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Constraints are modelled using conditioned nodes.
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Another Approach

IA IB IC

WA WB WC

TA TB TC

RA RB RC

Chain Graphs
(Lauritzen and Wermuth, 1989)

p(xV) =
∏

τ∈T

p(xτ |xpa(τ))

p(xτ |xpa(τ)) =
1

Z (xτ )

∏

A∈A(τ)

φA(xA)

Z (xτ ) =
∑

xτ

∏

A∈A(τ)

φA(xA)
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There are three types of conditioning in Bayes nets

Observation Conditioning Conditioned value is new information
that rules out incompatible possible worlds. The
most common type.

Intervention Conditioning Value is set arbitrarily from outside
the model, cannot be used for inference about
ancestors. Used for decision variables.

Constraint Conditioning A node’s value is set as part of the
model definition to induce some distribution
amongst its parents. This type is the focus of our
research.
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We Use a Conditioned Node to Block Side Effects

Progress of research

Someone must teach

Will teach the course

Want to teach course

Interetitlested in topic
IA IB IC

WA WB WC

TA TB TC

RA RB RC

C

Shielding

p(WA,WB,WC |c, ĉ) = p(WA,WB ,WC)

p(WA|IA, c, ĉ) = p(WA|IA)

p(WB|IB, c, ĉ) = p(WB|IB)

p(WC|IC , c, ĉ) = p(WC|IC)
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Pro’s and Con’s of Antifactors

General Antifactors can also be defined that allow multiple
c-nodes to have overlapping sets of parents.

PRO An antifactor solution always exists and is easy to
compute.

exception: when one instance of nodes in SC
has a zero probability given the summed out
affected network

CON Network with antifactor added to it could be much
less efficient during inference.
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Shielding with Antinetworks

An antinetwork is a set of nodes, with a conditioned node, that
sums out to the antifactor but maintains a conditional structure.

IA IB IC

WA WB WC

TA TB TCT̂A T̂B T̂C

RA RB RC

SC

EĈ
EĈ

CĈ
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Definition of Antinetwork Solution

A system of nonlinear equations defines the solution for an
antinetwork that implements shielding:

Let π = fEĉ
(Sc) =

1
fEc (Sc)

π =
∑

x∈Eĉ

p(ĉ|Eĉ)
∏

ê∈x

p(ê|Sĉ)

0 =
∑

x∈Eĉ

γĉ

∏

ê∈x

(ψê)(ê=t)(1 − ψê)
(ê=f) − π

We call this system gs(X ) for each instance s ∈ SC and x being
an assignment to all variables in Eĉ .

Crowley, Boerlage and Poole Adding Local Constraints to Bayesian Networks
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Existence and Discovery

Existence

X0 : x = false for all x ∈ X0 X1 : x = true for all x ∈ X1

gs(X0) = −π gs(X1) = 1 − π

gs(X0) ≤ 0 ≤ gs(X1) for all s ∈ SC

for all s ∈ SC there is an Xs such that gs(Xs) = 0

simultaneous solution not yet proven to always exist

Discovery Use constrained optimization:

objective function
∑

s∈SC
gs(X )

constraints gs(X ) = 0 for all s ∈ SC

start pointing X1
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Example of a Solved Antinetwork
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SBNs can be more efficient than CGs

Each node has size D and each e-node has m parents.

CG = D|EC |+|SC |

= D|EC |+m|EC | since |SC | = m × |EC |

= D|EC |(m+1)

SBNantifactor = D|EC |+|SC | + D|SC | + D|EC |

SBNantinetwork = D2|EC | + |EC |D
2+m + 2D|EC |

SBNantinetwork < CG when both |EC | ≥ 2 and m ≥ 2.
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Summary

SBNs express an interesting set of distributions and can do
so efficiently for some networks.

Shielding allows constraints/joint distributions to be
expressed simply without side effects.

Conditioning is a useful concept for unifying discussion of
directed, undirected and mixed modelling tools.
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Possibilities for Future Work

Find solutions for more complex networks with overlapping
affected sets.

Find sets of networks that always have solutions if any.

Compare complexity of larger SBNs to CGs. Perform
quantitative comparisons.

Create precompiler to convert a BN to an SBN using
antifactors, antinetworks or both in combination to be used
with standard BN software.

Look for specific distributions that can be shielded
efficiently without an antinetwork.
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Thank You

Questions?
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