programming

This is a popular method used to solve the constrained optimization problem,
and it is the method used by MATLAB through its fmincon function. The
method works by solving a quadratic programming subproblem multiple times.
At each step it determines the search direction as a solution to a quadratic
subproblem of (7.2) with linearized constraints. The goal is to compute a new
estimate of the lagrange multipliers and a search direction to improve the esti-
mate of x∗ until some merit function is satisfied. These new estimates are then
fed back into the next iteration of the algorithm. These methods have guaran-
teed convergence rates that are better than linear and often perform very well
in practice.

For a comprehensive and very clear explanation of these method see [15]. For
other references on these techniques see the work done by Han [6] and Powell
[21]. A literature review is provided in [2].

7.2 Reformulation of Problem

Using the shielding functions, gs(X) from equation 6.7 we reformulate our prob-
lem to be solved as a constrained nonlinear system. Starting from a point where
gs(X) > 0, we want to minimize an objective function, G(X), that is a linear
combination of the gs functions subject to the constraint that each of the com-
ponents of G remains non-negative at all times. Being a linear combination
will ensure that if gs(X) = 0 then G(X) = 0. Non-negativity allows us to avoid
incorrectly identifying as an answer the situation when G(X) = 0 but gs(X) 6= 0
due to some of the functions being positive and some negative in a such a way
that they exactly balance out.

We define the objective function as

G(X) =
∑

s∈domS)

gs(X) (7.5)
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We have natural constraints in that the shielding functions that are the
components of G(X) are always zero. However, we do not use ci to specify this
strong equality constraint, since this would require specifying a starting point
that already satisfies the constraints. If we have such a starting point then this
would be an acceptable final answer for our problem. So in our formulation of
(7.1), we have m = 0 and n = |dom(SC)|. We define an ordering over the values
of the s-nodes s ∈ dom(SC) indexed by j ∈ [1, n] so that gj(X) is the shielding
function corresponding to the jth value of s. We specify a set of constraints that
require the shielding functions to always be non-negative :

cj(X) = −gj(X) (7.6)

The functions must be negated in order to reverse the inequality in (7.1). The
starting point here need only satisfy gs(X) ≥ 0.

Additionally, though not a constraint on the function, we must restrict the
domain of the variables to the range [0, 1] since each variable must represent a
probability. We cannot simply drop this restriction and normalize the variables
X in order to retrieve probabilities since the shielding functions contain products
and division will not distribute over them.

7.3 Example Networks

Our solutions were computed using the MATLAB Optimization Toolbox im-
plementation [8] of the SQP algorithm through its fmincon function. This re-
quired writing MATLAB function forms of the functions G(X) and cj(X) for all
j ∈ [1, n]. We also made extensive use of Kevin Murphy’s BNT Toolbox [14] for
MATLAB which allows representation and computation of Bayesian networks
within that environment.

Instructor Example

First we return to the instructors in example 4. After converting the network to
the general formulation and expressing it as a nonlinear constrained optimiza-
tion problem, we find the values for X, shown in figure 7.1. Figure 7.2 shows the
computed beliefs after inference, which conforms to our desired distribution.

Note that these are the same distributions determined by both the anti-factor
method in 5.5 and the clique method in 4.3. Comparing just to the anti-factor
approach we also see in figures 7.3-7.6 that further observations propagate and
obey the original constraint in the same way.

Localized Effect

An important feature of networks containing conditioning and shielding is that
the counterbalancing of the two is fully localized. This means that adding
additional ancestors or descendants outside the sets SC and EC can be done
arbitrarily without the needs for recomputing the anti-network. Some examples
of this are shown in figures 7.7 and 7.8.



C
h
a
p
ter

7
.

F
in

d
in

g
a

S
o
lu

tio
n

5
2

.8

.5true
false

true
false

true
false

true
false

true
false

true
false

true
false

true
false

true
false

true
false

.75
.1

.3

.75
.1

.7

.75

.1

.6

1.0
0.0

true
true

true
true

false
false

true
false

false
true

true
false

false
true

true
true

false
false

false
false

true
true
false
false

1.0

1.0

1.0
1.0
1.0

1.0

true
true

true
true

false
false

true
false

false
true

true
false

false
true

true
true

false
false

false
false

true
true
false
false

.1
.01

.1
.01

.1
.01

.91254

.29333
.81605

0.0
.91676
.29119

.03971

.01157

.06466

.06532

.05793

.06481

.06908

true

0.79699

false
.5

.8
true
false

.5

.8

CĈ
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Multiple c-nodes across network

Figure 7.9 shows a Bayesian network with two c-nodes, C1 and C2, and aug-
mented with two cloned anti-networks. Each set of cloned nodes compensates
for a different c-node. The CPDs for L̂, M̂ , Ĉ2 were solved separately from those
for T̂A, T̂B, T̂C , Ĉ1. They can in fact be solved as separate Bayesian networks
and connected together afterwards, as long as no e-nodes are shared in common
as parents of multiple c-nodes.
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Ĉ2

Figure 7.9: Bayesian network containing two c-nodes, each shielded seperately. Notice that the beliefs for TX , WX and IX
nodes are the same as before.



62

Chapter 8

Conclusion

The motivation of this work has been the specification of distributions in di-
rected graphical models that are broken into two distinct components known
to the modeler. For some subset of variables in the model there are known
directed, or conditional, distributions, and an undirected, or constrained, dis-
tribution. The modeler presented with representing such a distribution in a
Bayesian network finds that significant calculations must first be made and the
resulting network is often an unintuitive or forced representation of the problem.
The use of an added node conditioned to true to represent the undirected com-
ponent of the distribution is much more straightforward for those familiar with
the behaviour of evidence in Bayesian networks. It also requires no calculations
on the part of the modeler to specify the distribution.

Unfortunately, this technique does not always lead to the desired distribu-
tion, causing dependencies among ancestor nodes not implied by the original
problem. We have introduced this problem of side effects of conditioning and
presented a general method for counteracting them with the use of computed
anti-factors. When the network structure leads this method to large complexity
increases we have shown that a conditional structure can be created, a copy of
the original affected network, called a cloned anti-network. The parameters of
the distribution for this anti-network need to be computed. We used nonlinear
constrained optimization for this with very good results. The resulting networks
provide the modeler with the best of both worlds, a straightforward specification
matching the knowledge they have available and a lack of side effects caused by
the use of conditioning to obtain the distribution.

8.1 Open Problems

The methods introduced here could be used as part of a Bayesian network
modelling system to provide the modeler with a post-specification processor to
create the shielded anti-network. This would have the advantage of allowing
them to see both distributions to determine if shielding is necessary for their
situation as the distinction is sometimes subtle.

Some open problems that involve a more general bound on the size of the
cliques that are added to the junction tree when a model is augmented with
an anti-network. The promise of the anti-network technique is partially in the
simplicity and symmetry of its structure. It remains to be proven fully however
that a solution to the anti-network parameters always exists, in practice we have
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always found results. Showing this existence or showing some set of networks
where a solution must exist may help further in refining algorithms for searching
the parameter space. For distributions where the constraint component is a
function which can be represented compactly, such as “or” it is unknown if
any simplifications can be made to the resulting distribution of nodes in the
anti-network.

There are many connections between the use of conditioning to induce undi-
rected distributions and undirected graphical models such as Markov Random
Fields. Conditioning can be used to simulate undirected distributions within
directed models. The idea of side effects has not been studied in undirected
models as of yet but the results of such study would no doubt be enlightening
for an understanding of both frameworks and the connection between the them.
The shielded distributions created in Bayesian networks using anti-networks
and conditioned nodes, for example, are difficult to model in MRFs. There are
also interesting questions relating to conditioning in other directed modelling
languages such as Influence Diagrams such as the ramifications of side effects
for utility maximization and the meaning of a conditioned node constraining
decisions.



64

Bibliography

[1] Valeria Bertacco and Maurizio Damiani. The disjunctive decomposition of
logic functions. In ICCAD ’97: Proceedings of the 1997 IEEE/ACM inter-
national conference on Computer-aided design, pages 78–82, Washington,
DC, USA, 1997. IEEE Computer Society.

[2] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta
Numerica, 4:1–51, 1996.

[3] Wray L. Buntine. Chain graphs for learning. In Uncertainty in Artificial
Intelligence, pages 46–54, 1995.

[4] Adnan Darwiche. A differential approach to inference in bayesian networks.
Journal of the ACM, 50(3):280–305, 2003.

[5] Rina Dechter. Bucket elimination : A unifying framework for probabilistic
inference. In E. Horvitz and F. Jensen, editors, Proceeding of the Twelfth
Conference on Uncertainty in Artificial Intelligence (UAI-96), pages 211–
219, 1996.

[6] S. P. Han. Superlinearly convergent variable metric algorithms for general
nonlinear programming problems. Mathematical Programming, 11:263–282,
1976.

[7] Norsys Software Inc. Netica : Bayesian network modelling tool.
http://www.norsys.com/netica.html, October 2005.

[8] The MathWorks Inc. Matlab optimization toolbox, October, 2005.
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/.

[9] Finn V. Jensen. Junction trees and decomposable hypergraphs. Technical
report, Judex Datasystemer, Aalborg, Denmark., 1988.

[10] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In J. Neyman, ed-
itor, Proceeding of teh Second Berkeley Symposium on Mathematical Statis-
tics and Probability, pages 481–492. University of California Press, 1951.

[11] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with proba-
bilities on graphical structures and their application to expert systems. In
Readings in uncertain reasoning, pages 415–448. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1990.



Bibliography 65

[12] Alan Mackworth. Encyclopdeia of Artificial Intelligence, chapter Con-
straint Satisfaction, pages 285–293. John Wiley and Sons, 1992.

[13] K. Murphy. Inference and learning in hybrid bayesian networks. Technical
Report Technical Report 990, University of California, Berkeley, 1998.

[14] Kevin Murphy. Bayes net toolbox for matlab. http://www.cs.ubc.ca/ mur-
phyk/Software/BNT/bnt.html, October, 2005.

[15] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer
Series in Operations Research. Springer-Verlag New York, Inc., 1999.

[16] Judea Pearl. Probabilistic Reasoning in Intelligent Systems:Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[17] Judea Pearl and Tom S. Verma. A theory of inferred causation. In James F.
Allen, Richard Fikes, and Erik Sandewall, editors, KR’91: Principles of
Knowledge Representation and Reasoning, pages 441–452, San Mateo, Cal-
ifornia, 1991. Morgan Kaufmann.

[18] David Poole, Alan Mackworth, and Randy Goebel. Computational Intelli-
gence : A Logical Approach. Oxford University Press, 1998.

[19] Shachter Ross. Bayes-ball: The rational pasttime (for determining irrele-
vance and requisite information in belief networks and influence diagrams).
In Proceedings of the 14th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-98), pages 480–487, San Francisco, CA, 1998. Morgan
Kaufmann Publishers.

[20] Stuart Russell and Peter Norvig. Artificial Intelligence : A Modern Ap-
proach. Prentice Hall, 1995.

[21] G. A. Watson, editor. A fast algorithm for nonlinearly constrained opti-
mization calculations. Springer Verlag, Berlin, 1977.

[22] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Understanding
belief propagation and its generalizations. In Exploring artificial intelli-
gence in the new millennium, pages 239–269. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[23] Nevin Zhang and David Poole. Exploiting causal independence in bayesian
network inference. Journal of Artificial Intelligence Research, 5:301–328,
1996.


