
Toward A Decidable Notion of Sequential Consistency ∗

Jesse D. Bingham
Department of Computer

Science
University of British Columbia

jbingham@cs.ubc.ca

Anne Condon
Department of Computer

Science
University of British Columbia

condon@cs.ubc.ca

Alan J. Hu
Department of Computer

Science
University of British Columbia

ajh@cs.ubc.ca

Categories and Subject Descriptors
B.3.3 [Performance Analysis and Design Aids]: [Formal
Models]; C.0 [Computer Systems Organization]: General—
systems specification methodology; C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: [Multiple-instruction-stream,
multiple-data-stream processors (MIMD)]

General Terms
Theory,Verification

Keywords
sequential consistency, shared memory systems, memory model

ABSTRACT
A memory model specifies a correctness requirement for a dis-
tributed shared memory protocol. Sequential consistency (SC) is
the most widely researched model; previous work [1] has shown
that, in general, the SC verification problem is undecidable. We
identify two aspects of the formulation found in [1] that we con-
sider to be highly unnatural; we call these non-prefix-closedness
and prophetic inheritance. We conjecture that preclusion of such
behavior yields a decidable version of SC, which we call decisive
sequential consistency (DSC). We also introduce a structure called
a view window(VW), which retains information about a protocol’s
history, and we define the notion of aVW-bound, which essentially
bounds the size of the VWs needed to maintain DSC. We prove
that the class of DSC protocols with VW-boundk is decidable; left
conjectured is the hypothesis that all DSC protocols have such a
bound, and further that the bound is computable from the protocol
description. This hypothesis is true for all real protocolsknown to
us; we verify its truth for the Lazy Caching protocol [2].

1. INTRODUCTION
∗This work was supported in part by a research grant and a gradu-
ate fellowship from the Natural Science and Engineering Research
Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03,June 7–9, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

A distributed shared-memory protocol(or, simply protocol) is
an algorithmic and architectural description of how multiple CPUs
share a common memory space. Amemory modeldefines a set of
allowable behaviors for a protocol, and formally specifies how the
memory system will appear to the programmer [3]. Hence the cor-
rectness of a protocol is always with respect to a specific memory
model.

Much research has be conducted on the shared memory model
sequential consistency (SC)since its inception [4]. A large por-
tion of this research has pertained to the formal verification of this
property. Verification techniques have been proposed that range
on the automation axis from being manual hand-proof methodolo-
gies [5, 6], to fully automatic procedures [7, 8], and many points
between [9, 10, 11]. Here we focus on fully automatic verification
of SC, and reserve the termverificationto refer to such.

The seminal definition of SC [4] was informal. The subsequent
literature bore several non-equivalent formalizations. Most con-
sider only finite behaviors, though recent work has examinedthe
ramification of interpreting SC over infinite runs [12]. An impor-
tant disagreement actually arises from how the notion ofprotocol
is modeled. Some works take a protocol asany regular set over
the alphabet of memory actionsM , while others further require
that the set be prefix-closed. We call these modelsnot necessarily
prefix-closed (NNPC)andprefix-closed (PC).

Alur et al. have shown that SC under the NNPC protocol model
is undecidable [1]. This formulation admits a protocol behavior,
which we entitleprophetic inheritance, in which a read event re-
ceives a data value from a write event that occurs in the former’s
temporal future. The proof of the undecidability theorem depends
upon the allowance of prophetic inheritance.

We believe that the PC protocol model more tightly fits the realm
of real protocols. Indeed, protocol designers typically describe the
protocol as an automaton where all reachable states are implicitly
accepting [13]. We also believe that a prudent formalization of SC
should disallow prophetic inheritance, since a protocol that sup-
ports this oddity must either predict the future with 100% accuracy,
or govern the value a processor may write. Both of these features
fall well outside of what a protocol can and should do1.

1At first glance, prohibiting prophetic reads might appear topre-
clude the recently proposed optimization ofload value predic-
tion[14]. In reality, however, load value prediction does not rely
on prophetic reads. In the proposed schemes, the predicted value
is remembered from previous reads of the value, which ultimately
came from an earlier write. Furthermore, to guarantee correctness,
the schemes either enforce that the predicted value is coherent with
the memory system and is therefore not prophetic, or else later ver-
ify that the predicted value was correct, quashing any mis-predicted
instructions, in which case the read effectively doesn’t occur until
after the prediction has been verified.

The primary contributions of this paper are as follows. A new
version of SC, called decisive sequential consistency (DSC), is
defined. Informally, DSC requires that when a memory read event
occurs, the protocol “knows” which write event the data value
stemmed from, and the protocol never needs to “change its mind”
in the future in order to maintain SC. It is shown that DSC is
equivalent topast-time sequential consistency(PTSC), the latter
being SC with the restriction that no read event inherits itsdata
from a write that has yet to occur. All SC protocols with which
we are familiar actually implement the slightly stronger DSC.
We then define an object called aview window(VW). A VW
is essentially a compressed representation of a memory trace.
We define subclasses of DSC that are bounded in the size of the
VWs needed to maintain DSC, and show that these classes are
decidable. For illustration of the power of this approach, we show
that Lazy Caching [2] is in such a class. It is our intuition that any
DSC protocolmustimplicitly have a finite set of VWs associated
with any state; these VWs describe what has been “remembered”
by the protocol regarding its execution history, and are utilized
to maintain DSC in the future. We formalize this intuition ina
conjecture. If our conjecture holds, it follows that DSC itself is
decidable.

2. DEFINITIONS
For a naturaln, let Nn = {1, . . . ,n}. Given an alphabetΣ, a se-

quenceor string over Σ is a mappingτ : N` → Σ for some`, and
we define|τ| = `. We sometimes refer toi ∈ N` as anindex(of τ).
A sequence can be expressed by writing its symbols in order, i.e.
τ(1), . . . ,τ(|τ|). Hence the use of the termsleft andright to refer to
features of the sequence makes sense, we sometimes use the term
last to mean rightmost. The prefix ofτ of length i is denotedτ[i].
Given a sequenceτ and a setA, theprojectionof τ onto A is the
sequenceτ↑A obtained by deleting all symbols not inA. Forα ∈ Σ
we say that a stringτ′ ∈ Σ∗ is obtained fromτ by insertingα at po-
sition j if τ′ = τ(1) . . .τ(j)ατ(j +1) . . .τ(|τ|), where j may be any
element ofN|τ|∪{0}

The set ofmemory actionsis the setM (P,B,V) = {R,W} ×
NP×NB×NV . Intuitively, P, B, andV are respectively the num-
ber of processors, addresses, and data values under consideration.
For the remainder of this article, we fixP, B, andV and abbreviate
M = M (P,B,V). For α = (o, p,b,v) ∈ M , we defineop(α) = o,
proc(α) = p, addr(α) = b, andval(α) = v. We call a string over
M a memory trace(or simply trace), and the setsNP, NB, and
NV respectively theprocessors, addresses, and values. We also
define subsets ofM using the wild-card symbol∗. For instance,
(∗, p,b,∗) is the set

{

α ∈ M | proc(α) = p∧addr(α) = b
}

. The
set (R,∗,∗,∗) constitutes theread actionswhile the elements of
(W,∗,∗,∗) are thewrite actions.

Given a memory traceτ, an index i, and addressb, we
define lw(τ, i,b) to be the greatest indexj ≤ i such that
op(τ(j)) ∈ (W,∗,b,∗) or to be 0 if no suchj exists. Intuitively,
lw(τ, i,b) is the index of the last write to addressb that is not
greater thani. A memory traceσ is said to beserial if, for all
indicesi, we haveop(i) = R implies bothlw(σ, i,addr(σ(i))) 6= 0
and val(σ(i)) = val(σ(lw(σ, i,addr(σ(i))))). In other words, in
a serial trace each read action returns the value of the last write
action to the same address2. As a notational convenience, we
defineval(σ(0)) to be a distinguished constant⊥, which signifies

2For simplicity’s sake, we have chosen to disallow initial values;
this approach is also taken in [15]. It should be clear that all the-
ory herein can be generalized to handle formalizations thatallow
reading of initial data values.

that no value has been assigned. Given traceτ and processor
p, the index of the last action in(∗, p,∗,∗) is extracted via
l pa(τ, p) = max({i | proc(τ(i)) = p} ∪ {0}). Here, the acronym
l pa stands forlast processor action.

We typically useσ to represent a serial trace, whileτ represents
a trace that is not necessarily serial.

A reorderingof a traceτ is a permutationπ on N|τ|, and we de-

fine the traceτπ to beτ(π−1(1)) . . .τ(π−1(|τ|)). We allow applying
a reorderingπ to a prefix of lengthk < |τ| by defining the permu-
tation π′ : Nk → Nk such thatπ′(i) < π′(j) ⇔ π(i) < π(j) for all
i, j ∈ Nk, and then defining the reordered prefixτ[k]π to be equal
to τ[k]π

′

. Associated with a trace is a partial order which places
actions of the same processor in the order they occur in the trace;
the resulting relation is called theprocessor order. Formally, given
a traceτ we define the partial order<po

τ on the indices such that
i <

po
τ j iff (proc(i) = proc(j))∧ (i < j). A serial reorderingof τ is

a reorderingπ such thatτπ is serial, and furtherπ respects<po
τ , i.e.

i <po
τ j iff π(i) < π(j), or equivalently, for all processorsp, we have

τ ↑(∗, p,∗,∗) = τπ ↑(∗, p,∗,∗). A trace is said to besequentially
consistent (SC)if it has a serial reordering. Ifτ is SC and has se-
rial reorderingπ, then we define aninheritance relation7→π

τ on the
indices ofτ by i 7→π

τ j if op(τ(i)) = W, op(τ(j)) = R, addr(τ(i)) =
addr(τ(j)), andπ(i) = lw(τπ,π(j),addr(τ(j))). Wheni 7→π

τ j and
τ andπ are understood from context, we sayj inherits from i. If
a traceσ is serial, then we use7→σ to denote7→id

σ , where id is the
identity permutation.

Let σ be a serial trace. For anyi such thatop(σ(i)) = W, we
define thelast read of i by lr (σ, i) = max({i′ | i 7→σ i′} ∪ {i}).
Intuitively, lr (σ, i) provides thelast readthat inherits fromi. For
any j ∈ {0, . . . , |σ|} and addressb, we define theinheritance
range predicate IR(σ, j ,b) that is true iff lw(σ, j ,b) 6= 0 and
j < lr (σ, lw(σ, j ,b)). ThusIR(σ, j ,b) holds whenever positionj is
between a write to addressb and a read that inherits from the write.

A protocol P is a 4-tuple(S(P),A(P),δ(P), I(P)). S(P) is the
set ofstatesand must be finite.A(P) is the set of protocolactions,
where we requireM ⊆ A(P). The transition relationδ(P) is a
subset ofS(P)×A(P)×S(P). Let δ∗(P) ⊆ S(P)×A(P)∗×S(P)
be the natural generalization ofδ(P) to strings:(s0,τ,s|τ|)∈ δ∗(P)
if and only if there exists a sequence of statess1,s2, . . . ,s|τ|−1 in
S(P) such that for alli, 1≤ i < |τ|, (si−1,τ(i),si) ∈ δ(P). The set
I(P) ⊆ S(P) are theinitial states. A run of P is a sequencer =
a1, . . . ,a` over A such that there exists statess1, . . . , s̀ +1 ∈ S(P)
with s1 ∈ I(P) and(si ,ai ,si+1) ∈ δ(P) for all i ∈ N`. Thetraceof
a runr is the sequencetrace(r) = r ↑M . Given a protocolP , the
trace setof P is the settraces(P) = {trace(r) | r is a run ofP}.
A protocol is characterized asserial if all of its traces areserial;
similarly, a protocol is SC if all of its traces are SC.

3. DECISIVE SEQUENTIAL CONSIS-
TENCY

In this section, we define two SC variants, DSC and PTSC, and
we prove their equivalence.

Definition 1 (Decisive SC)A traceτ is said to bedecisive sequen-
tially consistent (DSC)if there exists a serial reorderingπ of τ such
that for any prefixτ[`] and1≤ i, j ≤ ` we have: (1)τ[`]π is serial,
and (2) i 7→π

τ[`] j ⇔ i 7→π
τ j. In this case we say thatπ is a DSC-

reorderingof τ.

A protocol is DSC if all of its traces are DSC and we denote
the set of all such protocols byDSC. On an intuitive level, a DSC
protocol is a SC protocol that never needs to “change its mind”

regarding which write wrote-to a given read. A trace being DSC
implies that all prefixes of the trace are SC (moreover they are all
DSC). However, having all prefixes SC is insufficient for DSC,as
this example traceρ demonstrates. To aid comprehension, we at-
tach a number underneath each memory action giving its position
in ρ.

ρ =(W,2,1,2)
1

(W,2,1,1)
2

(W,2,2,1)
3

(R,1,2,1)
4

(W,3,2,1)
5

(R,1,1,2)
6

A serial reorderingπ exists:

ρπ =(W,3,2,1)
5

(R,1,2,1)
4

(W,2,1,2)
1

(R,1,1,2)
6

(W,2,1,1)
2

(W,2,2,1)
3

It can be shown thatanyserial reordering must have 4 inherit from
5; this follows from the fact that any serial reordering mustorder 6
prior to 2. However, restricting such a reordering to the prefix τ of
length 4 will not give a serial reordering. Continuing our example,
we find

ρ[4]π =(R,1,2,1)
4

(W,2,1,2)
1

(W,2,1,1)
2

(W,2,2,1)
3

which is clearly not serial. The reader may confirm that all prefixes
of τ are SC, for instanceρ[4] may be serially reordered as

(W,2,1,2)
1

(W,2,1,1)
2

(W,2,2,1)
3

(R,1,2,1)
4

We now present a seemingly different SC variant, PTSC, and
prove that it is equivalent to DSC. Our motivation for presenting
DSC in the guise of PTSC is to provide greater intuition regarding
what type of behaviors these models allow and disallow.

Definition 2 (past-time SC) A traceτ is said to bepast-time se-
quentially consistent (PTSC)if there exists a serial reorderingπ of
τ such that i7→π

τ j implies i < j. In this case we say thatπ is a
PTSC-reorderingof τ.

Theorem 1 π is a DSC-reordering ofτ iff π is a PTSC-reordering
of τ.

Proof: (⇒) Suppose there existi and j such thati 7→π
τ j andi > j .

Consider the prefixτ[i − 1]. Clearly i 67→π
τ[i−1]

j , since i isn’t an

index of τ[i − 1]. (⇐) Now assumeπ is a PTSC-reordering ofτ.
We prove by (decreasing) induction on` that properties 1 and 2
from definition 1 hold w.r.tτ[`]. For ` = |τ| we haveτ[`] = τ,
hence the properties hold trivially. Now assume that the properties
hold in τ[`]. If τ(`) is a write, then there does not existi such that
` 7→π

τ[`] i, thusτ[`−1]π satisfies both properties. Now ifτ(`) is a

read, thenτ[`−1]π is trivially serial, since removing a read from
a serial trace will always yield a serial trace; property 2 isalso
satisfied given the inductive hypothesis.

4. VIEW WINDOWS
Ideally, we would like to construct a protocol whose trace set is

exactly the set of all DSC memory traces, which would allow auto-
matic verification of protocols. In section 5, we partly realize this
goal. In this section, we introduce concepts and notation needed to
describe the protocol of section 5.

As motivation, we first describe informally an infinite-state pro-
tocol, G∞, whose trace set is the set of all DSC memory traces,
and then consider how the state space ofG∞ could be made finite.
The states ofG∞ are simply the serial memory traces, with the ini-
tial state being the empty trace, which we refer to asσ0. The set of

transitionsδ(G∞) contains all triples(σ,α,σ′) whereα is a memory
action, andσ′ is a serial trace obtained by insertingα at some posi-
tion j in σ, where j ≥ l pa(σ,proc(α)). Suppose we writeσ0 →τ σ
if (σ0,τ,σ) ∈ δ∗(G∞). Then, it can be shown by induction on|τ|
that

Claim 1 For all traces τ, σ0 →τ σ if and only if τ is DSC and
σ = τπ for some DSC reorderingπ of σ.

Thus, the trace set of the protocolG∞ is exactly the set of DSC
traces.

Intuitively, to obtain a (restricted) finite state version of G∞, it is
necessary to avoid storing all of a serial traceσ in the state. The
view window presented in section 4.1 is a condensed version of a
serial trace, developed for this purpose. View windows generalize
the concept ofwindow found in [10]. We also need operations to
update view windows in a manner consistent with the trace pro-
duced by the protocol. The needed operations and assertionsof
their correctness are presented in section 4.2.

4.1 View Window Defined
A view window is an abstraction of a serial traceσ that can be

used to determine, for a few positionsj and any memory actionα,
whether the stringσ′ obtained fromσ by insertingα at positionj is
serial. Accordingly, for certain positionsj , a view window contains
a view (of position j). For each addressb the view contains the
following information:

• The value of the last write operation tob before positionj
of σ. This can be used to determine what is the acceptable
value of a read operation to addressb, inserted at positionj .

• A pair of tags. One tag indicates whether or not the predi-
cateIR(σ, j ,b) holds; that is, positionj is between a write to
addressb in σ and a read that inherits from the write. This
tag can be used to determine whether the protocol is free to
insert a write operation to addressb at position j . The tag
has valueF (free to write) orO (readsonly). The other tag is
needed to help update theF/O tag. It has valueL (last) orN
(not last).

In addition to views, the view window contains additional informa-
tion, called thelp function, which is useful in determining whether
insertion ofα respects processor order.

We now formally define view windows. An example of a serial
traceσ and a corresponding view window is given in parts (a), (b)
of Table 1. Define the set oftagged values T= (NV ∪ {⊥})×
{L,N} × {O,F}. Given a tagged valuez = (v,t1,t2), we extract
the components viaval(z) = v, tag1(z) = t1, andtag2(z) = t2. A
view is a functionν : NB → T. Given a serial stringσ ∈ M ∗, a
subsequenceps of 0, . . . , |σ| such thatps includes|σ| is called a
position sequence (forσ).

Definition 3 (VW-set,VW) Given σ and an accompanying posi-
tion sequenceps, we define the VW-set VW(σ,ps) to be the set of
all pairs (v, lp) that satisfy the following:v is a sequence of views
with |v| = |ps| defined as follows.

1. val(v(i)(b)) = val(σ(lw(σ,ps(i),b)))

2. tag1(v(i)(b))

=

{

L if i = 1∨ [i > 1∧ps(i−1) < lw(σ,ps(i),b)]
N otherwise

3.

tag2(v(i)(b)) =

{

O if IR(σ,ps(i),b)
F otherwise

and lp is a functionNP → N|v| which must satisfy

4. ps(lp(p)) ≥ l pa(σ, p) for all p ∈ NP.

A pair w= (v, lp) is called aview window (VW) (of σ) if there
existsps such that(v, lp) ∈ VW(σ,ps). Thesizeof a VW(v, lp) is
|(v, lp)| = |v|.

4.2 Operations on View Windows
Recall that in the infinite-state protocolG∞, upon each transition,

the state (a serial trace) is updated by insertion of a memoryaction.
In a protocol that abstracts states as view windows, we need oper-
ations (state transitions) that update view windows upon insertion
of a memory action. We define five such operations, or functions
that take VWs to VWs. Thedeletefunction removes a view from a
view window (in order to keep the view small). Theinsert function
inserts a view into a view window (corresponding to the insertion
of a memory actionα into the serial trace that the view window
abstracts). Thehopfunction makes it possible to advancelp(p) for
any processorp (in order that an operation of processorp is inserted
after the appropriate view). Finally, theun f reeandbind operations
update the view tags appropriately. Example applications of these
functions are given in Table 1.

We now formally define the five operations. In all descriptions,
(v′, lp′) is the VW returned by the function, andp andb may be
any processor and address, respectively.

• delete((v, lp),h) requiresh∈ N|v|−1. The new viewv′ is de-
fined according to

v′(j)(b) =

v(j)(b) if j < h
(val(v(h+1)(b)),L, tag2(v(h+1)(b)))

if j = h
∧ tag1(v(h)(b)) = L
∧ tag1(v(h+1)(b)) = N

v(j +1)(b) otherwise

Finally, for all p∈ NP we havelp′(p) = lp(p) if lp(p) ≤ h,
andlp′(p) = lp(p)−1 otherwise.

• hop((v, lp), p,h) requireslp(p) < h≤ |v| . hop leavesv un-
changed, i.e.v′ = v. lp′ is everywhere equal tolp with the
exceptionlp′(p) = h.

• insert((v, lp), p,ν) is called against a viewν. Intuitively, v′

is obtained fromv by insertingν at positionlp(p). lp′ is
defined bylp′(q) = lp(q) if lp(q) ≤ lp(p)∧ p 6= q; otherwise
lp′(q) = lp(p)+1.

• un f ree((v, lp), p,b): Let3

j = max({i | i < lp(p)∧ tag1(v(i)(b)) = L}).

Then v′ is everywhere equal tov, with the possible
exceptions: for all k ∈ { j , . . . , lp(p)−1} we have
v′(k)(b) = (val(v(k)(b)), tag1(v(k)(b)),O). Finally, lp′ is
simply equal tolp.

3un f ree is only used whenlp(p) > 1 and def. 3.2 ensures that
tag1(v(1)(b)) = L, hencej is well-defined.

• bind((v, lp), p,b,v): Here we requirev ∈ NV . This
function leaveslp unchanged, and iflp(p) = |v|, then
v′ = v. Otherwise, letj be minimal such thatj > lp(p)
and tag1(v(j)(b)) = L; if no such j exists takej = |v|+ 1.
Then v′ is the same asv, with the exception that for all
k∈ {lp(p)+1, . . . , j −1} we havev′(k)(b) = (v,N,F).

We define the partial order≤vw on VWs such thatx ≤vw y iff y
can be obtained fromx by 0 or moredeleteandhopoperations.

Just as in our protocolG∞, where the protocol “evolves” on
memory actions from serial trace to serial trace, we can alsodefine
what it means to evolve on a memory action from view window to
view window.

Definition 4 Given VWs w= (v, lp) and w′ and α ∈ M , we say
that w can directlyα-evolve tow′ if the following conditions are
satisfied.

1. If α = (R, p,b,v), then we require v= val(v(lp(p))(b)) 6= ⊥,
and the following equation must hold:

w′ = un f ree(insert(w, p,ν), p,b)

whereν is given by
ν(a) = (val(v(lp(p))(a)),N, tag2(v(lp(p))(a))) for each a∈
NB.

2. If α = (W, p,b,v), then we must have

(a) tag2(v(lp(p))(b)) = F

(b) w′ = bind(insert(w, p,ν), p,b,v), whereν is given by

ν(a) =

(v,L,F) if a = b
(val(v(lp(p))(a)),N, tag2(v(lp(p))(a)))

otherwise

If there exists w′ such that w directlyα-evolves to w′, we say that w
isdirectlyα-enabled. If there exist w1 =(v1, lp1) and w2 = (v2, lp2)
such that w≤vw w1 and w2 ≤vw w′, and w1 directlyα-evolves to w2,
we say wα-evolves tow′, denoted w;α w′. If there exists w′ such
that w;α w′ we say that w isα-enabled.

This completes our description of operations on view windows
and the associatedα-evolves relation. Before proving properties
of this relation in the rest of this section, we provide some infor-
mal intuition. First we note that we can generalize the notion of
α-evolves to sequencesτ of memory operations, wherew ;τ w′

if and only if there is a sequencew1,w2, . . .w|τ|−1 of view win-
dows such thatw ;τ(1) w1, wi−1 ;τ(i) wi for 1 < i ≤ |τ|−1, and
wτ(|τ|−1) ;τ(|τ|) w′. Letw0 be the view window of the empty trace,
that is,w0 = (v0, lp0) wherev0 is a singleton view sequence with
v0(b) = (⊥,L,F) for each addressb andlp0(p) = 1 for all p∈ NP.
It turns out that

Claim 2 For all tracesτ, w0 ;τ w if and only ifτ is DSC and w is
a view window ofτπ for some DSC reorderingπ of τ.

Claim 2 is analogous to Claim 1 for serial traces given at the start
of section 4, except the former pertains to view windows. Roughly,
Claim 2 can be proved by induction on|τ|, using Theorem 2 which
is given at the end of this section. The next three lemmas build
up to the proof of Theorem 2. We don’t actually prove Claim 2,
but rather prove a variant in section 5, in which the sizes of view
windows are bounded.

(a) σ (W,2,1,2) (W,1,1,1)(W,1,2,1)(R,1,1,1) (R,1,2,1) (W,2,2,2)(R,2,1,1) (R,1,2,2)
j 1 2 3 4 5 6

ps(j) 0 1 4 5 7 8

(b) v(j)

[

(⊥,LF)
(⊥,LF)

] [

(2,LF)
⊥

] [

(1,LO)
(1,LO)

] [

(1,NO)
(1,NF)

] [

(1,NF)
(2,LO)

] [

(1,NF)
(2,NF)

]

lp−1(j) /0 {3} /0 /0 {2} {1}
j 1 2 3 4 5

ps1(j) 0 1 4 5 8

(c) v1(j)

[

(⊥,LF)
(⊥,LF)

] [

(2,LF)
⊥

] [

(1,LO)
(1,LO)

] [

(1,NO)
(1,NF)

] [

(1,NF)
(2,LF)

]

lp−1
1 (j) /0 /0 /0 {3} {1,2}

(d) σ2 (W,2,1,2) (W,1,1,1)(W,1,2,1)(R,1,1,1) (R,1,2,1) (W,3,2,4) (W,2,2,2)(R,2,1,1) (R,1,2,2)
j 1 2 3 4 5 6

ps2(j) 0 1 4 5 6 9

(e) v2(j)

[

(⊥,LF)
(⊥,LF)

] [

(2,LF)
⊥

] [

(1,LO)
(1,LO)

] [

(1,NO)
(1,NF)

] [

(1,NO)
(4,LF)

] [

(1,NF)
(2,LF)

]

lp−1
2 (j) /0 /0 /0 /0 {3} {1,2}

Table 1: VW and VW operation examples, note that a viewν is expressed as a column vector[ν(1) ν(2)]T : (a) a serial string σ ∈ M (3,2,2), (b) a position sequenceps for
σ and a VW w = (v, lp) ∈ VW(σ,ps), (c) the VW w1 = (v1, lp1) = hop(delete(w,5),3,4), along with position sequenceps1 such that w1 ∈ VW(σ,ps1), (d) a serial string σ2
obtained by performing an insertion of (W,3,2,4) against σ, (e) a position sequenceps2 for σ2 and a VW w2 = (v2, lp2) ∈ VW(σ2,ps2), where w1 directly (W,3,2,4)-evolves
to w2. Some other points of note here are:w ;(W,3,2,4) w2 and w ≤vw w1. Also, the set of allα such that w1 is directly α-enabled is(W,1,∗,∗)∪ (W,2,∗,∗)∪ (W,3,2,∗)∪

{(R,1,1,1),(R,1,2,2),(R,2,1,1),(R,2,2,2),(R,3,1,1),(R,3,2,1)}.
v0 (⊥,LF)

lp−1
0 {1,2}

τ[1]π (W,1,1,1)
v1 (⊥,LF) (1,LF)

lp−1
1 {2} {1}

τ[2]π (W,1,1,1) (R,1,1,1)
v2 (⊥,LF) (1,LF)

lp−1
2 {2} {1}

τ[3]π (W,2,1,2) (W,1,1,1) (R,1,1,1)
v3 (2,LF) (1,LF)

lp−1
3 {2} {1}

τ[4]π (W,2,1,2) (W,1,1,1) (R,1,1,1) (R,2,1,1)
v4 (1,LO) (1,NF)

lp−1
4 {1} {2}

Table 2: Here we consider the traceτ = (W,1,1,1),(R,1,1,1),(W,2,1,2),(R,2,1,1), given in [2] as an example of a SC sequence that isnot a trace of Lazy Caching. This example
shows thatτ is a trace ofG2, i.e. τ is DSC with VW-bound 2. A DSC-reordering of τ is π, whereτπ = (W,2,1,2),(W,1,1,1),(R,1,1,1),(R,2,1,1). The table gives VWsw0, . . . ,w4
of τ[0]π, . . . ,τ[4]π respectively that satisfy conditions 1 and 2 of definition 5 for k = 2.

Lemma 1 If w is a VW ofσ, and w≤vw w′ then w′ is a VW ofσ.

Proof: We show that ifw is a VW ofσ, then applying a singlehop
or deleteoperation gives another VW ofσ; the lemma follows by
induction. Letps be such thatw∈ VW(σ,ps).

Case: w′ = (v′, lp′) = hop(w, p,h). Then we havelp(p) <
lp′(p) = h≤ |v′|, this being the sole discrepancy betweenw andw′.
Let x = min({i | l pa(σ, p) ≤ ps(i)}∪ {0}). Sincew ∈ VW(σ,ps),
we have from def. 3 thatlp(p) ≥ x, and thus alsolp′(p) ≥ x. Thus
w′ ∈ VW(σ,ps).

Case: w′ = (v′, lp′) = delete(w,h). Let ps′ beps with thehth
entry removed. We claim thatw′ ∈ VW(σ,ps′), and show thatv′

andlp′ are compliant with the conditions of def. 3. Note that since
deleterequiresh< |v|, we have thatps′ has|σ| as the final element,
and henceps′ is a legal position sequence forσ.

Let v̂ be v with v(h) removed, and letps′ be ps with the hth
entry removed. Clearly, for alli ∈ N|ps′| we haveval(v̂(i)(b)) =

σ(lw(σ,ps′(i),b)). Further,tag2(v̂(i)(b)) = O iff IR(σ,ps′(i),b).
Thusv′ andps′ are compliant with def. 3.1 and def. 3.3, sincev′

only differs fromv̂ in tag1 components. In general ˆv does not sat-
isfy def. 3.2. This is because the boolean expression in def.3.2
depends on other entries in the position sequence, which wasal-
tered. The only case where ˆv can potentially be in violation is at
positionh, which can be seen as follows. We have ˆv(h) = v(h+1)
andps′(h) = ps(h+ 1). It is possible that for some addressb, we
have that

ps(h−1) < lw(σ,ps(h),b) = lw(σ,ps(h+1),b)

(taking ps(0) = 0 if necessary) which implies both
tag1(v̂(h)(b)) = N andps′(h−1) < lw(σ,ps′(h),b). In this case
we find a noncompliance. However,delete returns v′, which
differs from v̂ by correcting precisely such scenarios. Thereforev′

is compliant. Sincelp′ is obtained fromlp by simply decrementing
values where appropriate to reflect the deleted view, it follows that
lp′ adheres to def. 3.4. Again we conclude thatw′ ∈ VW(σ,ps).

Lemma 2 Suppose w= (v, lp) ∈ VW(σ,ps) and w is directlyα-
enabled. Then the stringσ′ obtained by insertingα at position
ps(lp(proc(α))) in σ is serial.

Proof: Since σ is serial, we must argue that the insertion
of α = (o, p,b,v) maintains seriality. We case-split
on op(α). Supposeα is a read. From def. 4 we have
val(v(lp(p))(b)) = v 6= ⊥, and from def. 3 we have that
val(v(lp(p))(b)) = val(lw(σ,ps(lp(p)),b)). Thus σ′ maintains
seriality in this case. Now assumeα is a write. From def. 4
we have tag2(v(lp(p))(b)) = F , hence from def. 3 we have
¬IR(σ,ps(lp(p)),b). Thus the insertion ofα will not interfere
with any inheritance fromlw(σ,ps(lp(p)),b), or any other write to
addressb. Thereforeσ′ is serial in both cases.

Lemma 3 Suppose w= (v, lp) ∈ VW(σ,ps) and w directly
α-evolves to w′. Then w′ is a VW of the stringσ′ obtained by
insertingα at positionps(lp(proc(α))) in σ.

Proof: Let (o, p,b,v) = α. Let ps′ be the position sequence of
σ obtained by insertingps(lp(p)) + 1 into ps at lp(p), and then
incrementing all entries right oflp(p), i.e.

ps′ = ps(1), . . . ,ps(lp(p)),ps(lp(p))+1, . . . ,ps(|ps|)+1

Our claim is thatw′ = (v′, lp′) ∈ VW(σ′,ps′), and we note that
VW(σ′,ps′) is well-defined, since from Lemma 2 we haveσ′ se-
rial. We case split ono. For convenience in this proof, we introduce
the functionc : N|ps′| → N|ps| given byc(i) = i when i ≤ lp(p) or
c(i) = i−1 otherwise. Also,ν is the inserted view, as in def. 4.

Case o = R: Clearly def. 3.1 is satisfied w.r.tv′, since for all ad-
dressesa we haveval(ν(a)) = val(v(lp(p))(a)) . This follows from
the fact thatlw(σ′,ps′(lp′(p)),a) = lw(σ,ps(lp(p)),a), which also
implies that def. 3.2 is satisfied, since for all addressesa we have
tag1(ν(a)) = N andlp′(p) > 1.

Now for all addressesa 6= b and indexesi of ps′, we have
IR(σ′,ps′(i),a) ⇔ IR(σ,ps(c(i)),a). Thus, the fact that for all
such a, we havetag2(v

′(i)(a)) = tag2(v(c(i))(a)) is compliant
with def. 3.3. Also, if ` = lr (σ, lw(σ, lp(p),b)) > ps(lp(p)),
then we have bothIR(σ′,ps′(i),b) ⇔ IR(σ,ps(c(i)),b) and
tag2(v

′(i)(b)) = tag2(v(c(i))(b)) for all indexesi of ps′. Then
def. 3.3 is satisfied. However, if̀≤ ps(lp(p)) then for eachi
in the nonempty setI =

{

i | i < lp′(p)∧ ` ≤ ps′(i)
}

we have
IR(σ′,ps′(i),b)∧¬IR(σ,ps(c(i)),b). In this caseun f reehas the
effect that for alli ∈ I , tag2(v

′(i)(b)) = O, which hence preserves
compliance with def. 3.3.

Finally, we have def. 3.4 satisfied w.r.tps′ and lp′ since
ps′(lp′(p)) = ps(lp(p)) + 1 = l pa(σ′, p). A similarly simple
argument handles the other processors.

Case o = W: Similar to the previous case, def. 3.1 is satis-
fied w.r.t v′. The slight complication here is that for alli in I =
{

lp′(p), . . . , jmin
}

where
jmin = min(

{

j | j > lp′(p)∧ tag1(v
′(j)(b)) = L

}

∪{|v′|+1})−1
we havelw(σ′,ps′(i),b) = ps′(lp′(p)) 6= lw(σ,ps(c(i)),b), how-
ever, def. 4.2 correctly setsval(ν(b)) = val(σ′(ps′(lp′(p)))) = v,
andbind setsval(v′(i)(b)) = v for all i ∈ I .

Now for all addresses a 6= b, we have
lw(σ′,ps′(lp′(p)),a) = lw(σ,ps(lp(p)),a), and since
we have tag1(ν(a)) = N and lp′(p) > 1, def. 3.2
is satisfies w.r.t all sucha. For addressb, we have
lw(σ′,ps′(lp′(p)),b) = ps′(lp′(p)) = ps′(lp′(p) − 1) + 1, and
thus,ps′(lp′(p)−1) < lw(σ′,ps′(lp′(p)),b). Thus the assignment
tag1(val(ν(b))) = L is consistent with def. 3.2.

Similar to the previous case, we have def. 3.3 satisfied. Def.4.2
assignstag2(v

′(i)(a)) = tag2(v(c(i))(a)) for all addressesa and
indexesi of ps′, i.e. thetag2 components are preserved. The cor-
rectness of this preservation follows from the fact that forall such
a andi we haveIR(σ′,ps′(i),a) = IR(σ,ps(c(i)),a).

The argument that def. 3.4 is satisfied is the same as in the pre-
vious case.

For both cases, we conclude thatw′ ∈ VW(σ′,ps′).

Theorem 2 Let τ have DSC-serial reorderingπ, w be a VW ofτπ,
andα ∈ M be such that w;α w′. Then there exists a DSC-serial
reorderingπ′ of τ′ = τα such thatτπ′

= τπ, and w′ is a VW ofτ′π
′

.

Proof: From def. 4, there exist VWsw1 andw2 such thatw≤vw w1
andw2 ≤vw w′, andw1 directly α-evolves tow2. From Lemma 1
we have thatw1 is a VW of τπ.

Chooseps to be a position sequence such thatw1 = (v1, lp1) ∈
VW(τπ,ps), and define(o, p,b,v) = α. Let π′ be the permutation

of τ′ such thatτ′π
′

is the string obtained by insertingα into τπ at
positionlp1(p). From this definition ofπ′ we haveτπ′

= τπ.
We must show thatπ′ is a DSC-serial reordering ofτ′. π′ adheres

to the processor order ofτ′, sinceπ adheres to the processor order
of τ, and by the def. 3 we haveps(lp(p)) ≥ l pa(τπ, p). Thus our

construction ofτ′π
′

is such thatπ′ respects<po
τ′ , while Lemma 2

guarantees thatτ′π
′

is serial.

Finally, from Lemma 3 we have thatw2 is a VW of τ′π
′

, and

hence by Lemma 1 we havew′ is a VW of τ′π
′

.

5. VW-BOUNDEDNESS
In this section we define the concept of the VW-bound of a DSC

sequence, and show that the set of DSC protocols with a given
boundk is decidable for anyk.

Definition 5 (VW-bound) Let τ be a trace such that there exists
VWs w1, . . . ,w` such that

1. for all 1≤ i ≤ ` we have wi−1 ;τ(i) wi , and

2. there exists k≥ 1 such that for all0≤ i ≤ ` we have|wi | ≤ k,

where w0 is the view window of the empty trace. Then we say that
τ hasVW-boundk and also we write w0 ;τ,k w.

Theorem 3 If w0 ;τ,k w, thenτ is DSC.

Proof: Follows from a simple induction using theorem 2 and the
fact thatw0 is a VW of the empty trace.

Definition 6 (DSCk) DSCk is the set of all protocolsP such that
all traces ofP have VW-bound k.

Lemma 4 For any integer k≥ 1, there is a protocol,Gk, such that
traces(Gk) is precisely the set of tracesτ such thatτ has VW-bound
k.

Proof: The state space ofGk is the set of all VWsw such that
|w| ≤ k; note that this is a finite set. The initial state ofGk is the
view window w0. The set of actionsA(Gk) of the protocol is the
setM . The set of transitionsδ(Gk) is {(w,α,w′) | w ;α w′}.

If τ ∈ traces(Gk), then clearlyw0 ;τ,k w. Conversely, ifτ has
VW-bound k, from the definition ofGk and def. 5 we have that
τ ∈ traces(Gk).

Theorem 4 For any k≥ 1, DSCk is decidable.

Proof: Given a protocolP , we can decide whetherP in DSCk by
simple trace containment against the protocolGk given in Lemma
4.

6. DISCUSSION
All sequentially consistent protocols we have found in the liter-

ature are DSC with VW-bound. Furthermore, the bound is always
very small. For instance, any protocol with all traces beingserial is
in DSC1. The following theorem states that Lazy Caching is also
VW-bounded.

Theorem 5 Lazy Caching [2] is in DSCj+P`+1, where j and̀ are
the respective capacities of the In and Out queues, and P is the
number of processors.

Proof Sketch: Here we employ some notation of [2]. The
abstracted(R, i,a,d) and (W, i,a,d) events are identified with the
Lazy Caching events ReadReturni(d,a) and WriteReturni(d,a),
respectively.

For any state of Lazy Caching, we associate a finite set of pos-
sible VWsw, wherew = (v, lp) is as follows. For convenience,
we shift the index set of the sequencev (and hence the range of
the functionlp) leftwards byj +1, i.e.v = v(− j) . . .v(0) . . .v(P`).
Theval components ofv(0) always represents the contents ofMem.
Whenlp(i) ≤ 0, this corresponds to|Ini | = −lp(i) and|Outi | = 0.
TheP` possible views to the right ofv(0) are to accommodate the
views corresponding to theP` potentialOut queue entries that may
be buffered in the system at any given time.

Prior to performing an event(W, i,a,v), the operationhop(w, i,h)
must be performed for some4 h≥ 0. The actual value ofh is non-
deterministic; the relative ordering of the views to the right of v(0)
reflect a “prediction” made regarding the order that the associated
W events are seen byMemvia MemoryRead actions.

Other Lazy Caching actions result in the following updates to
w. ReadRequest, WriteRequest, and CacheInvalidate produceno
change. MemoryWrite causes no effective change, though under
our shifted view naming convention, all names would be decre-
mented. MemoryRead inserts a new view with the sameval
components asv(0) immediately followingv(0). CacheUpdatei
simply incrementslp(i).

To see thatj + P` + 1 is an upper bound on|w|, we note that
the leftmost view inv can always be deleted (without impeding
any possible future events) whenever we havelp(i) > − j for all
processorsi.

Thus we have a procedure to verify Lazy Caching. It is important
to note, however, that bounded VWs can be employed to produce
traces that Lazy Caching cannot generate. For instance, even G2
has traces that are not traces of Lazy Caching. Table 2 provides an
example of a trace that is DSC with VW-bound 2, but is not a trace
of Lazy Caching.

We note, however, that the work of this paper lies primarily in the
domain of theoretical interest. As the following complexity analy-
sis reveals, the procedure suggested by the proof of Theorem4 is
worst case exponential in the size of the description ofP and dou-
bly exponential ink. We first obtain an upper bound on the size
of the state space ofGk. There are(4V)B possible views, hence
at most(4V)Bk possible view sequences inGk. Each may have at
mostkP logical pointer functions, thus|S(Gk)| ≤ kP(4V)Bk = 2O(k).
Now, to perform the checktraces(P) ⊆ traces(Gk), we must de-
terminizeGk in order to complement it, producing deterministic

G ′
k, which can be exponentially larger. Therefore

∣

∣S(G ′
k)

∣

∣ = 22O(k)
.

Lettingn = |S(P)|, the usual complement-and-intersect solution to

language containment may thusly yield an automaton withn22O(k)

states to explore. Note thatn itself might be exponential in the
length of the description ofP ; also this analysis treatsP, B, andV
as constants.

The objective of proving decidability ofDSChas not quite been
achieved. This result would of course follow from:

Conjecture 1 Any protocolP ∈ DSC has VW-bound k for some k,
and further k is computable given a description ofP .

4This may seem counterintuitive, since Lazy Caching allows write
events to be performed by processori even ifIni is nonempty. How-
ever, after performing(W, i,a,v), processori cannot perform any
read event untilIni is flushed of all entries present at the time the
write took place.

Here “computable” is probably far too general of a term; it islikely
that k is always bounded by|S(P)| and in practise this bound is
very loose.

The intuition behind Conjecture 1 is as follows. LetP be a
protocol; the ensuing discussion is simplified if we consider an
automatonP ′ with L(P ′) = traces(P) rather thanP itself. For
statess1 and s2 of P ′, let traces(s1) to be the set of traces that
drive P ′ to s1, and lettraces(s1,s2) be the set of traces that takes1
to s2 in P ′. DefineW = {w | w is a VW of someτ ∈ traces(P ′)},
and let f be a functionS(P ′) → 2W. We call f a VW labeling
function if we have that for anys1,s2 ∈ S(P ′) we have for
any τ1 ∈ traces(s1) and τ2 ∈ traces(s1,s2) that there exists
w1 ∈ f (s1) and w2 ∈ f (s2) such thatw1 is a VW of τ1 and
w2 is a VW of τ1τ2 and w1 ;τ2 w2. If f (s) is finite for all
states s, then f is a finite VW labeling function. For any
DSC protocol a labeling function exists; the functionf∞(s) =
{w | w is a VW of τπ for someτ ∈ traces(s) with DSC-reorderingπ}
demonstrates this. However,f∞ is not finite in general.

Conjecture 2 Any protocol P ∈ DSC has a finite VW labeling
function.

Note that since any finite set of finite sets of VWs must containa
largest VW, Conjecture 2 implies Conjecture 1. (In fact, thetwo
statements are equivalent).

Our discussion is concluded by highlighting some alternateuses
of VWs. First, since VWs are generalizations of thewindowsfound
in [10], they could be employed in a similar fashion. This is a
semi-automatic protocol verification technique in which the de-
signer essentially augments the protocol description to periodically
output a window, which summarizes the current reordering ofthe
trace history. Verification proceeds though an automaton called the
Checker, which observes the protocol and determines if consecu-
tive windows are consistent; this notion of consistency is similar to
our notion of VW evolution. Second, VWs can be incorporated as
a mathematical tool in hand proofs. One can prove that a protocol
is DSC by defining a VW labeling function for the protocol. Third,
having the VW labeling function formally defined during protocol
design will not only yield protocols that are “correct by construc-
tion”, but may illuminate subtle optimizations that preserve DSC
while increasing protocol efficiency.

Finally, we note that (hand) proof of Lazy Caching’s sequen-
tial consistency has received considerable interest from the formal
methods community. Indeed, a special issue ofDistributed Com-
puting [6] is devoted to this problem and contains six papers, each
giving a distinctive proof. A detailed proof of our theorem 5(which
implies the sequential consistency of Lazy Caching) would proba-
bly span at most two pages if the VW definitions and theory are
assumed. A two page proof is arguably more succinct than any of
the six in theDistributed Computingissue [6].

7. RELATED WORK
The protocol ofGk of Lemma 4 is an example of amaximally

general model. Park and Dill have implemented maximally
general models for the SPARC architecture memory models
(TSO/PSO/RMO) using murϕ [16, 17]. The goal of this research
is to construct anexecutable specificationwhich can be used to
verify that given parallel code is correct under a memory model, as
opposed to verification that a shared memory protocol implements
a model.

Only two algorithmic schemes for automatic SC verification
have emerged in the literature [7, 8].5 More accurately, these
5It was originally asserted that the Test Model Checking ap-

verify proper subclasses of SC. Here we contrast the decided
classes withDSC, and focus on the characterization of these
classes rather than delve into the actual verification procedures.

7.1 Qadeer’s Approach
Qadeer’s work [8] verifies protocols of a class specified by sev-

eral assumptions, and the theory is developed under the NNPCpro-
tocol model. The approach inherently supports simultaneous ver-
ification of an infinite family of protocols{P1,P2, . . .} where the
number of data values (i.e. our parameterV) of Pi is i. Hence the
problem solved by Qadeer is fundamentally different than ours. To
make a fair comparison, then, we fixV and consider the class of
protocolsQ consisting of allP such thatP is a protocol withV
values in a family that the technique can verify.

Some of the involved assumptions are mandatory prerequisites
for his technique (i.e. they are characteristics ofQ), while others
support symmetry reductions that deflate the complexity of the al-
gorithm. Here we consider only the former, which are as follows:

Data independenceconstrains how thePis relate to each other,
hence this assumption has no relevance toQ, in whichV is
fixed.

Causality is an assumption that is primarily related to the use of
initial functions6. Under our definitions (which preclude the
use of initial functions) causality is an implication of SC.
Thus, the causality assumption is not a significant difference
between theDSCandQ protocol classes.

Simple witness is equivalent to the property that each traceτ has
a serial reorderingπ that preserves the order of writes to the
same address. Formally, for all indexesi and j such that
op(τ(i)) = op(τ(j)) = W and addr(τ(i)) = addr(τ(j)), we
havei < j ⇔ π(i) < π(j). Many SC protocols have the sim-
ple witness, however Lazy Caching is an example of one that
does not.

SinceQ contains NNPC protocols,Q has members that are not
in DSCk for any k, sinceDSCk assumes the PC model. However
Lazy Caching is a protocol that resides inDSCk for a finitek, but is
not inQ (since it lacks the simple witness). If we accept that all real
SC protocols are prefix-closed and DSC, then Conjecture 1 implies
that all real protocols inQ are inDSCk for somek.

7.2 Condon and Hu’s Approach
Condon and Hu’s approach [7], which pertains only to PC pro-

tocols, requires that a protocol has the attributes oftracking labels
and astore order generator(SOG).

Tracking labels are motivated by a property that most real proto-
cols have: the protocol involves a set ofL storage locations
(where each location might be a cache or memory line, a
queue or buffer entry, a field in a network packet, etc.), and
protocol transitions involve copying data directly between
these locations. Tracking label’s allow on-the-fly inference
of the inheritance relation.

proach [18] could automatically verify SC. Subsequent research
showed that it actually verifies a weaker class than SC [19]. As
such, the approach is a valuable debugging aid, but does not pro-
vide verification of SC.
6An initial function init maps a traceτ and an addressb to a data
value init (τ,b). Then the notion of aserial trace is defined so that
a traceσ may have indexi such thatlw(σ, i,addr(σ(i))) = 0 and
op(σ(i)) = R, as long asval(σ(i)) = init (σ,addr(σ(i))).

SOG is a finite state machine which must have no more states than
the protocol itself. The machine takes as input a runr of
the protocol, and outputs a description of the digraph defined
by thestore order. Given a serial-reorderingπ of the trace
τ = trace(r), the store order is the partial order<st defined by
i <st j iff op(τ(i)) = op(τ(j)) =W, addr(τ(i)) = addr(τ(j)),
andπ(i) < π(j). A SOG can only exist if the protocols transi-
tions involving actions ofA(P)\M are labeled in a manner
that provides enough information to deduce the store order.
Implicit in Condon and Hu’s work is the fact that since the
SOG state space is bounded in size, a procedure could theo-
retically enumerate all possible SOGs for a protocol, hence
providing full automation. In practise, the SOG would be ei-
ther elementary (for protocols with Qadeer’s simple witness)
or user-supplied.

Given any nontrivial protocolP with tracking labels and a SOG,
we can derive a protocolP ′ such thattraces(P) = traces(P ′) and
P ′ has neither tracking labels nor a SOG. Tracking labels can be
foiled by introduction of an encoding mechanism when moving
data between locations. For example, a protocol modeled at alevel
that includes use of error correction encoding of data wouldnot
have tracking labels. Although one could in principle identify a
tracking label scheme for such a protocol, it would be difficult or
perhaps impossible to concoct an algorithm that performs this iden-
tification automatically. The SOG could be disabled by renaming
all actions ofA(P)\M with a new silent action. This modification
would typically “hide” the run information needed by the SOGto
construct the store order.

As an example, we again call upon Lazy Caching [2]. Lazy
Caching has both tracking labels and a SOG. The SOG observes
instances of the MemoryWrite action to determine the store order.
We define Lazy Caching′ to be obtained from Lazy Caching via the
modifications suggested above. Lazy Caching′ could perform data
encoding by, say, performing a bijective mapping on values when
appending to theOut queues, and applying the inverse mapping
upon MemoryWrite (which has actually been renamed). Clearly
traces(Lazy Caching) = traces(Lazy Caching′), yet Lazy Caching′

can be verified via Theorems 4 and 5, but not by Condon and Hu’s
method.

In summary, we find that our classDSCcontains:

• all protocols in Qadeer’s classQ that do not demonstrate
“prophetic inheritance” and are prefix closed, and

• all protocols in the class of Condon and Hu, and

• natural protocols that are not in either class.

Whether the same statement can be made with respect to our class
S

k DSCk is an open problem and is of course implied by conjec-
ture 1.

8. ACKNOWLEDGEMENT
We thank Shaz Qadeer for his useful comments during the prepa-

ration of this article.

9. REFERENCES
[1] R. Alur, K. L. McMillan, and D. Peled. Model-checking of

correctness conditions for concurrent objects. In11th Annual
IEEE Symp. on Logic in Comp. Sci. (LICS’96), New
Brunswick, New Jersey, Jul 1996.

[2] Y. Afek, G Brown, and M. Merritt. Lazy Caching.ACM
Transactions on Programming Languages and Systems,
15(1):182–205, 1993.

[3] S.V. Adve and K. Gharachorloo. Shared memory consistency
models: a tutorial.IEEE Computer, 29(12):66–76, 1996.

[4] Leslie Lamport. How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Programs.IEEE
Trans. on Computers, C-28(9):690–691, September 1979.

[5] Manoj Plakal, Daniel J. Sorin, Anne E. Condon, and
Mark D. Hill. Lamport clocks: Verifying a directory
cache-coherence protocol. InTenth Annual ACM Symposium
for Parallel Algorithms and Architectures, June/July 1998.

[6] Michael Merritt, editor.Distributed Computing, volume 12.
1999.

[7] A. Condon and A.J. Hu. Automatable Verification of
Sequential Consistency. InThirteenth Annual ACM
Symposium for Parallel Algorithms and Architectures, pages
113–121, July 2001.

[8] Shaz Qadeer. Verifying sequential consistency on
shared-memory multiprocessors by model checking.
Technical report, Compaq Systems Research Center,
December 2001. SRC Research Report 176.

[9] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. Verifying
Sequential Consistency on Shared-memory Multiprocessor
Systems. InProceedings of the 11th International
Conference on Computer-Aided Verification, 1999.

[10] Tim Braun, Anne Condon, Alan J. Hu, Kai S. Juse, Marius
Laza, Michael Leslie, and Rita Sharma. Proving Sequential
Consistency by Model Checking. InProceedings of the IEEE
International High Level Design Validation and Test
Workshop (HLDVT), November 2001. An expanded version
appeared as University of British Columbia dept. of
Computer Science Tech Report TR-2001-03,
http://www.cs.ubc.ca/cgi-bin/tr/2001/TR-2001-03.

[11] T. Arons. Using timestamping and history variables to verify
sequential consistency. InProceedings of the 13th
International Conference on Computer Aided Verification
(CAV 2001), July 2001. volume 2102 of Lecture Notes in
Computer Science.

[12] Marcelo Glusman and Shmuel Katz. Extending memory
consistency of finite prefixes to infinite computations. In
Kim G. Larsen and Mogens Nielsen, editors,Proceedings of
12th International Conference on Concurrency Theory,
CONCUR ’01, volume 2154 ofLNCS, pages 411–425,
Aalborg, Denmark, August 2001. Springer-Verlag.

[13] Shaz Qadeer. private communication, January 2003.
[14] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul

Shen. Value locality and load value prediction. In
Architectural Support for Programming Languages and
Operating Systems, pages 138–147, 1996.

[15] Phillip B. Gibbons and Ephraim Korach. Testing Shared
Memories.SIAM J. Computing, 26(4):1208–1244, August
1997.

[16] D. Dill, S. Park, and A. Nowatzyk. Formal specification of
abstract memory models. InProceedings of the 1993
Symposium on Research on Integrated Systems, pages 38–52.
MIT Press, March 1993.

[17] Seungjoon Park and David L. Dill. An executable
specification and verifier for relaxed memory order.IEEE
Transactions on Computers, 48(2):227–235, February 1999.

[18] Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, and
Ganesh Gopalakrishnan. The ‘test model-checking’ approach
to the verification of formal memory models of
multiprocessors. InComputer-Aided Verification: 10th
International Conference, pages 464–476. Springer, 1998.

Lecture Notes in Computer Science Vol. 1427.
[19] Ganesh Gopalakrishnan. A formalization of test

model-checking, completeness results, and case studies. In
Workshop on Advances in Verification, 2000. Informal
workshop affiliated with the Conference on Computer-Aided
Verification, 2000,
with participant proceedings only. The paper is available from
http://www.cs.utah.edu/formalverification/papers/wave2000.pdf.

