
Dynamics
•Tree growth : model with yield curves, fairly 

deterministic
•MPB growth :  spread determined by infestation level, 

wind direction, temperature.  Beetles spread spatially 
across the forest landscape from stand to stand or fly 
over 20km to other stands
• Models exist that estimate the risk of spread based 

on these factors for a stand given data about nearby 
stands

Uncertainty
•state of landscape, soil, temperature known with high 

certainty
•state of tree properties are aggregated estimates from 

aerial, satellite and ground data
•state of previous year’s MPB infestations estimated 

based on aerial surveys of “red tree” counts.
• 1 to 2 year time lag
• high uncertainty about precise level of infestation 

for individual stands
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Representation as a DBN

Existing Approaches
In forestry several methods are currently used to perform 
harvest planning:
• Linear models of independent cells - solved with 

Linear Programming
•Nonlinear models solved with Stochastic Local Search 

(Meta-heuristics)
• Simulated Annealing
• Genetic Algorithms 

Neither of these approaches deal well with the issues of  
uncertainty or spatial interrelation. But MPB infestations 
makes the impact of these issues much greater. There is a 
desire[3] in forestry for a more realistic treatment of 
uncertainty and spatial
interrelation in their models.

Our Goals
To provide a general framework for 
•Representation - how to represent LST problems 

compactly in a way that supports decision making
•Reasoning - how to perform efficient reasoning to find 

good policies in LST problems 

We want to take account of 
•uncertainty in the model 
•spatial interrelations in the data 

We also want to enable use of existing simulations from 
the problem domain so that simulation/modeling is 
separated from general planning.

State Abstraction
We will reduce the size of the state space by reducing the number of 
cells that need to be considered:
•A cluster of cells with similar properties are mapped to a typical cell 

or class called a prototype
•Clustering will be performed on cell features including:

•  local cell properties - number of trees, level of MPB infestation, 
tree spacing

• spatial relations between cells - average level of MPB in 
neighbourhod, proximity to roads/water

The goal is to find a clustering that minimizes the prediction error if 
cells are all replaced with their prototypes. We will then use these cell 
prototypes in planning. Related Approaches

•Hierarchical Reinforcement Learning [1] produces polices at different scales of time 
and uses them to inform each other

•Model based solutions
• Belief state POMDP solution methods, especially point based methods such as  

Perseus[9]
• Symbolic Perseus[8] can handle millions of states.  We have evaluated this 

method and found it did not scale well with a simple LST problem
•Direct Policy Search [5][10] (such as PEGASUS[7])

• search directly to improve a parameterized policy
• deals well with simulated dynamics rather than having full transistion model

•Multiagent/concurrent decision making[2][4]
• many actions taken in parallel seen as seperate agents sharing knowledge
• effective for compactly representing the value function or the policy itself
• connected to representations of value functions and policies as 

linear combinations of basis functions
•Relational MDPs [6] represent relations between classes of individuals and form 

general plans based on those classes. Related to neighbourhood sampling idea.

Increasing Abstraction 
Over Time

In long term planning, future states are highly uncertain and plans will be 
recomputed long before they are used. Thus, an abstraction schedule could be 
followed as future time steps are considered. The schedule could be determined: 
•as needed : to balance performance and accuracy 
•ahead of time : to indicate level of interest at points in the future
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Neighbourhod Sampling
We will use the cell prototype mapping to 
learn useful spatial structure for efficient 
planning by observing that :
•most spatial relationships have an upper 

bound on their distance of influence 
(e.g. MPB spread no more than 20 km) 

Thus, we can use prototypes to create sample 
neighbourhoods that are much smaller than 
the landscape but still contain useful 
spatial relationships.
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Hierarchical  Abstraction Model
We can maintain a representation at multiple 
levels of abstraction by adjusting the number of 
prototypes used:
•The highest level of abstraction is represented by 

a single prototype, one cluster, averaging out all 
proper ties across the landscape 

•The lowest level of abstraction is represented by 
a prototype for every cell in the landscape 

Advantages: 
•size of state is adjustable 
•planning in the real world is carried out 

hierarchically anyways
• strategic planners deal with forest-wide plans
• tactical planners take these plans and  look 

more closely at local conditions
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LST Problems (Forestry Planning)
Large Scale Spatial Temporal (LST) Planning Problems

Actions

•clearcut all trees 
•cut some trees (thin)
•treat for pests 
•salvage dead trees 
•do nothing 

Utilities

•economic: value of lumber
•social : recreational use
•ecosystem health: habitats

Constraints

•bounds: annual cut limit
•spatial : migration corridors

             viewsheds

Properties

Cell (Stand)

Landscape (Forest)

•number of trees
•soil type
•tree species
•level of Mountain 

Pine Beetle (MPB)

Properties and actions 
are defined for every 
cell in the landscape.

Mountain Pine Beetle
(Dendrochtonus ponderosae)

•Life cycle : 1 year 
•Dispersal distance : up to 20km 
•Origin : naturally endemic 
•Trees at risk : lodgepole pine and other 

pine in BC and increasingly in Alberta 
•Method of attack : burrows under bark, 

cuts off water, leaves fungus and eggs
•Current infestation : over 11 million ha 
•Weaknesses: thin forests, young trees, 

fire, extreme cold (-40C) 

•MPB spread affects utility by killing trees
•Actions affect MPB spread by altering the trees they can 

spread to

MPB makes planning problem more complex
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