A Scalable Framework for Representation and Reasoning in Large Scale, Spatial-Temporal Planning Problems PhD Proposal

Mark Crowley

http://www.cs.ubc.ca/~crowley

Department of Computer Science University of British Columbia

8th May 2008

A Scalable Framework for Representation and Reasoning in LST Planning Problems PhD Proposal

Mark Crowley

http://www.cs.ubc.ca/~crowley

Department of Computer Science University of British Columbia

8th May 2008

Forestry Planning as an LST Problem

590

AI Approaches

Proposed Solutions

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

Forestry Planning is Even Harder Now

Mountain Pine Beetle (MPB) Dendrochtonus ponderosae

Current Approaches in Forestry Planning

Forestry planning is carried out at many different scales:

strategic - tactical - operational

Linear Strata - treat stands as independent, group by attributes. Use linear programming to find optimal policy.

Stochastic Local Search - use tabu search, genetic algorithms and simulated annealing

- these methods can account for some spatial relations
- still do not deal well with uncertainty

The Big Picture

AI

Domain (Forestry)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposed Solutions

Modeling Uncertainty - Bayesian Network

A Bayesian network (BN)

(Pearl, 1988) models the conditional independence relationships between a finite set of random variables. A BN is a directed acyclic graph where each node is independent of its non-descendants given its parents.

a cel

(日)

Legend

m - MPB infestation level r - red tree count n - number of trees black nodes = observed, white = unobserved

Modeling Uncertainty and Dynamics - Dynamic BNs

A dynamic Bayesian network (DBN)(Dean and Kanazawa, 1989) models a dynamic process using a two step BN. Arcs are added to model dependency between variables across timesteps.

Legend

- m MPB infestation level r - red tree count
- n number of trees
- a_t^l action on cell i at time t
- black nodes = observed, white = unobserved

・ロト・日本・日本・日本・日本・今日~

Modeling Uncertainty and Dynamics - Dynamic BNs

A dynamic Bayesian network (DBN)(Dean and Kanazawa, 1989) models a dynamic process using a two step BN. Arcs are added to model dependency between variables across timesteps.

Legend

- m MPB infestation level r - red tree count
- n number of trees
- a_t^i action on cell i at time t
- black nodes = observed, white = unobserved

・ロト・「聞・・「聞・・「聞・・」 しゃ

Now spread that DBN across entire landscape

Decision Making

A Markov Decision Process (MDP) is model for representing decision problems. An MDP is a tuple (S, A, R, T), where:

- \mathcal{S} a finite set of states
- A a finite set of possible actions that can be taken at any time-step
- $\mathcal{R}(s, a)$ gives the expected reward for being in state *s* after taking action *a*
- $\mathcal{T}(s'|s, a)$ gives the probability of ending up in the next state s' if action a is performed in the current state s

Decision Making

A Partially Observable MDP (POMDP) adds noisy observations of state to the MDP definition:

 $\ensuremath{\mathcal{Z}}$ a finite set of possible observations of the stat

O(z|a, s') gives the probability of observing z when action a is taken and results in state s'

Some Example POMDP Solution Methods

Model Based

Some guarantees, very active, getting better all the time.

- Reinforcement Learning value iteration, policy iteration
- Point Based Belief State Methods (Perseus[8])
- Factored States Decision Diagrams or linear value functions often used compress states [7]
- Relational MDPs learn general policies on relational model, generalize to larger domains [4]

Model-Free

Good if the dynamics come from external simulations

- Reinforcement Learning Q-learning
- Direct Policy Search optimize a parameterized policy (PEGASUS[5])
- Hierarchichal RL combine policies over many timescales (MAXQ[3])

Hierarchical Abstraction of State Space

Perform planning on smaller, abstract states arranged in a hierarchy

Prototypes - use clustering to define a set of prototypical cells that can represent the state. Vary the number of clusters and properties used.

Advantages:

- adjustable state size
- real world planning is fundamentally hierarchical

(日)

Proposed Solutions

(日)

Abstract states \rightarrow abstract actions/policies

Atomic Actions

- actions initially defined on cells
- actions now need to apply to clusters of cells

Parameterized Actions

- "cut 5% of the trees"
- "cut trees nearest to roads up to an area of x ha"
- "cut x ha beginning with stands near roads"

Proposed Solutions

(日)

The Future is not the same as the present

Modeling the state at full detail far into the future has problems:

- We can't afford to long planning horizon and huge state space
- We don't know how uncertainty in model, change over time
- We don't really want to real plans are updated continuously, plan may be followed for a one or two years

So, allow abstraction to increase over time

An abstraction schedule will be followed as future timesteps are considered. The schedule could be determined:

- as needed, to balance performance and accuracy
- ahead of time, to indicate level of interest at points in the future

Evaluation is Difficult

Simulation - Use forestry simulations to see results

Comparison - Compare our results to forestry planning solutions

- can we achieve higher utility?
- can we deal with larger problems?
- can we deal with more complex problems?

Qualitative Evaluation - Manual qualitative evaluation by decision making experts in the field

Conclusion

- LST Planning covers a class of decision making problems that are highly relevant to society and challenging to solve
- AI has all the tools we need to make progress on this class of problems
- There is data and simulations to use from domains such as Forestry
- This research will begin building an LST planning framework that :
 - integrates uncertainty
 - integrates spatial relations
 - uses hierarchical abstraction to perform planning efficiently on subproblems

The LST Problem

The Big Picture

AI Approaches

Proposed Solutions

Thanks for Listening

any questions?

▲ロト▲御▶▲臣⊁▲臣⊁ 臣 のQ@

Bibliography

- Xavier Boyen and Daphne Koller. Exploiting the architecture of dynamic systems. In AAAI '99, 1999.
- T. Dean and K. Kanazawa.
 A model for reasoning about persistence and causation.
 Computational Intelligence, 5:142–150, 1989.
- Thomas G. Dietterich. An overview of MAXQ hierarchical reinforcement learning. Lecture Notes in Computer Science, 1864/2000, 2000.
- C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia.
 Generalizing plans to new environments in relational mdps.
 In *The International Joint Conference on Artificial Intelligence (IJCAI-03)*, 2003.
- Andrew Y. Ng and Michael Jordan. PEGASUS: A policy search method for large MDPs and POMDPs.

Variables Become Entangled Over Time

A major challenge using DBNs is that independent nodes become dependent over time.

The BK Algorithm

(Boyen and Koller, 1999)

- project state to an approximate belief state by breaking links between weakly related clusters of nodes
- In the run dynamics forward
- repeat

・ロト・日本・日本・日本・日本

Variables Become Entangled Over Time

A major challenge using DBNs is that independent nodes become dependent over time.

(Boyen and Koller, 1999)

- project state to an approximate belief state by breaking links between weakly related clusters of nodes
- In the second second
 - Interpret in the second sec

Spatial planning with prototypes

Neighbourhood Sampling

- most spatial relationships have an upper bound on distance (e.g. MPB spread 0-20km)
- use prototypes to create sample neighbourhoods that are big enough to model spatial relationships but much smaller than the total landscape

А	А	В	Α	С	
В	С	В	C	C	
В	А	Α	В	В	
А	С	В	С	В	
В	А	В	В	Α	

С	В	С	В	С	С
А	А	В	А	В	В
в	С	В	В	А	В

С	В	С	
В	А	В	
В	В	А	

(日)