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Abstract

The following fact about (row) stochastic matrices is an easy consequence of well known results: for
each positive integer n > 1 there is a positive integer ¢ = g(n) with the property that if Ais any n x n
stochastic matrix then the sequence of matrices A%, A%, 437 ... converges. We prove a generalization
of this for sets of stochastic matrices under the Hausdorff metric. Let d be any metric inducing the
standard topology on the set of n X n real matrices. For a matrix A and set of matrices B define d(4, B)
to be the infimum of d(A,B) over all B € B. For two sets of matrices A and B, define d™(A, B) to
be the supremum of d(A,B) over all A € A, and define d(A, B) to be the maximum of d* (A, B) and
d* (B, A). This is the Hausdorff metric on the set of subsets of n x n stochastic matrices. If A is a set
of stochastic matrices and k is a positive integer, define A®) 0 be the set of all matrices expressible as
a product of a sequence of k matrices from .A. We prove: For each positive integer n there is a positive
integer p = p(n) such that if A is any subset of n x n stochastic matrices then the sequence of subsets
AP ACP ABP) | converges with respect to the Hausdorff metric.
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1 Introduction

A fundamental fact about (finite-state, discrete-time) Markov chains is that if all transition probabilities
are nonzero, then the chain has a limiting distribution. This reflects the fact that the state transition
matrix A associated to any Markov chain belongs to the set Sy, of (row)-stochastic matrices (nonnegative
matrices with each row sum equal to 1) and thus has largest eigenvalue 1. If all entries are nonzero the
eigenspace for 1 has a unique (row) eigenvector v with entries summing to 1, and thus the sequence of
powers A', A%, ... converges to the matrix whose rows are each equal to v.

For arbitrary stochastic matrices, the powers A!, A%, ... need not converge. However, it can be shown
that there is a number p = p(n) such that for any A € Sy, AP is a block diagonal matrix each of whose
blocks has no zero entries. Thus by the previous fact, the sequence {Ajp : j > 0} converges, i.e., the
sequence {A’ : j > 1} approaches a periodic limit with period dividing p(n).

We consider the more general situation of a discrete-time process on n states whose possible behaviors
are characterized by an arbitrary subset A of S,. At each step the process makes a state transition
according to one of the matrices A in A. The evolution of the system is thus described by a sequence
Aq, Ay, ... of matrices each from A, and each such sequence corresponds to a possible behavior of the
system. For k > 1, let A* denote the set of all sequences (A1,...,As) from A and let A®) denote the
set of all products of the form A; ... A; where A; € A. We view the subsets of S, as points of a metric
space under the Hausdorff metric (see section 2.1). Our main result is:

Theorem 1.1 For each natural number n there is a natural number p = p(n), such that if AC Sy, then
the sequence of sets {A®? : i > 1} is convergent.

Sequences of the form A", A® | where A is a compact set of stochastic matrices are called Markov
set-chains. The explicit study of such sequences was initiated by Hartfiel (see [4, 5] and the references
therein), though as explained in [4] there are many related antecedents. Much of the previous research
has been concerned with identifying sufficient conditions on the set A that ensure that the sequence
{A® : 4 > 1} is convergent.

Theorem 1.1 arose in connection with a problem in theory of computation posed by Dwork and
Stockmeyer [2] concerning interactive finite automata: is it true that every language that admits an
interactive proof of membership with a finite state verifier must be regular? (We only mention this
problem in passing, and will not give definitions here). Theorem 1.1 implies an affirmative answer in the
very special case of unary languages where the verifier is restricted to one-way access to the input. This
special case was already known [1] (by an easier argument), however, we think that Theorem 1.1 is of
independent interest and also that there is a possibility of extending the ideas of Theorem 1.1 to handle
the as yet unsolved case of unary languages where the verifier has two-way access to the input. We hope
to explore this in a future paper.

2 Preliminaries

This section reviews various notions from point-set topology, combinatorics and the theory of stochastic
matrices, and establishes various preliminary results.

2.1 Convergence with respect to the Hausdorff metric

We review basic definitions and results concerning the Hausdorff metric. In particular, Theorem 2.3(3)
below will provide a useful sufficient condition for proving convergence. The facts cited here are ele-
mentary and standard but we don’t know a reference that summarizes them in the form we need, so we
provide proofs for them.

Let M be a metric space with distance function d. For x € M, € > 0, we write Bc(z) for the closed
ball of radius € around z. For X C M, B.(X) = Ugzex Be(z). For X C M we write X for the closure of
X.

For subsets X and Y, define d*(X,Y) to be the infimum of the set {¢|X C B.(Y)} (the limit is oo if the
set is empty). For a point z, we write d*(z,Y") for d*({z},Y). Note that d*(X,Y) = sup,cxd*(z,Y).
It is easy to check: (i) d¥(X,2Z) <dT(X,Y) +d"(Y,Z) and (ii)) d¥(X,Y) =0 if and only if X C V.

Define d(X,Y) to be the maximum of d*(X,Y) and d* (Y, X). Then d satisfies (i) d(X, Z) < d(X,Y)+
d(Y, 2),(ii) d(X,Y) = d(Y, X) and (iii) d(X,Y) = 0 if and only if X =Y. d is generally not a metric on
the power set of M but it is a metric when restricted to the set of compact subsets of M.



A set X is an upper limit for {X;} if {dT(X;,X) : 4 > 1} converges to 0 and is a lower limit if
{dT(X,X;) : i > 1} converges to 0, and is a limit if it is both an upper limit and a lower limit.

A point z is a strong limit point for {X,} if every neighborhood of « intersects all but finitely many
of the X; and is a weak limit point if every neighborhood of x intersects infinitely many of the X;. Write
Xotrong and Xyeqr for the set of weak and strong limit points. It is easy to see that both of these sets are
closed. Trivially, Xstrong C Xyeqr and we will say that the sequence {X;} is regular if Xyeor = Xstrong-

Proposition 2.1 Let {X;} be a sequence of subsets of M.
1. If Y is a lower limit for {X;} then Y C Xotrong-
2. If Y is an upper limit for {X;} then Xyeqr C Y.

Proof. IfY is a lower limit for {X;}, then d* (Y, X;) tends to 0, and so for any y € Y, d*(y, X;) tends to
0, which implies that any neighborhood of y intersects all but finitely many of the X;; i.e., y is a strong
limit point.

Next suppose that Y is an upper limit for {X;} and let y be a weak limit point. We want to show
that y is in the closure of Y, so we fix ¢ > 0 and show that d(y,Y) < &. There is an 1o such that
dT(X;,Y) < e/2 for i > io. Also the £/2 neighborhood of y intersects infinitely many X; so it contains
some point z € X; with j > 40. Then d(y,Y) < d(y,2) +d(2,Y) < d(y,z) +d(X;,Y) <e.

We will say that {X;} is lower convergent if X,irong is a lower limit, upper convergent if X,yeqp, is an
upper limit, and convergent if it has a limit.

Proposition 2.2 If {X;} is convergent then it is reqular and the set Xstrong = Xweak 18 the unique
closed set that is a limit for {X;}.

Proof. Suppose {X;} is convergent with limit Y, and assume without loss of generality that Y is closed.
By the previous proposition, Xyeat C Y C Xstrong, since Xstrong © Xwear We conclude Xyear =Y =

Xstrong-

A sequence {X;} of subsets is forward Cauchy if for all £ > 0 there exists an mo = mo(e) such that
for m1, m2 satisfying ma > m1 > mo, dH(Xm,, Xm,) < &. It is backward Cauchy if for all £ > 0 there
exists an mo such that for m1, ms satisfying ma > m1 > mo, d™(Ximy, Xm,) < € and it is Cauchy if it is
both forward and backward Cauchy. It is easy to see that a convergent sequence {X;} is Cauchy.

If we restrict to compact metric spaces, we get some nice implications.

Theorem 2.3 Let {X;} be a sequence of sets in a compact metric space. Then
1. {X;} is upper convergent.
2. {X;} is lower convergent.

3. If {X;} is either forward or backward Cauchy then it is convergent.

Proof. Suppose that {X;} is not upper convergent. Then there is an € > 0, a sequence of indices
i1 <42 < ..., a sequence {z;; € X;;} such that z;; & Be(Xyeqr). By compactness, the sequence {z;, }
has an accumulation point z which by definition belongs to Xyear. Then B.(z) contains at least one (in
fact, infinitely many) of the x;; contradicting that for all j, &;; & Be(Xuweak)-

Suppose that {X;} is not lower convergent. Then there is an € > 0, an infinite sequence of indices
i1 <id2 < ..., and a sequence {x;; € Xstrong} such that x;; ¢ B.(X;;). By compactness, the sequence
{z:;} has an accumulation point z, which is in Xs¢rong since Xsirong is closed. Then z € B./3(X;;) for
all but finitely many j (by the definition of Xstrong) and d(z;;,2) < /2 for all but finitely many j so
zi; € B:(X;;) for all but finitely many j, a contradiction.

Now suppose that {X;} is forward Cauchy or backward Cauchy. To show that {X;} is convergent,
suppose z € Xyeqr, we show that 2 € Xstrong. Fix € > 0, we show that Be(z) intersects all but finitely
many of the X;, or equivalently z € B.(X;) for all but finitely many i. Since z € Xyeqr there is an
infinite sequence i1 < 4z < ... such that z € B./»(X;;) for all j. Since {X;} is forward Cauchy or
backward Cauchy, we can choose an index mo = mo(e/2) as in the definition and we may assume that
mo > i1. We claim that z € B.(Xj;) for all ¢ > mo and hence z € X,rong. To see the claim, let 7 > mo.
If ¢ = i; for some j the claim is trivial; otherwise we choose a j so that 1; < i < i;41. If {X;} is forward
Cauchy then B.(X;) contains B./»(X;;) and if it is backward Cauchy B.(X;) contains B,/»(X;, ). In
either case, z € B.(X;), as claimed.

i+1



2.2 Intervals and interval chains

If z,y are real numbers between 0 and 1, interval notation has the usual meaning. If z, y are nonnegative
integers then interval notation is used to denote subsets of integers, e.g. [z,y] is the set of integers
{z,z+1,...,y —1,y}. (This means that [0, 1] is potentially ambiguous, but the meaning will be clear
from the context.) We write [n] for [1,n]. For integers a,b, we write Int[a,b] for the set of (integer)
intervals contained in [a,b], and Int[m] = Int[l,m]. An interval chain o is a sequence (o1,02,...,0%)
where each o; is an interval [I;,r;] and I; = 7;—1 + 1 for each ¢ € [2,k]. The number k is the length
of the interval chain. We say that the chain ends at 7, and spans the interval [I1,74]. For example
([2,4], 1[5, 5],[6,9]) is an interval chain of length 3 that ends at 9 and spans [2,9].

We will have need to consider functions mapping In¢[m] to a finite set C; we call such a map a
C-coloring of Int[m]. The following lemma is essentially due to Erdos and Szekeres [3]:

Lemma 2.4 Let C be a finite set and h a positive integer. If m > RIC! then given any C-coloring of
Int[m] there is an interval chain of length h that is monochromatic, i.e. in which all parts get the same
color.

Proof. For each integer j € [m] we define a function f; on the set C of colors where for ¢ € C f;(c) is the
maximum number of parts of an interval chain ending at j all of whose parts are color ¢. We claim that
the functions f; and f; are different for all ¢ # j. Assume ¢ > j and let ¢ be the color of [j + 1,7]. Then
the interval chain ending at [§] of length f;(c) having all parts of color ¢ can be augmented by [j + 1, 1]
to get an interval chain ending at ¢ of length f;(c¢) + 1 having all parts of color ¢. Hence fi(c) > fi(c)
and we conclude that the functions f; for i € [0, m] are distinct. Since there are (h —1)!°! < m functions
from C to [h — 1], the pigeonhole principle implies that there is an index m' < m and a color ¢ such that
fmr(¢) > h. Thus there is a monochromatic interval chain with h parts.

2.3 Partial Partitions

If n is an integer, a partial partition is a family II of pairwise disjoint subsets of [r]. For a partial partition
IT we write UII for UsenS, and Res(II), the residue of II, is [n] — UIL. For j € UIIL, II[s] denotes the
unique set in II that contains s.

2.4 Directed Graphs

For our purposes a directed graph D on vertex set [n] is a subset of [r] X [n]. An element (a,b) of the
graph is an arc with source a and target b. An arc of the form (s, s) is a loop. Since our digraphs arise
as state spaces for finite Markov chains, we refer to vertices as states. If (s,t) € D, we say that ¢ is
accessible from 5. A state s is self-accessible if (s, s) is an arc. DT (s) is the set of states accessible from
s.

A walk of length k£ > 1 in D from state s to state ¢ is a sequence s = 8o, §1, 82,...,86—1,8%, = t of
(not necessarily distinct) states such that (so, s1), (s1,82),...,(8k—1,5%) € D. We say that ¢ is reachable
from s provided that there is a walk from s to t. We say s is self-reachable if there is a walk of length at
least 1 from s to itself.

A subset S of states is absorbing with respect to D if there are no arcs from S to [n] — S. The
intersection of absorbing sets is absorbing and hence any two minimal absorbing sets (under containment)
are disjoint. The collection I'p of minimal absorbing sets is a partial partition of [n]. States belonging
to Ul'p are said to be recurrent and recurp is the set of recurrent states. States not in UI'p are said to
be transient and transp is the set of transient states.

To each partial partition IT of [n], we associate a digraph G(II) = (| Jgcq S x S) U (Res(II) x [n]).
G(II) is the unique maximum digraph (under containment) for which I'¢(qy = IL

The boolean product of two digraphs D; and D; is the digraph D1D; = {(s,¢) : Ju,(s,u) €
Dy, (u,t) € D2}. The boolean power of a digraph D" is defined in the obvious way. It is easy to
see that (s,¢) € D" if and only if there is a walk of length k from s to ¢ in D.

A digraph D is said to be

e admissible if each vertex is the source of some arc (possibly an arc to itself).

e S-avoiding for S C [n] if no state in S is the target of any arc.

o Il-structured for a partial partition IT if I'p = II.

e Il-absorbing for a partial partition II if each S € II is absorbing, equivalently, D C G(II),



o stable if D = D?,
Lemma 2.5 For any digraph D on vertex set [n], D™ is stable.

Proof. First we show:

Claim. Let F be a digraph on [r] having at least one self-reachable state and having the property
that every self-reachable state is self-accessible. Let i > n — 1. Then F" is stable.

To prove the claim, let F be a digraph satisfying the hypothesis and ¢ > n — 1. Let (s,%) € [n] X [n].
We need that (s,t) € F* if and only if there is a u € [n] with (s,u), (u,t) € F".

If (s,t) € F* there is a walk from s to ¢ of length i in F'. Since i > n—1, either this walk repeats some
state or it contains all n states. In either case, the walk contains at least one state u that is self-accessible
in F (since F has at least one self-reachable state and every self-reachable state is self-accessible). Then
(s,u), (u,t) € F*. Conversely, suppose there is a u € [n] such that (s,u), (u,t) € F*. Then there is a
walk W of length 2i from s to ¢, and as above, it contains a self-accessible state. Among all walks from
s to t that contain a self-accessible state, choose a shortest one. This walk has no repeated state, since if
s’ is repeated, we may shorten the walk, and the shortened walk still contains s’, which is self-reachable
and hence self-accessible. Hence the length j of the walk is at most n — 1, and we may then lengthen
the walk to exactly ¢ by inserting ¢ — § occurences of some self-accessible state after its occurence in the
original walk. Thus (s,t) € F*.

Using the claim, we prove the lemma. If D is acyclic (i.e., no vertex is self-reachable) then D? is the
empty graph for i > n, which is stable, so assume that D has at least one cycle. If D contains a cycle
through all of the states, then all states in D™ are self-accessible, and setting FF = D™ and i = (n—1)! in
the claim, we conclude that D™ is stable. Otherwise, for each self-reachable state s of D, the length I, of
the shortest cycle containing s is less than n and hence divides (n — 1)!. Thus every self-reachable state
of D (and hence also of D' is self-accessible in D™~Y', Now apply the claim with F = D™~V and
i=n.

2.5 Matrices

For a matrix A, p(A) denotes the least absolute value of any nonzero entry of A. For two matrices A
and B, A < B means A(s,t) < B(s,t) for all s,t € [n] x [n].

The norm of a matrix, ||A|| is the maximum over s € [n] of Zte[n] |A(s,t)|. The distance between
two matrices d(A4, B) = ||A — B||. We recall an elementary property of this norm:

Proposition 2.6 Let A1, As,...,An,B1,Bs, ..., By be matrices each of norm at most 1. Then d(A1 A .
™ d(A;, Bi).
i=1 ?

If (A1, As, ..., An) is a sequence of matrices, and o = [¢, j] is an interval contained in [m] then A, de-
notes the product A;A;11A4:12... Aj. We call the sequence (A, Ait1, ..., A;) a segment of (Ay,...,Ap).

2.6 Stochastic matrices, and Markov chains

We identify a stochastic matrix A with the Markov chain it defines. If s € [n], T' C [n] then A(s,T) is
defined to be > teT A(s,t) and is equal to the conditional probability that the chain enters a state in T'
at some step ¢ + 1 given that it is at s at step i. A sequence (A1, As,..., Ay) of stochastic matrices,
corresponds to an m-step Markov process, where the transition probabilities of the i** step are given by
A;, and A[y ., is the transition matrix for the entire process.

To each n x n stochastic matrix A is associated the directed graph D(A) on [n] with arc set {(s,t) :
A(s,t) > 0}. Note that D(AB) = D(A)D(B) where the product on the right is Boolean multiplication.
We call D(A) the pattern of A. Note that the pattern of a stochastic matrix is necessarily an admissible
digraph, as defined earlier.

We will be concerned with a number of properties of A that only depend on D(A). We adapt
the terminology for digraphs to matrices and Markov chains. Thus, the terms accessible, reachable,
IT-absorbing, S-avoiding, stable, etc. are defined for stochastic matrices A by referring to D(A4). In
particular, the partial partition I'4 is defined to be I'p(4). Note that the terms recurrent and transient
as defined for digraphs have the usual meaning for Markov chains: recurrent states are those that are
visited infinitely often with positive probability, and transient states are states that are visited finitely
often with probability 1.

As usual, a matrix A is idempotent if A2 = A. We say that A is quasi-idempotent if the submatrix
corresponding to the recurrent states is idempotent. The reader can prove:

..Am,Ble...Bm):



Proposition 2.7 A stochastic matriz A is quasi-idempotent if and only if for each S € T 4 the rows of
A corresponding to S are identical.

The next lemma is critical to the main argument. It identifies some special conditions which guarantee
that the product ABC of three stochastic matrices is independent of the middle matrix B.

Lemma 2.8 LetII be a partial partition of [n] and A,C € 8,. If C is II-structured and quasi-idempotent
and A is Res(Il)-avoiding, then for any Il-absorbing B € S, the matric ABC satisfies:

B t € Res(II)
ABC(s,t) = { A(s, T[N C (¢, ¢) ¢ € UL

In particular, the matriz ABC is independent of B.

Proof. We determine ABC(s,t) by analyzing the three step stochastic process associated to (4, B, C).
Suppose first that ¢ € Res(1l). Starting from any state s, the first step of the process moves to a state
in UII with probability 1, since A is Res(II)-avoiding, and the next two steps keep the process in UIL.
Hence ABC(s,t) = 0 as required.

Next suppose t € UIL. Because C is II-absorbing, the process can end in ¢ only if it is in II[t] after the
second step. Hence ABC(s,t) = ZuEH[t] AB(s,u)C(u,t) = AB(s,II[t])C(t,t) where the last equality
comes from Proposition 2.7 and the fact that C is quasi-idempotent. Since A is Res(II)-avoiding, the
process is in UIT after the first step, and since B is II-absorbing, it stays in the same set of II after the
second step and hence AB(s,II[t]) = A(s,II[t]). Thus ABC(s,t) = A(s,II[t])C(¢t,t) as required.

2.7 Two operators on stochastic matrices
We will need two operators mapping Sy to Sn. The first is defined in terms of a given digraph D, and
maps A to a stochastic matrix A{D) whose pattern is contained in D, and such that A(D) is close to A:

_D+t
A(s,t) + ASBEDLED (5 4y e D

A(D)(s,1) ={ 0 (s.4)¢ D

From the definition that A(D) has pattern contained in D and has the same row sums as A (provided
that D is admissible). To bound d(A4, A{D), we note that for each s,

> " JA(D)(s,t) — A(s, 1)] > JAD)s, ) - Alst) + D [AD)(s,t) - Als,t)]

teD+(s) tgD+(s)
= 24(s,[n] - D*(s)).

Summarizing the above, we have:

Proposition 2.9 If A is a stochastic matriz and D is an admissible digraph then A(D) s a stochastic
matriz with pattern D and d(A, A(D)) < 2max,c[,) A(s, [n] — DT (s)).

The second operator maps A to a quasi-idempotent matrix A close to A, such that Ty =Ta. We
define A as follows: If s € transa then row s of A is equal to row s of A. If s € recur4 then row s of
A is equal to the arithmetic average of the rows of A corresponding to ¢ € I'4[s]. Clearly A is stochastic
and 'y = Ta. All of the rows of A corresponding to states in the same set of I'4 are identical so, by
Proposition 2.7, Ais quasi-idempotent.

Next we bound d(A, A). For t € recur 4, define max4(t) (resp. mina(t)) to be the maximum (resp.
minimum) of A(s,t) over s € T'4[t], and define A4 (¢) = max4(¢) — ming(¢). Let Ag = max(Aa(t) : t €
recur4). To upper bound d(A, A) it suffices to upper bound > A(s, 1) - A(s,t)| for arbitrary s € [n].
If s € trans, then this is 0. Otherwise the only nonzero terms in the sum are those corresponding to
t € Ta[s] and for those mina(t) < A(s,t), A(s,t) < maxa(t), from which we conclude that |A(s,t) —
A(s,t)] < Aa(t). This implies that ), |A(s,t) — A(s,t)| < Aan and we have:

Proposition 2.10 Let A be a stochastic matriz. Then A is stochastic, Il4-structured, and quasi-
idempotent and d(A, A) < Aan.



3 Proof of the Theorem 1.1

Fix A C Sn. It suffices to prove the theorem in the case that A is closed. Also, since S, is compact, it
suffices, by Theorem 2.3, to show that {A(’”) 4 > 1} is forward Cauchy. This is equivalent to showing:

Lemma 3.1 For each natural number n there is a natural number p = p(n) with the following property:
Let A be a closed subset of S,. For each € > 0, there is an integer mo = mo(.A, €) such that if m > mo
and A € A" | then for any positive integer i there is a matriz C; € AT such that ||C; — Al| < e.

Given ¢, we will choose mo = mo(A, ¢) sufficiently large. We are then given an arbitrary sequence
(A1, Ag,. .., Ap) from A™ with m > mo and must show that for some p depending only on n, and for
any i > 1 there is a sequence (B1, Bz, ..., Batip) of matrices from A™ %P such that ||B1Bs ... Bmiip —
A1A2 .. Am” S E.

We will use Lemma 2.8. Lemma 3.2 below, asserts that we can partition any long enough sequence
of matrices into five segments so that, denoting by P; the product of the i** segment, we have that for
some partial partition II, P is very close to a Res(II)-avoiding matrix, P; is very close to a II-absorbing
matrix and Py is very close to a II-structured quasi-idempotent matrix. Now Lemma 2.8 will imply that
if we replace P3 by any matrix N whose product is close to some II-absorbing matrix, then Pi P, NP,P5
is close to P1 P, P3P, Ps. So it suffices to show that if k is the length of the third segment, then for some
p depending on n and for each ¢ > 1, we can find a matrix N; € AP that is close to II-absorbing.
This (or something like it) will follow from Lemma 3.3.

We now formulate the two main lemmas, and show that they imply Lemma 3.1.

Lemma 3.2 Let n be a positive integer and € > 0. There is an integer b = b(n,e’') such that if
(B1, Ba, ..., By) is any sequence of n X n stochastic matrices then there exists a partial partition II of [n]
and an interval chain o = (01,02, 03,04,05) that spans [b] satisfying:

1. There is a Res(Il)-avoiding matriz Lo with d(L2, Bs,) < €.
2. There is a Il-absorbing matriz Ls with d(Ls, Byg) < €'.

!

3. There is a Il-structured quasi-idempotent matriz Ly with d(Ls,B,,) < €.

Lemma 3.3 For each natural number n there is a natural number p = p(n) and a natural number
ko = ko(n) with the following property: Let A be a closed subset of Sn. There is an integer R = R(A)
such that for any k > ko, if M € A®) | then for any positive integer i there is a matriz N; € A®+®) guch
that N; < RM.

The reader should note the similarity between Lemma 3.1 and Lemma 3.3; the latter can be viewed
as a very weak form of the former.

3.1 Proof of Lemma 3.1 from Lemmas 3.3 and 3.2

The number p(n) in Lemma 3.1 is taken to be the number p(n) in Lemma 3.3. In the hypothesis of
Lemma 3.1 we are given A and €. Choose R = R(A) and ko = ko(n) as in Lemma 3.3 and define

¢ = g=z. Choose b = b(n,¢’) as given by Lemma 3.2 and define mo = kob. (Note that since ¢’ and ko
are determined by A and €, mo is also determined by A and ¢.)
We are given m > mo, and (A1, Az, ..., An) € A™ and an integer 7 > 1 and we want to find a matrix

in At that is within ¢ of the product Af1,m]. Consider the first mo matrices A1,..., An, and group
them into b blocks of size ko. Define stochastic matrices Bi, B, ..., By where B; is the product of the
ko matrices belonging to the i** block. Apply Lemma 3.2 to get an interval chain o of length 5 spanning
[6], and define Ly, L3, L4 as in that lemma. Let k = |o3|ko and apply Lemma 3.3 with M = B,,. Hence
for i > 1, there exists a matrix N; € A%*+%® such that N; < RB,;. Now, since B,, is within &' of the
II-absorbing matrix L3, we must have Bg,(s,t) < & for any (s,t) € G(II). Therefore N;(s,t) < Re' = &
for any (s,t) ¢ G(II), and we conclude from Proposition 2.9 that M; = N;(G(II)) is II-absorbing and
d(N;, M;) < %.

The matrix C; = Bs, By, Ny By, Byy A[mg+1,m] belongs to A+ To complete the proof it suffices
to show:

Claim. d(By, BoyNiBo,Bos Aimg11,m)s Bo: Bos Boy Boy Bos Almg11,m)) < €.

By Proposition 2.6, the expression on the left is at most d(B,, N;Bo,, Boy Boy B,,). Now:



d(Bs,Bs3Bs,, BoyNiBs,) < d(BoyBoy Bo,, Ly L3Ly) + d(LyLaLs, LoaM;Ls) + d(LaM;Ls, Bo, N; B,,,).
1)
d(Bsy, L2), d(Bosg, L3), and d(B,,, L4) are each bounded above by &’ so, by Proposition 2.6, d(Bsy By Bo,, LaLaLs) <
3¢’ < % Similarly, since d(M;, N;) < §, d(L2M;L4, Bs, NiBo,) < £ 4+ 2¢' < £. Since Ly is Res(II)-
avoiding and L3 is II-structured quasi-idempotent and M; and Ls are each II-absorbing, Lemma 2.8
implies Ly M; Ly = LyL3L4. Thus d(LaLsLs, Ly M;Ls) = 0 and the sum right hand side of (1) is at most
g, proving the claim and the lemma.

So it remains to prove Lemmas 3.2 and 3.3. In Section 3.2 we present a lemma that is key to the
proof of both of these lemmas. In Section 3.3 we prove Lemma, 3.3. In Section 3.4 we present another
lemma which is used in Section 3.5 to prove Lemma 3.2.

3.2 Partitioning a sequence of matrices into many segments with the
same pattern.

The following lemma asserts that given any long enough sequence of stochastic matrices, it is possible
to find a stable digraph D and a chain of segments of length h such that each of the h subproducts can
be very well approximated by a matrix (not the same for each subproduct) that has pattern D, where
the closeness of the approximation is small relative to the smallest nonzero entry of the approximating
matrix.

First we need a definition. If D is a digraph and w, § are real numbers in [0, 1] we say that a stochastic
matrix A is (D,w, §)-conforming if for all (s,t) € D, A(s,t) > w and for all (s,t) & D, A(s,t) < wd.
(Intuitively, the entries corresponding to D are “big” and the other entries are “small”).

Lemma 3.4 Let n,h be positive integers and § > 0. There exists a positive integer ro = ro(n,h)
(independent of §) and a real number §' = §'(n,8) (independent of h) with the following property: Given
any r > 1o and (A1, Aa,..., Ar) € (8,.)" there exists a stable digraph D on [n], a real number w € [¢§', 1]
and an interval chain (01,02,...,04) of length h contained in [ro] such that for each i € [h], Ao, is
(D, w, 8)-conforming.

Proof. Let n,h,d be given. We first define a sequence v of n* + 3 real numbers 0 = y0 < 11 < ¥2 <
v < Apagy < Ya2qe = 1 with v,244 = 1/(n + 1), and for j € [1,n%], v; = (yj41/n)™'6. The number &'
is defined to be (y2)™'. Observe that ¢’ is independent of .

Define the real intervals Io, I1,...,I,241 by I; = (v;,7j+1]. These intervals partition (0,1]. For
A € 8, let 14 be the largest index j such that I; contains no entry of A; j is well defined and positive
by the pigeonhole principle. Also, j # n® + 1 since A contains an entry that is at least 1/n. Let G4 be
the graph consisting of all (s,t) such that A(s,t) > ~vi,+1, i-e., A(s,t) lies in one of the intervals to the
right of I; ,. The ordered pair (I4,G4) is called the ¢ype of the matrix A.
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Now define g to be (n!h)"22n . Let r > ro and suppose that A;, A, ..., A, is a sequence of stochastic
matrices. Assign to each (integer) subinterval o a “color” which is the type (la,,Ga4,) of the matrix
A,. There are at most n22"" different colors (n? is a bound on the number of distinct values for 14 and
9"* is the number of different digraphs). So by Lemma 2.4 and the fact that r > ro, there is an interval
chain 7 of length n!h in which each interval has the same color. Let (I, G) be the common color of these
intervals.

We now specify D, w, and o required by the conclusion of the lemma. Let D = G™'. By Lemma 2.5,
D is a stable digraph. Let w =~/*'. Define (o1,...,0%) as follows: group the intervals of 7 consecutively
into h groups of size n! and let o; be the union of the intervals in the " group.

Let ¢ € [h], we must show that A, is (D,w, §)-conforming. A, is the product of n! matrices, each
of type (I,G). Thus for each of these n! matrices, each entry corresponding to an arc of G is at least
4141 and each entry corresponding to a non-arc of @ is less than ;. Since D = G™, each entry of As;
corresponding to an arc of D is at least 'y,”_f_l = w. Each entry corresponding to a non-arc of D is the
sum of at most n™ terms each of which is less than -;, and so each such entry is less than n™7y; = fw.

3.3 Proof of Lemma 3.3

We will need the following fact (which is a special case of a property of compact subsets of Euclidean
space):



Lemma 3.5 Let B C S, be closed. There exists a number a = a(B) > 0 with the following property.
Given any matriz A € B, there is a matriz B € B such that B(s,t) = 0 for all (s,t) such that A(s,t) < c.

Proof. Suppose no such « exists. Then for each i > 1, the number 27¢ violates the property, so
there is a matrix A; € B such that for any matrix B € B, there is an (s,¢) such that A;(s,t) < 27°
and B(s,t) > 0. Define the digraph D; = {(s,t) : A:(s,t) > 27°}. Choose D such that D; = D for
infinitely many ¢ and consider the subsequence of matrices A; such that D; = D; by compactness there
is an infinite subsequence i1,42,4s,... such that {A;;} converges to a matrix B € B. We now have a
contradiction to the choice of A;,: By definition of D and 41, for any (s,t) such that A;, (s,t) <274 we
have (s,t) ¢ D;; = D, which implies that the sequence {A;, (s,)} converges to 0 and hence B(s,t) = 0.

We proceed with the proof of Lemma 3.3. The number ko in this lemma is taken to be ro(n,1)
from Lemma 3.4 and p(n) is chosen to be the least common multiple of the set {1,2...,ko}. Define
6 = min{a(A®) : 1 < i < ko} where a(A®) is as defined in Lemma 3.5. Let R = % where §' is as
defined in Lemma 3.4. ’

Suppose (A1, As, ..., Ar) € A* where k > ko, and let M = A 4). By Lemma 3.4 with h = 1, we
can find a stable digraph D, a real number w > §' and an interval o C [ko] such that A,(s,t) > w for
(s,t) € D and A,(s,t) < wd for (s,t) € D. Let o = [l1 +1,r1] and let g = r1 — ;. Since ¢ < ko, g is a
divisor of p. By Lemma 3.5 and the fact that a(A@) > § and w < 1, there is a matrix B € A such that
B(s,t) = 0 for all (s,t) ¢ D. Define the matrix C € A® to be B*/¢ and let N; = A1 BC Apyy 41,1
Trivially NV; € A1) We now show that N; < RA(y ). Since D is stable and contains the pattern of B
and C' is a power of B, BC(s,t) = 0 for all (s,t) € D. For (s,t) € D, BC%(s,t) < 1 while A,(s,t) > §'.
We conclude that BC* < RA,. Since inequalities of nonnegative matrices are preserved under pre— or
post—multiplication of nonnegative matrices, N; = A[l,ll]BCiA[T1+1,k] < RA.

3.4 Convergence of products of (D,w,d)-conforming matrices

In preparation for the proof of lemma 3.2 we prove a lemma that says that given a sequence of matrices
of the right length, each of which is (D, w, §)-conforming for some stable II-structured digraph D and §
sufficiently small, their product is close to a Res(Il)-avoiding matrix and also to a II-structured quasi-
idempotent matrix.

First, we present a lemma assuming the stronger hypothesis that each matrix has pattern D (rather
than just being close to a matrix with pattern D). This lemma, is similar to standard results.

Lemma 3.6 Let II be a partial partition of [n] and D be a stable Il-structured digraph. Suppose

C1,Ca,...,Cn are stochastic matrices with pattern D. Let vy = ¢~ Zi oD,

1. Cp,m) s within distance 2y of some Res(II)-avoiding matriz.
2. Ch ;) is within distance ny? of some I-structured quasi-idempotent matriz.

Proof. Since each C; has pattern D and D is stable, any product C = Hz C; has pattern D.

To prove (1), let IT = I'p and let S = Res(IT). and consider the matrix C(S). This matrix is S-
absorbing and we will show d(C, (S)) < 2vy. By Proposition 2.9, it suffices to show that C(s,S) < v
for each s € [n]. For s € UIl we have C(s,S) = 0, since D is II-absorbing. For s € S, view C as the
transition probability matrix for the m-step stochastic process defined by (C1,Ca,...,Cp). Note that if
the process ever leaves S it never returns, so C(s, S) is equal to the probability that, starting the process
from s, the process is in S after every step. Since each C; has pattern D and D is stable, C;(t, UII) must
be nonzero for each state ¢ and therefore it is at least u(C;). In other words for each i and state t € S,
the conditional probability that the process is in S after step 7 given that it is in ¢ after step ¢ — 1 is at
most (1 — p(C;)). We conclude that C(s,S) < [, (1 —pu(Ci)) <e” Do wl(C)

Now for the proof of (2). By Propostion 2.10 it suffices to show that Ac < 4*>. We show by reverse
induction on i that for i € [m], Acy, ,, < H]T.n:i(l —2u(Cj)), from which the desired inequality follows.

For the basis ¢ = m, note that if ¢ is recurrent and |II[t]] = 1 then Ag,,(t) = 0. Otherwise,
Cm(s,t) > p(C;) for all s € II[t] (since D is stable) and so maxg,, (t) < 1 — p(C;) and ming,, (t) > p(Cs);
thus Ag,, (1) < 1 — 2u;.

The induction step follows immediately from:



Claim. If A, B are matrices with pattern D where D is stable, then Agp < (1 — 2u(A))AsB.

For the claim, let ¢ be an arbitrary recurrent state. We first upper bound maxag(t). Let u; € II[t]
be the state minimizing B(u,t) over all € II[{]. Then for s € II[t] we have,

AB(s,t) = > A(sw)B(ut)< Y Als,uymaxp(t) + A(s, u;)ming(t)
w€Il[s] wEMM[s]—{us}
= maxp(t) — A(s,u)Ap(t) < maxp(t) — p(A)As(2).

So max4p(t) < maxp(t) — u(A)Ap(t). A similar argument gives minag(t) > ming(t) + p(A)Ag(t).
Combining these gives Aag(t) < Ap(t)(1 — 2u(A)) for each recurrent ¢, and the claim follows.

We now prove an “approximate” version of the previous lemma, in which the matrices are assumed
only to be (D,w, §) conforming for some appropriate 4.

Lemma 3.7 Let n,&' be given, let J = [In ‘i—’,‘], d=g7, andw €[0,1]. Let II be a partial partition and
D be a stable I1-structured digraph. If K = J[1/w] then the product of any K matrices, each (D,w,?)-
conforming, is within €' of some Res(Il)-avoiding matriz, and is also within &' of some Il-structured
quasi-idempotent matrizc.

Proof.

Let D be a stable digraph and w € [0,1] and K = J[1/w], so that J/w < K < 2J/w. Let
A1, As, ..., Ak be a sequence of (D,w, §)-conforming matrices and for each i € [K], let B; = A;(D). By
Proposition 2.9, d(A;, B;) < 2nwé and by Proposition 2.6, d(A[1, k), Bi,k]) < 2nwdK < €'/2.

Each B; has pattern D and smallest nonzero entry at least w. Therefore, by Lemma 3.6, B k) is
within distance ne™2%v < €' /2 of some II-structured quasi-idempotent matrix, and so A, k) is within e’
of that matrix. Similarly, by Lemma 3.6, By, kj is within 2e~%“ < &'/2 of some Res(II)-avoiding matrix
and hence A k7 is within &’ of that matrix.

3.5 Proof of Lemma 3.2

We are given n and €’ > 0. We will define a number b = b(n, ¢’) and show that given (B1, Bz, ..., By) € §°
we can find the desired spanning interval chain (o1, 02,03,04,05) of [b].

Define § = §(n,&') and J = J(n,&') as in Lemma 3.7. Let §' = §'(n,d) be defined as in Lemma 3.4.
Define b = 2J[1/§'] + 1. Finally, define b = ro(n, h) as in Lemma 3.4. Note that b can be expressed as
a function of n and £’

Given (B, Bs, ..., By), apply Lemma 3.4 to obtain an interval chain (71,72, ..., 74) contained in [b], a
stable digraph D and a real number w > &' so that each By, is (D,w, §)-conforming. Define K = K(J,w)
as in Lemma 3.7 and note that h > 2K + 1.

We now define o1 to be the portion of [b] preceding 71, o2 = U 7, 03 = Tr 41, 02 = Uffl}"_bn and
o5 is the portion of [b] coming after o4. We also define IT = IIp.

By Lemma 3.7 we have that B, is within &' of some Res(II)-avoiding matrix, and B,, is within &’ of
some II-structured quasi-idempotent matrix. Finally B, is (D, w, §)-conforming, so by Proposition 2.9,
is within 2nwé < &' of B,, which has pattern D and is therefore TT-absorbing.
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