Mark Crowley and David Poole crowley@cs.ubc.ca

google+ http://gplus.to/crowley

The Problem

Automated planning in large scale spatiotemporal environmental domains such as forestry. Actions need to be taken at multiple locations at each moment in time.

Why is this hard?

I - Cannot enumerate states or actions

locations/cells (C) : 1000-100,000 actions (A) : cut, nocut, ... features (\mathcal{F}) : discrete or continuous, 1-30 features

Example Map of Age Feature

Age of trees in cell. 0-25 | 26-50 | 51-75 | 76-100 | 101-150 | 150-

Scale for 10 Binary Features and Binary Actions

Number of	at each cell	entire landscape
actions	2	$2^{1000} \approx 10^{300}$
states	2^{10}	$(2^{10})^{1000} \approx 10^{3000}$

II - Cannot treat locations as independent

- non-local rewards - constraint on total harvest per year, constraint on irregular harvest flow year to year - spatial constraints - no cutting of adjacent cells, maintaining an age distribution

- spatial dynamics - Mountain Pine Beetle spread

III - Cannot analyse dynamics directly

External Simulators

- black box - best models are simulators built by researchers in forestry. Designed to explore scenarios by manually adjusting parameters. - FSSAM (Forest Service Spatial Analysis **Model)** - developed for BC Forest Service to simulate effects of different harvest quotas on forest development.

	Harvest	Available
	Volume	Volume
AVR	$18,\!065$	411,085
HVR	$14,\!422$	$248,\!920$
HAVR	$20,\!309$	$224,\!212$
HAVR High	$50,\!059$	417,278
AVR Collapsed	$72,\!859$	$1,\!125,\!138$

<u> </u>	11.00	01 00	0170	7100	0100	
.()	41-50	51-60	61-70	71-80	81-90	91-100