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Typical results from HAVR reward 

model. Sustainable, low cut plan.

Common local minima from 

another run of HAVR. More 

aggressive plan, still 

sustainable over 100 years.
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The Problem
Automated planning in large scale spatiotemporal  

environmental domains such as forestry. 

Actions need to be taken at multiple locations at 

each moment in time.

Provide positive reward for volume cut minus...

- HVR = penalty for irregular harvest volumes 

over time 

- AVR = penalty for irregular available volume 

of the forest over time 

- HAVR = HVR + AVR

Three Reward Models

Policy Gradient Planning
Gradient of value function does not require 

dynamics, only gradient of log policy.

Unsustainable plan coming 

from an AVR run. Forest 

population collapses 

completely.

Why is this hard?

II - Cannot treat locations as independent

- non-local rewards - constraint on total harvest per 

year, constraint on irregular harvest flow year to year

- spatial constraints - no cutting of adjacent cells, 

maintaining an age distribution

- spatial dynamics - Mountain Pine Beetle spread

III - Cannot analyse dynamics directly

External Simulators

- black box - best models are simulators built by 

researchers in forestry.  Designed to explore 

scenarios by manually adjusting parameters.

- FSSAM (Forest Service Spatial Analysis 

Model) -  developed for BC Forest Service to 

simulate effects of different harvest quotas on 

forest development.

Harvest
Volume

Available
Volume

AVR 18,065 411,085
HVR 14,422 248,920
HAVR 20,309 224,212

HAVR High 50,059 417,278
AVR Collapsed 72,859 1,125,138

Standard Deviation from mean Volume 

for Policy Under Each Value Model

Gradient of Landscape Policy

Approximated by generating a 

Markov chain.

θ′ = θ + λ∇θVθ

∇θVθ ≈ 1

|H|
∑

k∈H

R(k)∇θ log π(a
k|sk, θ)

Vθ =
∑

k∈K
p(k|θ)R(k)

where H is the set the trajectories sampled so far.

The PG algorithm updates the policy parameters 

by following the gradient of the value function.  

Policy Representation

Local Policy

Equilibrium Landscape Policy

Locations are not independent, 

so landscape policy has a cyclic structure.

The distribution over landscape actions A is 

the equilibrium of a Markov chain where the 

transitions are defined by the local policy 

where:

πc(ac|a−c, s, θ) =
exp(

∑
f θf (ac)fc(a−c, s))∑

bc∈A exp(
∑

f θf (ac)fc(a−c, s))

θf (a) : F ×A → #
Features : fc(a−c, s)

Action Age Max Avail AnyAdj Volume
Cut -1.55 -1.98 0.71 0.29
NoCut 7.82 6.97 3.85 4.79
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Experiments
- 1880 cells

- binary actions (cut, nocut)

- 4 features

- 100 year planning horizon

- 10 policy updates

- 500 MCMC steps after burn-in
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Age of trees in cell.

Example Map of Age Feature

locations/cells (C) : 1000-100,000

actions (A) : cut, nocut, ...

features      : discrete or continuous, 1-30 features

Number of . . . at each cell entire landscape
actions 2 21000 ≈ 10300

states 210 (210)1000 ≈ 103000

I - Cannot enumerate states or actions

(F) Local Policies
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