Adding Local Constraints to Bayesian Networks
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Abstract. When using Bayesian networks, practitioners often expresstraints
among variables by conditioning a common child node to iedhe desired dis-
tribution. For example, an ‘or’ constraint can be easilyresged by a node mod-
elling a logical ‘or’ of its parents’ values being conditeghto true. This has the
desired effect that at least one parent must be true. Howewrditioning also
alters the distributions of further ancestors in the nekwbr this paper we argue
that theseside effects@re undesirable when constraints are added during model
design. We describe a method callddeldingto remove these side effects while
remaining within the directed language of Bayesian netwofikhis method is
then compared to chain graphs which allow undirected arettid edges and
which model equivalent distributions. Thus, in additiorstiving this common
modelling problem, shielded Bayesian networks providexa@hmethod for im-
plementing chain graphs with existing Bayesian networkstoo
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1 INTRODUCTION

When using Bayesian networks it is often convenient to uselitioned nodes to en-
force constraints across the network. Consider the foligweixample:

Example 1.There are three professoAdjce, Bob andCindy, at a university that needs
at least one instructor for its Al course. For Alice we definarfvariablesi 4, mod-
elling our belief that she is interested in Al; this influead® 4, our belief they she
wants to teach the course; which influen@gas our belief that she will actually end up
teaching the course; which influenckg, our belief that she completes her current re-
search project on time. Variables are defined analogousBdb and Cindy. The joint
distribution of the variable§'4, Tz, T is consistent with the constraint that at least
one professor must teach the course.

A natural way to represent this distribution is to add a na@dep the network that
models an ‘or’ of its parents and is conditioned to true. Fégli shows the Bayesian
network that results. This enfordaie desired constraint onto the varialiles Tz, T

4 There are other ways to achieve this type of distributiorheit conditioning but it requires
many new variables to be added and is difficult to maintaie [$Efor more details.
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Fig. 1. Topic interests and teaching desires of three profesgoris. an ‘or’ node stating that
someone must teach the course.

which we call theaffected nodesrhis is similar to what [2] calls adding constraints us-
ing an auxiliary network. That paper models constraints leygimg constraint network
formalisms into Bayesian networks.

The desired distribution is one where the CPDs of all nodpsess the probabilities
giventhe presence of the constraint on the affected nodes. Thwd4 = true) = .7
then we wanip(I4 = true|C) = .7. Butin a standard BN this will not be the case.
14 will be influenced byC', we call this influence aide effeciof C'. The reason we
don’t want side effects is that they arise from treatitigas evidence ang(T4|W,)
as a simple conditional distribution. In fact, for this mgdeither of these is the case.
C'is merely a convenient way to express a constraint, it doesamtstitute evidence,
and thus its value should not be used freely for inferencerasidgts ancestors. But the
constraint must be satisfied amongst its parents and thébdistn on7'4 is defined
given the constrainh(T4|W ) actually defines the probability distribution’6f; given
that someone else has already been assigned to teach the.cour

Thus, the constraint should have no influence’lpaoOur beliefs about Alice’s in-
terest in Al are tied to the likely teaching assignments betdecoupled from the con-
straints on those teaching assignments. Altering or obsg@indy’s interest in Al
should have no impact on Alice’s interest. On the other hay,is influenced by the
constraint. Research productivity is directly influencgddaching assignments and so
anything that impacts this must be taken into account whégrahéning the likelihood
of Ry.

Here we present a method to eliminate these side effecte widintaining a fully
directed model and using existing Bayesian network tootswill compare this method
to chain graphs [3] which represent the same set of distobsiby defining away the
possibility of side effects. This paper has the dual goalxpianing how to solve a
practical modelling problem with existing tools, as wellgiging a new interpretation
of chain graphs in terms of fully directed models.



2 BAYESIAN NETWORKS

A Bayesian network (BN) [4] is a directed acyclic graph theginesents the interdepen-
dence amongst a set of random variables. Suppose the esriatdl;, ..., V,. The
Bayesian network represents the following the factorizator the joint probability of

a set of nodes in a Bayesian network:

p(Vi,.... Vo) = [ p(Vilpa(Vi)) (1)
=1
wherepa(V;) are the parent nodes on whithis dependant, if any.

2.1 TYPES OF CONDITIONING

Conditioningrefers to the general technique of setting a variable to ticpéar value
within a BN. There are, at least, three types of conditionifige most common type
is simply recording an observation about the state of a bkriar observation condi-
tioning. The value here represents new information that rules ossiple worlds that
are incompatible with the observation. The remaining wodde then renormalized to
sum to 1. An observation can influence all of its ancestorsthanl descendants.. If
a variable is set by the user arbitrarily we call timgervention conditioning5]. In
this case the variable is set to some value by a mechanisndewsthe model and
so is not indicative of the variable’s distribution. Thug tintervention cannot be used
for inference about influences on the variables Decisiorabies are of this type. An
intervention should be cut off from influencing its ancestbut still influences its de-
scendants.

A third type of conditioninggonstraint conditioningis the type being addressed in
this paper. A node’s value is set as part of the model defiitimrder to induce a par-
ticular distribution amongst its parent nodes. Other alaceshould not be affected just
as they are not affected by the initial distributions of alyeo descendants. Influence
on ancestors is cut off, just as in intervention, but in thisecone level of nodes are
allowed to be influenced. All of the descendants of thesenpsueill then be influenced
in the usual way. In this paper the constraint conditionediissuch a€' will be called
c-nodesThe nodes in the constraint will (the parents) are the tdtenodes oe-nodes
Nodes that are parents of affected nodes but are not theassaffected are known as
shielded nodesr s-nodes

We believe this is an important modelling problem for BNsy@&sian networks are
used widely every day for a broad range of purposes. We knom ftiscussions with
practitioners and experience that constraint conditigisroften used in practice. This
is done as a natural extension of BN modelling and the fullifiaations of side effects
on the model may not always be realized. It is important f@s thsue to be widely
discussed and possible solutions or alternative modeHticigniques provided.

3 REMOVING SIDE EFFECTS

Our goal now is to construct a BN in such a way that after infeeds carried out the
constraint conditioned nodes will have the desired infleesned no more. We call this



methodshielding The chief insight is that we can add more conditioned nodleatcel
out the side effects. So, after adding a nadevhich we will define momentarily, we
want the following to be true:

p(Walla,c,é) = p(Walla) p(WslIp,c,é) = p(Wg|Ip)
p(Welle,c,¢) =p(Welle)  p(Wa, Wi, Wele,¢) = p(Wa, Wi, We)  (2)

wherec indicates that' = c.

3.1 ANTIFACTORS

To defineC' we need to think about how inference is carried oufaétor is the result

of summing out some variables in a network during inferergingia technique such
as variable elimination [6][7]. In our example, if the affed nodes are summed out a
factor is obtainedfr, .. (Wa, Wg, W), representing the combined effect of the con-
straint on thdV 4, Wi andW nodes. To cancel this we createamtifactornode,’,
with these nodes as parents, see Figure 2. The distributiGhi®defined by inverting
the factor for the affected nodes as follows:

1 1
3
Z frape Wa, Wg, W)

wherefr, .. (Wa, W, We) = > p(c|Ta, T, To)p(TalWa)p(Ts| Wi )p(Te|We)
T

P(E|W 4, W, W) =

The constanty, ensures that all values are in the range [0,1]. During érfee this will
cause the distributions af' and the node€’, T4, Ts andT to exactly cancel each
other making the distribution consistent with (2).

X

Fig. 2. An antifactorC' shields the influence of thenodeC.



3.2 GENERAL ANTIFACTORS
We now define the problem more generally.

Definition 1. A shielded Bayesian network (SBId§ satisfying the following require-
ment:

p(Scle,¢) = p(Sc) (4)

WhereC is ac-nodeand (' is a conditioned node added to the network with a distribu-
tion constructed to satisfi4). The sefEc = pa(Ec) contains theaffected nodeand

Sc = pa(pa(C)) — Ec contains theshielded nodesVe assume there is no node in
that is both an ancestor and a descendant of noddsdn

This can be satisfied by creating an antifactor nédlewith parentsSc such that

) 11
p(éSc) = 7 e (80)

A more general case is shown in Figure 3. Héteand C, are connected in a
component because they share parentsxL the minimum set of pairwise, disjoint
components. The s&; then denotes all the nodes to be shielded from egargdein
%. An antifactor(, is defined with parentS,.. Its distribution is computed by summing
out all nodes irE,, = FE¢, U E¢,.
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Eig. 3. The nodesl, M, N are constrained by two-nodeswith « = {C1, C>}.The antifactor,
C, cancels out the effect on ti$s, nodes.

Definition 2. With « as a, possibly singleton, set of connectedodesand C' as its
corresponding antifactor node, the following is the geméefinition of shielding:

p(Sﬁlli,é) :p(sn) (5)



Note that the antifactaalways exist®xcept in the case where the facir. (S,)
contains a zero term. This occurs when the distribution efaffiected network assigns
a probability of zero to some instance 8f, after all the affected nodes have been
summed out.

4 ANTINETWORKS

The major drawback of using antifactors is complexityconnects all of the nodes in
S, creating a large new clique in the network. We could impravaplexity by creating
a conditional structure to reduce the number of parentseoattiifactor.

An antinetworkis a set of nodes that mimic the structure of the origivalode
and its parents. The distributions of the cop&@ndE; nodes are computed so that
summing outE; will yield m Figure 4 shows the antinetwork for our example.

clliclo

v
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Fig. 4. An antinetwork shields the influence ofnodeC.

4.1 EXISTENCE OF A SOLUTION

Unlike the antifactor solution it is not certain that a proget of parameters for the
antinetwork always exists although we have found them inycases. Here we discuss
some general properties of solutions.

The parameters to be solved for the antinetwork conformeddhowing system of
equations. For simplicity, the case with binary nodes isxshbere.

1
Letm = fg.(Sk) = o (S0

m= > [Ir@Ee) []p(Ise)

z€E; ¢ek écx

= > JIre [Twe) =91 = 90) =0 — 7 = go(X) (6)

z€E; ¢cER écx



Wherez captures one assignment to all the node&jnand the indicator exponent

(é = t) is simply 1 or 0. Note that this represents one equation for each instance
s € S,. We will refer to this system ag,(X) for X = {~: v} for all ¢ € x and

é € E;. When X is found such thag,(X) = 0 then the antinetwork satisfies the
shielding requirement.

Solution Bounds When all the parameters are set to zero, dendigdand one X1,
the system yields:

9s(Xo) = —m gs(X1)=1-m
Sincer is normalized to be a probability we have
gs(XO) gOggé(Xl) foralls € S,

Sinceg,(X) is a continuous function for eache S, we know there is a solutioi ,
such thaty,(X;) = 0. Unfortunately, we have not yet been able to show that trere i
always a simultaneous solutiof,,, to these equations such tha(X.) = 0 for all

s € S,. The solutionX. is easy to identify when found as all the functions will be
zero. WhenX # X,, the solution can be used as an approximation to the coyrectl
shielded distribution.

4.2 FINDING A SOLUTION

The antinetwork parameters can be solved by framing thencasastrained optimiza-
tion problem The objective function is a linear combination of thg X) functions.
The same functions are also used to define nonlinear, inggoahstraints of the form
gs(X) > 0. Optimization is then begun at some known positive pointhsasX; and
minimized until allg,(X) = 0. See [1] for more details.

4.3 SOLUTION EXAMPLE

The solved CPDs for the antinetwork nodes, for Example 1shogvn in figure 5. The
posteriors of the shielded nodé#4, and their ancestord,, are correctly uninflu-
enced by the existence of the constraint. In particularati@stors maintain their prior
distributions:

p(Ia =tle,é) =3 p(Ip =tle,é) = .7 p(Ic =tle,é) = .6

For networks where the affected sets overlap this methosl wloiealways find an exact

solution. Our results approach the correct distributiondmnot find an exact match.

This indicates a solution may exist and that improved segchniques could yield a

better approximation or an exact solution. When an exaatisal is required an antifac-

tor can always be used to shield the givenodesnstead. Furthermore, antinetworks
and antifactors can be used in the same network.
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false| true | true |.06466 ’

false| .8 false| .8

false| true |false|.01157 faise] 8

false | false| true |.06908

false | false| false|0.79699

Fig. 5. Computed CPDs for antinetwork found using nonlinear camséd optimization.

5 UNDIRECTED MODELS AND CHAIN GRAPHS

Another way to think about constraint conditioning is thgbuwundirected models. A
Markov Random Field (MRF) [4] can easily be expressed as a BNeplacing all
cliques potentialsp, with conditioned nodes. A simple construction makes thesic
see Figure 6:

— For each clique; in the MRF, remove all links between nodes and replace with a
directed link from each node i§; to a new binary nodé€’;.

— Assign the CPD o€’; such thap(C; = true|€;) = ¢,(¢&;)

— Condition all of these added; nodes to be true.

These two representations model equivalent distributidoge that under this construc-
tion the conditioned nodes will never have grandparentiigbding will not be needed.

To model the full range of distributions we are interested/@need a combination of
directed and undirected relationships.

5.1 CHAIN GRAPHS

A chain graph(CG) [3] is a graphical model that can have directed or untiddedges
between its nodes. ghain component € 7, is any set of nodes forming a connected
component using undirected edges. Nodes in the directedpsof the network form
their own chain components of size one. A CG can be seen as&aetir acyclic graph
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Fig. 6. MRF to BN construction: a) A Markov Random Field. b) This MR&aBayes net with
conditioned nodes replacing clique potentials.

of chain components. The graph is acyclic in that there angantally directed cycles
This is a cycle containing some directed edges, all poiritinige same direction around
the cycle. Our example can be represented as a CG with thetaaffrodes represented
as in figure 6(a) and other nodes connected as within thenati§iN.

The joint density of a CG is given by the following factorizat [8] where the
values of a set of variabl@sgis given byz,,. Here A(7) are all the fully connected sets
of nodes from withinr U pa(7). Each of these has a clique potential(x 4 ) across the
nodes in the fully connected set. Thgerm normalizes the density by summing across
the values of all the nodes within the current chain compbnen

p(‘TV) = H p($7|$pa(r)) (7a)
T€T
p($7—|$pa(7))= ﬁ H da(za) (7b)
T/ AcA(r)
Z(x) =Y I ¢al@a) (7c)
Tr ACA(T)

Consider computing(1¥4). It is clear that the distribution of th&4, Tz, T chain
component will play no part. This is because the nodes intiagavill be summed out

in equation (7b) which will lead thé and Z terms to cancel exactly. In fact, lacking
any observations, the variabl@s, , Wg, W are independent of each other. CGs thus
already express the kind of distribution we are concerngld where a joint constraint
can exist amongst a set of variables without their ancebtirg) affected by the exis-
tence of that constraint. Note that in the presence of obtiens of a node ifi’y, T or

T this independence would no longer hold as this is new inftionahat is relevant

to all nodes.

5.2 EQUIVALENCE OF SBNs AND CGs

We will show the equivalence of shielded Bayesian networkh whain graphs by
mapping each portion of SBNs to the factorization of CGs femquation (7).



1. The assumption in definition 1 is equivalent to the restncagainst partially di-
rected cycles in CGs.

2. Each chain component, in a CG has a corresponding sedf c-nodesn an SBN.

3. Each potential function in the CG corresponds to theitigion of ac-nodeand
the set of its affected nodes in the SBN

pa(ra) x p(c|Ec)p(Ec|Sc).

4. TheZ term is equivalent to marginalizing out the affected no&esfor antifactors:

Fio <8 = gy ®)
And similarly for antinetworks:
1 .
7 ™ p(¢[Ex) lE_,Ip(EASK) = 7e.(S0) 9)
Note that ifx contains more than orenodethen they must be dealt with simulta-

neously.

With these mappings in place, the joint distributions irheitmodel comes from a
calculation that is equivalent up to a constant factor. Hugivalence shows us that
both models can be used to represent the same distribution.

The complexity of inference in graphical models is expoiztin the size of the
largest cliques in the network. We use clique in the sameesasin Junction trees [9],
which are often used to perform inference in graphical nedésing either SBNs with
antifactors or CGs this will be dominated by the size of theSse This is because an
antifactor has all of the nodes By, as its parents and so creates a clique of that size.
Likewise, the potential function of a CG,(x4), is defined over anoralized graph
[10] where all the parents of nodes in a chain component aneaxied together. As
we will show in the next section, antinetwork can avoid tHimAup at least for some
classes of networks.

6 COMPLEXITY COMPARISON

Consider the case where eaetnodehasm parents, none of which are shared with
othere-nodesand all nodes have a domain of size This is the type of distribution
described in Example 1. In all networks of this type tried atireetwork solution has
always been found.

The complexity for CGs is then exponential in the size of tigue A which is :

CG = D!Ecl+lscl

= plEclmiEcl  since|Sc| = m x |E¢|

— DlEcl(m+1) (10)



For SBNs with antifactors, all of the-nodesre combined into one clique. To maintain
the triangulation property for junction trees easimodeis joined to alls-nodesThis
leads to a slightly higher complexity than for CGs althoulgd iominant term is the
same as the CG complexity.

SBNantifactor = D‘ECH_‘SC‘ + D|SC| + D‘Eol (11)

An example of the junction tree for the third model, usingirstivorks, is shown in
figure 7. Conditional independence in the antinetwork redube complexity to:

Fig. 7. Junction tree for antinetwork model witEc| = 2 andm = 3.

SBNantinetwork - D2|EC‘ + |EC|D2+m + 2D|EC‘ (12)
Thus, for this set of models we find that
SBNantinetwork < CG when both E¢| > 2 andm > 2.

So in general, as the number of parents of eagiodegoes up, SBNs increase in
complexity more slowly than CGs if the connectivity betwesrestors of eaatrnode
is low. When this is not the case, the antifactor methodstdlvides a solution that has
the same dominant term as the CG although it will have additiemaller cliques as
well.

7 CONCLUSION

In this paper we have formalized a common informal techniguadding constraints
to BNs and pointed out serious side effects that may not bhiesded he modeler faced
with these unwanted side effects has several choices. Theg re-evaluate their mod-
elling assumptions, attempt to represent the constraothiar ways or use chain graphs
instead. Modelers now have another option which is to useobiige shielding meth-
ods proposed here. The first method, antifactors, is urdlarsd simple to apply but
may be costly during inference. The second method, antor&syis more efficient for
inference and while the empirical existence of solutionw@snising there are no guar-
antees as of yet. The distributions modelled by these n&tnare equivalent to those of



chain graphs. We have shown that at least for some classéstriffution, antinetworks

are a more efficient representation than chain graphs. éudthestions remain such
as: Are there antinetwork solutions for wider classes of BMge there any distribu-

tions that have compact antifactor solutions that would loioe the advantage of both
shielding methods? Can antifactors or antinetworks takemstdge of context specific
independence to reduce complexity?

There are strong similarities between our methods and camgattary priors in
[11] which offer intriguing lines of further research indrning. That work computes
complimentary priors quickly and efficiently to cancel onteérdependence between
network layers, it would be interesting to see if this can pplied to our modelling
task. We believe the modeller’s toolkit should include aietgrof methods that al-
low flexibility to model any distribution needed. The teatpnés described here can be
a very useful part of that toolbox when directed models antstaints are needed.
Chain graphs are also available for these tasks but SBNghi@nNery natural to many
modellers familiar with BNs. They require no extra tools begt standard BN software
to be used and it would be straightforward to implement prgaiéers to automatically
add antifactors or antinetworks to BNs. This solution citwities to Bayesian network
modelling as well as adding insight into the relationshipsazen all of these common
modelling languages.
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