
Evaluating Influence Diagrams
Where we’ve been and where we’re going

Mark Crowley
Department of Computer Science
University of British Columbia

crowley@cs.ubc.ca

August 31, 2004

Abstract

In this paper we will survey the history of Influence Diagrams from their origin
in Decision Theory to modern AI uses. We will compare the various methods that
have been used to find an optimal strategy for a given influence diagram. These
methods have various advantages under different assumptions and there is a pro-
gression to the present of richer, more general solutions. We also look at an abstract
algorithm used as an informal tool and determine whether it is equivalent to other
formal methods in the literature.

1 Introduction

This paper will look at the development of influence diagrams from their beginnings
in decision analysis to their current important place in many areas of computer science
including artificial intelligence. We will layout the different methods used to optimize
decisions using influence diagrams by computing them directly or via conversions to
other models such as decision graphs and bayesian networks. The latter type in par-
ticular will be looked at in depth and it will be contrasted against the performance of
various algorithms. We will also explain an intuitive algorithm used informally by
some researchers and analyze its advantages or similarities with methods described in
the literature. The main contribution of this paper is to identify trends through all these
solutions over time and help focus work on open questions and to find new directions
being pointed to by the existing literature.

2 Influence Diagrams

Influence diagrams (IDs) were proposed by Howard and Matheson [HM03] as a tool
to simplify modelling and analysis of decision trees. Decision trees represent each de-
cision or chance variable as a new level in a tree. The leaves of the tree are utilities
that express which ending configurations are more desirable. Solving a decision prob-
lem requires finding the optimal path through this tree that maximizes expected utility.

1

Now instead of representing each level of that tree we represent each variable as single
nodes in a graph. An influence diagram is a directed acyclic graph N containing nodes
representing the variables of the decision problem, V = X ∪D ∪U. Each variable has
its own domain of values, dom(v). The set of parents of a node v i is denoted πvi . These
variables are of three types, see Figure 1:

• chance nodes, xi ∈ X , represent random variables in the analysis. They have an
associated conditional probability table (CPT) representing a distribution P(x i|πxi).

• decision nodes, di ∈ D, represent decisions to be made. We use decision rules
δi, to represent the mapping of each permutation of its parents to exactly one
decision, δi(πdi) ∈ dom(di)

• utility nodes, denoted ui ∈ U, represent functions that map each permutation of
its parents to exactly one utility value valui(πui) ∈ dom(ui). No other variables
are allowed to depend on a utility directly so utility nodes do not have children.

An optimal decision rule δ∗i is one that maximizes Eδi
[valui(πi)], the expected value

of the utility nodes it effects. The goal in decision analysis is to find an optimal policy
∆, which is the set of all optimal decision rules ∆ = {δ∗1, . . . ,δ∗k}, one for each utility
node. The expected value of a utility node given ∆ is denoted E ∆[valui(πui)]. Thus, we
are seeking:

∆ = {δ∗i ∈ D|∃ui ∈ U, argmaxδiEδi [valui(πi)]} (1)

and

E∆[N] = ∑
ui∈U

E∆[valui(πui)] (2)

Finding these is what we mean by evaluating an influence diagram.

x2

u

x1
d1

d2 x3

Figure 1: A simple Influence Diagram

2

Definition 1 An influence diagram is regular if there is a definite ordering of the deci-
sion nodes such that there is a path from each decision to the next decision. Further,
the ID is no-forgetting if each decision has access to all of the information the previous
decisions had. This means that every element of di ∪πdi is a parent of every decision
following di.

IDs have several well known advantages over decision trees. They simplify modelling
by allowing the analyst to specify single nodes that represent entire probability distri-
butions over nearly arbitrary relationships with other variables. We still limit ourselves
to regularity as defined above and no loops but this still provides a level of expression
not possible with trees. In order to express conditional independence relationships that
are natural in an ID we would need to resort to the use of complicated information sets
amongst siblings in a tree. This may help computationally but not in terms of con-
structing models. We also must consider that as the number of variables in the problem
grows, the size of a symmetric tree grows exponentially, which is not true in the case
of influence diagrams and their CPTs since they need only represent the probabilities
associated with their parents in the graph.

So influence diagrams have much to offer if they can be evaluated efficiently.

3 Using Bayesian Networks to Evaluate Influence Dia-
grams

This approach was first put forward by Cooper [Coo88] who showed primarily how to
reduce influence diagrams to bayesian networks. Shachter and Peot [SP92] soon after
showed an improved algorithm that was much more efficient. Later, Zhang [Zha98] in-
troduced a modified method that greatly reduced the number of nodes being considered
in each part of the evaluation. Recently Xiang [XY01] has proposed an algorithm that
claims to be as efficient as Zhang’s but simpler. We will briefly present the approaches
of these algorithms.

3.1 Cooper’s Reduction

Cooper [Coo88] converted the ID problem to a BN problem in the following way. An
influence diagram is essentially very similar to a bayesian network already, all that is
required is to ensure that all nodes have proper probability distributions associated with
them to allow us to perform inference. We thus proceed by essentially converting all
node types to chance nodes. Decision nodes are converted to chance nodes with an
even distribution:

∀αdi ∈ dom(di),P(αdi |πdi) =
1

|dom(di)|
We also need to assign some probability to utility nodes to represent their payoff.

Cooper assigned the probability of the new binary-valued utility nodes given its parents

3

in the BN a probability proportional to the value of the utility function in the ID for the
same parents1:

P(u = 1|πu) =
valu(πu)

maxπuvalu(πu)

P(u = 0|πu) = 1− valu(πu)
maxπuvalu(πu)

And obviously no change is needed for the chance nodes from the ID itself.
With the construction complete they then showed that the problem of finding an

optimal decision in the ID reduces to a problem in the BN2 :

Eδi
[valu(πu)] = P(u = 1|πu,di)

Their suggested method of solving then is to maximize these δ i for each permutation
of πu. This can require an exponential number of inference steps. Therefore later work
based themselves on this reduction method but went further.

3.2 Shachter and Peot’s Algorithm

This method [SP92] took advantage of the independence structure of the BN and the
regularity constraint that says there is a defined order of decision nodes. They noted
that instead of maximizing P(u = 1|πu,di) they could instead maximize P(πu,di|u = 1).
This is preferable since the computations can now be done locally using standard BN
techniques of belief propagation. We can recursively optimize each δ i starting from the
last continue optimizing δi−1 until we reach the beginning. This method seems very
intuitive and is actually nearly equivalent to Shachter’s original technique from [Sha86]
except that now the bayesian network is handling all of the graph manipulations which
previously had to be specified separately.

3.3 Zhang’s Algorithm

This method was based on previous advances made by Zhang and Poole regarding
the notion of stepwise decomposable IDs [ZP92] and bayesian inference techniques
[ZP94]. The intuition for this method is that in a regular, no-forgetting ID the parents
of each decision divide the graph into two independent partitions, see Figure 3.3. They
show that if we consider the last decision in the ordering dk, called the tail decision
node, then it partitions the network in an interesting way.

Call the partition containing the tail decision node T . This set of nodes is separated
from nodes previous to those in πdi . It also only includes nodes in πdk and V2 that can
effect the utilities in V2, denoted u ∈ Ui. The optimal decision rule for di can then be
computed as follows:

δ∗i (πdi) = arg maxδi ∑
u∈U2

PT (u = 1|πdi ,di) (3)

1In this and the following section the algorithms limit the ID to only one utility node, therefore subscripts
on u’s are not necessary at this point

2we include di simply for emphasize but it is not necessary since di ∈ πu

4

di ∈V2V1 πdi

Figure 2: A simple Influence Diagram

Note that PT (·) indicates that the probability is computed relative to nodes only in T
since all other nodes earlier in the graph are irrelevant to this decision. This greatly
reduces the computational task for computing the optimal tail decision. Previous meth-
ods always included the entire graph in their calculations even though they had no
impact. The algorithm then proceeds to recursively divide the BN into a body and a
tail, optimizing the tail decision, setting that decision to have decision rule δ i and re-
peating on the remaining body. During this process more nodes can be pruned from
the reduced tail to improve computation further.

It turns out that after we consider this we can see that the requirement of no-
forgetting can now be dropped as long as regularity is maintained. That is, a decision
di need not have incoming arcs from all d1 . . .di−1 previous to it as long as there is still
a route going through d1 . . .di in order. This means that previous decisions can now be
’hidden’ from us with chance nodes as shown in Figure 3. The information is not really
hidden since di is still conditionally dependent on di−1 as long as ci−1 is not observed
so the decision will still influence future ones. Using Zhang’s algorithm d i can still be
optimized. So this opens up influence diagram evaluation to less restricted forms.

xi−2

xi−3
xi−4

xi−1

u

di

di−1

di−2

xi

V1 πdi V2

Figure 3: A influence diagram with no-forgetting rule dropped

5

3.4 Other algorithms

Xiang and Ye [XY01] have recently published an algorithm using BNs that claims to
be as efficient as other described here and simpler than Zhang’s in particular. Further
analysis is required to determine if these claims are significant as the paper does not
state any conclusions directly. Much work has also occurred around evaluating influ-
ence diagrams without using BNs but using other methods such as Shenoy’s valuation
based networks [She92] and some recent work by Dechter using BNs but with bucket
elimination [Dec00].

4 An Abstract Algorithm

The following method has been proposed informally by David Poole and follows from
several intuitive observations. Assume we have influence diagrams as described al-
ready which are represented as bayesian networks in the standard way as described by
Cooper [Coo88]. Also assume that we have the variable elimination (VE) algorithm
[ZP94]. Using VE we can specify to eliminate a node and a factor will be produced to
distribute away that node’s probability to effected nodes in the graph. With these tools
in hand we can simply specify a method for evaluating influence diagrams.

We define Ud to be the set of all u ∈U such that d ∈ an(u). This is the set of utility
nodes that d needs to maximize. We note that as long as the parents of these utility
nodes, πUd , are all accessible to d then d can be optimized easily, as in Figure 4. Thus
the algorithm eliminates any nodes that are parents of a node in Ud but not d.

for all d ∈ D do {chosen in reverse order}
while πUd �⊂ (πd ∪d) do

Let x be any node in (πUd − (πd ∪d))
eliminate x using Variable Elimination algorithm
add all nodes in πx to πUd

end while
for all instantions of variables in πd do
δ∗(πd) = arg maxd(P(u = 1|πd,d)) {choose value for d that maximizes Ud}

end for
make d a chance node by setting its CPT to δ∗

end for

We see in
Consider the ID N shown in Figure 4. In this situation we can clearly see that the

decision d has all the necessary information to decide optimally.

• For each permutation of πd choose each decision α ∈ dom(d) such that α =
arg maxα(valu(πu,α))

• After this we will have δ∗ so we assign that to d’s CPT to turn it into another
chance node

• Then we eliminate dk which updates the table of u to take this decision rule into
account

6

x3

x2

x1

u

d

Figure 4: Base case of reduction using the algorithm

• Now we can eliminate x1,x2,x3 to give us the utility node which is really just
Eδ∗ [N]

With this as our base case the rest of the method involves being able to reduce
more complicated IDs to ones containing the form in Figure 4. In Figure 5 we can see
another simple case. Here the only node inhibiting optimizing d is x 4 since d does not
observe it. With VE its easy to fix this, we simply eliminate x4 which will update the
CPTs for u,x1,dk.

x3

x2

x1

ux4

d

Figure 5: Another simple case of reduction using the algorithm

Let us now consider the ID shown previously for Zhang’s algorithm, Figure 3. Can
our intuitive algorithm evaluate this situation? If we consider the steps shown in Figure
6 it would seem the answer is yes. Any information arc that would come from d i−1

would be irrelevant since xi−1 already provides information to us and it does not effect
the actual utility. Also, since we are converting di to a chance node once it is optimized,
the no-forgetting constraint does not apply and d i can be eliminated using VE without
complication.

It is not surprising this method performs as well as Zhang’s algorithm. The defi-
nition of stepwise-decomposability partitions nodes in the graph using the same fun-
damental rules that govern conditional independence on which VE is based. The VE
algorithm for marginalizing the probabilities inherently does computations locally and

7

xi−2

xi−3
xi−4

xi−1

u

xi−2

xi−3
xi−4

xi−1

u

xi−2

xi−3
xi−4

u
xi−2

xi−3
xi−4

xi−1

u

di

di−1

di−2

xi

(i)

di−1

di−2

(ii)

xi

di−1

di−2

(iv)

di−1

di−2

(iii)

Figure 6: Evaluating a ’forgetful’ ID. (i)tail decision node optimized (ii)-(iv) removing
other chance nodes before next decision node

need not rely on nodes further back in the graph that are irrelevant given the parents
of a node. Zhang’s algorithm sets up this framework independent of VE however and
thus is general enough to use any bayesian inference technique that works. Our intu-
itive algorithm is basically a special case of Zhang’s where we have hardcoded the use
of the inference technique and thus much of the other complexity of the algorithm is
taken care of already.

5 Conclusion

We have shown a brief overview of the vast and still growing field of influence diagram
research. We have discussed their basis in decision analysis and shown some of the
major algorithms for evaluating them in order to come to an optimal policy that max-
imizes utility. Many of these algorithms utilize bayesian networks and we have also
shown an informal algorithm from intuition used by researchers that is a special case of
the algorithm by Zhang [Zha98]. There are many open areas of research being actively
pursued including ways to further improve evaluation efficiency and extend influence
diagrams to ever more general realms.

8

References

[Coo88] G.F. Cooper. A method for using belief networks as influence diagrams. In
Procceedings of the Twelfth Conference on Uncertainty in Artificial Intelli-
gence, pages 55–63, 1988.

[Dec00] Rina Dechter. A new perspective on algorithms for optimizing policies under
uncertainty. American Association for Artificial Intelligence, 2000.

[HM03] R. A. Howard and J. E. Matheson. Influence diagrams. In Readings on the
Principles and Applications of Decision Analysis, pages 721–762. Strategic
Decisions Group, 2003.

[Sha86] R.D. Shachter. Evalutating influence diagrams. Operations Research, 1986.

[She92] P.P. Shenoy. Valuation-based systems for bayesian decision analysis. Opera-
tions Research, pages 463–484, 1992.

[SP92] R.D. Shachter and Peot. Decision making using probabilistic inference meth-
ods. In Procceedings of the Eigth Conference on Uncertainty in Artificial
Intelligence, pages 276–283, 1992.

[XY01] Y. Xiang and C. Ye. A simple method to evaluate influence diagrams. In
Third International Conference on Cognitive Science, 2001.

[Zha98] Nevin Zhang. Probabilistic inference in influence diagrams. In Proceedings
of the Fourteenth Conference on Unvertainty in Artificial Intelligence, pages
514–522, 1998.

[ZP92] Nevin Zhang and David Poole. Stepwise decomposable influence diagrams.
In Proceedings of the Fourth International Conference on Knowledge Repre-
sentation and Reasoning, pages 141–152, 1992.

[ZP94] Nevin Zhang and David Poole. A simple approach to bayesian network com-
putations. In Proceedings of the Tenth Canadian Conference on Artificial
Intelligence, pages 171–178, 1994.

9

