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Abstract. We study finite automata with both nondeterministic and random states (npfa’s).
We restrict our attention to those npfa’s that accept their languages with a small probability of error
and run in polynomial expected time. Equivalently, we study Arthur–Merlin games where Arthur is
limited to polynomial time and constant space.

Dwork and Stockmeyer [SIAM J. Comput., 19 (1990), pp. 1011–1023] asked whether these npfa’s
accept only the regular languages (this was known if the automaton has only randomness or only
nondeterminism). We show that the answer is yes in the case of npfa’s with a 1-way input head. We
also show that if L is a nonregular language, then either L or L̄ is not accepted by any npfa with a
2-way input head.

Toward this end, we define a new measure of the complexity of a language L, called its 1-tiling
complexity. For each n, this is the number of tiles needed to cover the 1’s in the “characteristic
matrix” of L, namely, the binary matrix with a row and column for each string of length ≤ n, where
entry [x, y] = 1 if and only if the string xy ∈ L. We show that a language has constant 1-tiling
complexity if and only if it is regular, from which the result on 1-way input follows. Our main
result regarding the general 2-way input tape follows by contrasting two bounds: an upper bound of
polylog(n) on the 1-tiling complexity of every language computed by our model and a lower bound
stating that the 1-tiling complexity of a nonregular language or its complement exceeds a function
in 2Ω(

√
logn) infinitely often.

The last lower bound follows by proving that the characteristic matrix of every nonregular lan-
guage has rank n for infinitely many n. This is our main technical result, and its proof extends tech-
niques of Frobenius and Iohvidov developed for Hankel matrices [Sitzungsber. der Königl. Preuss.
Akad. der Wiss., 1894, pp. 407–431], [Hankel and Toeplitz Matrices and Forms: Algebraic Theory,
Birkhauser, Boston, 1982].

Key words. nondeterministic probabilistic finite automata, Arthur–Merlin games, interactive
proof systems, matrix tiling, Hankel matrices

AMS subject classifications. 68Q05, 68Q10, 68Q75

PII. S0097539794265578

1. Introduction. The classical subset construction of Rabin and Scott [25]
shows that finite state automata with just nondeterministic states (nfa’s) accept ex-
actly the regular languages. Results of Rabin [24], Dwork and Stockmeyer [7], and
Kaņeps and Freivalds [17] show that the same is true of probabilistic finite state au-
tomata which run in polynomial expected time. Here and throughout the paper, we
restrict attention to automata which accept languages with error probability that is
some constant ε less than 1/2.
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740 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

However, there has been little previous work on finite state automata which have
both probabilistic and nondeterministic states. Such automata are equivalent to the
Arthur–Merlin games of Babai and Moran [3], restricted to constant space, with an
unbounded number of rounds of communication between Arthur and Merlin. In this
paper, we refer to them as npfa’s. In the computation of an npfa, each transition
from a probabilistic state is chosen randomly according to the transition probabilities
from that state, whereas from a nondeterministic state, it is chosen so as to maximize
the probability that an accepting state is eventually reached. We let 1NPFA and
2NPFA-polytime denote the classes of languages accepted by npfa’s which have a 1-
way or 2-way input head, respectively, and which run in polynomial expected time.
Dwork and Stockmeyer [8] asked whether 2NPFA-polytime is exactly the set of regular
languages, which we denote by Regular.

In this paper, we prove the following two results on npfa’s.
THEOREM 1.1. 1NPFA = Regular.
THEOREM 1.2. If L is nonregular, then either L or L̄ is not in 2NPFA-polytime.
Thus, we resolve the question of Dwork and Stockmeyer for npfa’s with 1-way

head, and in the case of the 2-way head model, we reduce the question to that of
deciding whether 2NPFA-polytime is closed under complement. Theorem 1.1 also
holds even if the automaton has universal as well as nondeterministic and proba-
bilistic states. Moreover, Theorem 1.2 holds even for Arthur–Merlin games that use
o(log log n) space.

In proving the two results, we introduce a new measure of the complexity of a
language L called its 1-tiling complexity. Tiling complexity arguments have been used
previously to prove lower bounds for communication complexity (see, e.g., Yao [29]).
With each language L ⊆ Σ∗, we associate an infinite binary matrix ML, whose rows
and columns are labeled by the strings of Σ∗. Entry ML[x, y] is 1 if the string xy ∈ L
and is 0 otherwise. Denote by ML(n) the finite submatrix of ML, indexed by strings
of length ≤ n. Then, the 1-tiling complexity of L (and of the matrix ML(n)) is the
minimum size of a set of 1-tiles of ML(n) such that every 1-valued entry of ML(n) is
in at least one 1-tile of the set. Here, a 1-tile is simply a submatrix (whose rows and
columns are not necessarily contiguous) in which all entries have value 1.

In section 3, we prove the following theorems, relating language acceptance of
npfa’s to tiling complexity. The proofs of these theorems build on previous work of
Dwork and Stockmeyer [8] and Rabin [24].

THEOREM 3.1. A language L is in 1NPFA only if the 1-tiling complexity of L is
O(1).

THEOREM 3.4. A language L is in 2NPFA-polytime only if the 1-tiling complexity
of L is bounded by a polynomial in log n.

What distinguishes our work on tiling is that we are interested in the problem
of tiling the matrices ML(n), which have distinctive structural properties. If L is a
unary language, then ML(n) is a matrix in which all entries along each diagonal from
the top right to the bottom left are equal. Such a matrix is known as a Hankel matrix.
An elegant theory on properties of such Hankel matrices has been developed [15], from
which we obtain strong bounds on the rank of ML(n) if L is unary. In the case that
L is not a unary language, the pattern of 0’s and 1’s in ML(n) is not as simple as
in the unary case, although the matrix still has much structure. Our main technical
contribution, presented in section 4, is to prove new lower bounds on the rank of
ML(n) when L is not unary. Our proof uses techniques of Frobenius and Iohvidov
developed for Hankel matrices [11], [15].
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 741

THEOREM 4.11. If L is nonregular, then the rank of ML(n) is at least n + 1
infinitely often.

By applying results from communication complexity relating the rank of a matrix
to its tiling complexity, we can obtain a lower bound on the 1-tiling complexity of
non-regular languages.

THEOREM 4.12. If L is nonregular, then the 1-tiling complexity of either L or L̄
exceeds a function in 2Ω(

√
logn) infinitely often.

However, there are nonregular languages, even over a unary alphabet, with 1-
tiling complexity O(log n) (see section 4). Thus the above lower bound on the 1-tiling
complexity of L or L̄ does not always hold for L itself. A simpler theorem holds for
regular languages.

THEOREM 4.2. The 1-tiling complexity of L is O(1) if and only if L is regular.
By combining these theorems on the 1-tiling complexity of regular and nonregular

languages with the theorems relating 1-tiling complexity to acceptance by npfa’s, our
two main results (Theorems 1.1 and 1.2) follow as immediate corollaries.

The rest of the paper is organized as follows. In Section 2, we define our model
of the npfa and the tiling complexity of a language. We conclude that section with a
discussion of related work on probabilistic finite automata and Arthur–Merlin games.
In section 3, we present Theorems 3.1 and 3.4, which relate membership of a language
L in the classes 1NPFA and 2NPFA-polytime to the 1-tiling complexity of L. A similar
theorem is presented for the class 2NPFA, in which the underlying automata are not
restricted to run in polynomial expected time. In section 4, we present our bounds
on the tiling complexity of both regular and nonregular languages. Theorems 1.1 and
1.2 are immediate corollaries of the main results of sections 3 and 4. Extensions of
these results to alternating automata and to Turing machines with small space are
presented in section 5. Conclusions and open problems are discussed in section 6.

2. Preliminaries. We first define our npfa model in section 2.1. This model
includes as special cases the standard models of nondeterministic and probabilistic
finite state automata. In section 2.2 we define our notion of the tiling complexity of a
language. Finally, in section 2.3, we discuss previous work on this and related models.

2.1. Computational models and language classes. A two-way nondeter-
ministic probabilistic finite automaton (2npfa) consists of a set of states Q, an input
alphabet Σ, and a transition function δ, with the following properties. The states Q
are partitioned into three subsets: the nondeterministic states N , the probabilistic (or
random) states R, and the halting states H. H consists of two states: the accepting
state qa and the rejecting state qr. There is a distinguished state q0, called the initial
state. There are two special symbols |c , $ /∈ Σ, which are used to mark the left and
right ends of the input string, respectively.

The transition function δ has the form

δ : Q× (Σ ∪ { |c , $})×Q× {−1, 0, 1} → {0, 1/2, 1}.

For each fixed q in R, the set of random states, and σ ∈ (Σ ∪ { |c , $}), the sum
of δ(q, σ, q′, d) over all q′ and d equals 1. The meaning of δ in this case is that
if the automaton is in state q reading symbol σ, then with probability δ(q, σ, q′, d)
the automaton enters state q′ and moves its input head one symbol in direction d
(left if d = −1, right if d = 1, stationary if d = 0). For each fixed q in N , the
set of nondeterministic states, and σ ∈ (Σ ∪ { |c , $}), δ(q, σ, q′, d) ∈ {0, 1} for all q′
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742 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

and d. The meaning of δ in this case is that if the automaton is in state q reading
symbol σ, then the automaton nondeterministically chooses some q′ and d such that
δ(q, σ, q′, d) = 1, enters state q′ and moves its input head one symbol in direction d.
Once the automaton enters state qa (respectively, qr), the input head moves repeatedly
to the right until the right endmarker $ is read, at which point the automaton halts. In
other words, for q ∈ {qa, qr}, δ(q, σ, q, 1) = 1 for all σ ∈ Σ∪ { |c }, and δ(q, σ, q′, 1) = 0
for all σ ∈ Σ ∪ { |c } and q′ 6= q. On a given input, the automaton is started in the
initial configuration, that is, in the initial state with the head at the left end of the
input. If the automaton halts in state qa on the input, we say that it accepts the
input, and if it halts in state qr, we say that it rejects the input.

Fix some input string w = w0w1w2, . . . , wnwn+1, where w0 = |c and wn+1 = $.
A nondeterministic strategy (or just strategy) on w is a function

Sw : N × {0, . . . , n+ 1} → Q× {−1, 0, 1}

such that δ(q, σ, q′, d) = 1 whenever Sw(q, j) = (q′, d) and wj = σ. The meaning of
Sw is that if the automaton is in state q ∈ N reading wj , then if Sw(q, j) = (q′, d), the
automaton enters state q′ and moves its input head one symbol in direction d. The
strategy indicates which nondeterministic choice should be made in each configuration.

A language L ⊆ Σ∗ is accepted with bounded error probability if for some constant
ε < 1/2,

1. for all w ∈ L, there exists a strategy Sw on which the automaton accepts
with probability ≥ 1− ε, and

2. for all w /∈ L, on every strategy Sw, the automaton accepts with probability
≤ ε.

Language acceptance could be defined with respect to a more general type of
strategy, in which the nondeterministic choice made from the same configuration at
different times may be different. It is known (see [4, Theorem 2.6]) that if L is accepted
by an npfa with respect to this more general definition, then it is also accepted with
respect to the definition above. Hence, our results also hold for such generalized
strategies.

A one-way nondeterministic probabilistic finite automaton (1npfa) is a 2npfa
which can never move its input head to the left; that is, δ(q, σ, q′,−1) = 0 for all
q, q′, and σ. Also, a probabilistic finite automaton (pfa) and a nondeterministic finite
automaton (nfa) are special cases of an npfa in which there are no nondeterministic
and no probabilistic states, respectively.

We denote by 1NPFA and 2NPFA the classes of languages accepted with bounded
error probability by 1npfa’s and 2npfa’s, respectively. If, on all inputs w and all
nondeterministic strategies, the 2npfa halts in polynomial expected time, we say that
L is in the class 2NPFA-polytime. The classes 1PFA, 2PFA, and 2PFA-polytime are
defined similarly, with pfa replacing npfa. Finally, Regular denotes the class of regular
languages.

Our model of the 2npfa is equivalent to an Arthur–Merlin game in which Arthur
is a 2pfa, and our classes 2NPFA and 2NPFA-polytime are identical to the classes
AM(2pfa) and AM(ptime-2pfa), respectively, of Dwork and Stockmeyer [8].

2.2. The tiling complexity of a language. We adapt the notion of the tiling
complexity of a function, used in communication complexity theory, to obtain a new
measure of the complexity of a language. Given a finite, two-dimensional matrix M , a
tile is a submatrix of M in which all entries have the same value. A tile is specified by
a pair (R,C) where R is a nonempty set of rows and C is a nonempty set of columns.
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 743

The entries in the tile are said to be covered by the tile. A tile is a b-tile if all entries
of the submatrix are b. A set of b-tiles is a b-tiling of M if every b-valued entry of
M is covered by at least one tile in the set. If M is a binary matrix, the union of a
0-tiling and a 1-tiling of M is called a tiling of M . Let T (M) be the minimum size of
a tiling of M . Let T 1(M) be the minimum size of a 1-tiling of M , and let T 0(M) be
the minimum size of a 0-tiling of M . Then, T(M) = T 1(M) + T 0(M). Note that in
these definitions it is permitted for tiles of the same type to overlap.

We can now define the tiling complexity of a language. Associated with a language
L over alphabet Σ is an infinite binary matrix ML. The rows and columns of ML

are indexed (say, in lexicographic order) by the strings in Σ∗. Entry ML[x, y] = 1
if and only if xy ∈ L. Let Ln be the strings of L of length ≤ n. Let ML(n) be
the finite submatrix of ML whose rows and columns are indexed by the strings of
length ≤ n. The 1-tiling complexity of a language L is defined to be the function
T 1
L(n) = T 1(ML(n)). Similarly, the 0-tiling complexity of L is T 0

L(n) = T 0(ML(n))
and the tiling complexity of L is TL(n) = T(ML(n)).

A tiling of a matrix M is disjoint if every entry [x, y] of M is covered by exactly
one tile. The disjoint tiling complexity of a matrix M , T̃ (M), is the minimum size
of a disjoint tiling of M . Also, the disjoint tiling complexity of a language, T̃L(n), is
T̃ (ML(n)).

Tilings are often used in proving lower bounds in communication complexity
[29], [30]. Let f : X × Y → {0, 1}. The function f is represented by a matrix
Mf whose rows are indexed by elements of X and whose columns are indexed by
elements of Y , such that Mf [x, y] = f(x, y). Let Tf denote T(Mf ). Suppose that two
cooperating parties, P1 and P2, get inputs x ∈ X and y ∈ Y , respectively, and want
to compute f(x, y). They can do so by exchanging information according to some
protocol (precise definitions of legal protocols can be found in [13]). If the protocol is
deterministic, then the worst case number of bits that need to be exchanged (that is,
the deterministic communication complexity) is bounded below by log T̃f [29]. If the
protocol is nondeterministic, then the lower bound is log Tf [1]. Finally, if the object
of the nondeterministic protocol is only to verify that f(x, y) = 1 (if that is indeed
the case), then the lower bound on the number of bits exchanged is log T 1

f .

2.3. Related work. Our work on npfa’s builds upon a rich literature on prob-
abilistic finite state automata. Rabin [24] was the first to consider probabilistic au-
tomata with bounded error probability. He showed that 1PFA = Regular. However,
with a 2-way input head, pfa’s can recognize nonregular languages. This was shown
by Freivalds [10], who constructed a 2pfa for the language {0n1n | n ≥ 0}. Green-
berg and Weiss [12] showed that exponential expected time is required by any 2pfa
accepting this language. Dwork and Stockmeyer [7] and, independently, Kaņeps and
Freivalds [17] showed that, in fact, any 2pfa which recognizes a nonregular language
must run in exponential expected time. It follows that 2PFA-polytime = Regular.

Roughly, Rabin’s proof shows that any language L accepted by a 1pfa has only
finitely many equivalence classes. Here, two strings x, x′ are equivalent if and only if
for all y, xy ∈ L⇔ x′y ∈ L. The Myhill-Nerode theorem [14] states that a language
has a finite number of equivalence classes if and only if it is regular. This, combined
with Rabin’s result, implies that 1PFA = Regular. Two decades later, this idea was
extended to 2pfa’s. A strengthened version of the Myhill-Nerode theorem is needed
for this extension. Given a language L, we say that two strings x, x′ are pairwise
n-inequivalent if for some y, xy ∈ L⇔ x′y 6∈ L, and furthermore, |xy|, |x′y| ≤ n. Let
NL(n) (the nonregularity of L) be the size of the largest set of pairwise n-inequivalent
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744 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

strings. Kaņeps and Freivalds [16] showed that NL(n) ≥ b(n + 3)/2c for infinitely
many n. (It is interesting to note that, to prove their bound, Kaņeps and Freivalds
first showed that NL(n) equals the number of states of the minimal deterministic
1-way finite automaton that accepts all words of length ≤ n that are in L and rejects
all words of length ≤ n that are not in L. Following Karp [19], we denote the latter
measure by φL(n). Karp [19] previously proved that φL(n) > n/2 + 1 for infinitely
many n. Combining this with the fact that NL(n) and φL(n) are equal, it follows
immediately that NL(n) > n/2 + 1 for infinitely many n. This is stronger (by 1) for
even n than the lower bound of Kaņeps and Freivalds. We also note that Dwork and
Stockmeyer [7] obtained a weaker bound on NL(n) without using φL(n). Using tools
from Markov chain theory, Dwork and Stockmeyer [7] and Kaņeps and Freivalds [17]
showed that if a language is accepted by a 2pfa in polynomial expected time, then
the language has “low” nonregularity. In fact, NL(n) is bounded by some polynomial
in logn. This, combined with the result of Kaņeps and Freivalds, implies that 2PFA-
polytime = Regular.

Models of computation with both nondeterministic and probabilistic states have
been studied intensively since the work of Papadimitriou [23] on games against nature.
Babai and Moran [3] defined Arthur–Merlin games to be Turing machines with both
nondeterministic and probabilistic states, which accept their languages with bounded
error probability. Their work on polynomial time bounded Arthur–Merlin games
laid the framework for the remarkable progress on interactive proof systems and their
applications (see, for example, [2] and the references therein). Space bounded Arthur–
Merlin games were first considered by Condon and Ladner [6]. Condon [4] showed
that AM(log-space), that is, the class of languages accepted by Arthur–Merlin games
with logarithmic space, is equal to the class P. However, it is not known whether the
class AM(log-space, polytime)—the subclass of AM(log-space) where the verifier is
also restricted to run in polynomial time—is equal to P, or whether it is closed under
complement. Fortnow and Lund [9] showed that NC is contained in AM(log-space,
polytime).

Dwork and Stockmeyer [8] were the first to consider npfa’s, which are Arthur–
Merlin games restricted to constant space. They described conditions under which a
language is not in either of the classes 2NPFA or 2NPFA-polytime. The statements of
our Theorems 3.2 and 3.4 generalize and simplify the statements of their theorems, and
our proofs build on theirs. In communication complexity theory terms, their proofs
roughly show that languages accepted by npfa’s have low “fooling set complexity.”
This measure is defined in a manner similar to the tiling complexity of a language,
based on the following definition. Define a 1-fooling set of a binary matrix A to be a
set of entries {[x1, y1], [x2, y2], . . . , [xm, ym]} such that A[xi, yj ] = 1 if and only if i = j.
The size of a 1-fooling set of a binary matrix is always at most the 1-tiling complexity
of the matrix, because no two distinct entries in the 1-fooling set, [xi, yi] and [xj , yj ],
can be in the same tile. However, the 1-tiling complexity may be significantly larger
than the 1-fooling set complexity; in fact, for a random n × n binary matrix, the
expected size of the largest 1-fooling set is O(log n), whereas the expected number of
tiles needed to tile the 1-entries is Ω(n/ log n) [1].

3. NPFA’s and tiling. Three results are presented in this section. For each of
the classes 1NPFA, 2NPFA, and 2NPFA-polytime, we describe upper bounds on the
tiling complexity of the languages in these classes. The proof for 1NPFA’s is a natural
generalization of Rabin’s proof that 1PFA = Regular [24]. The other two proofs build
on previous results of Dwork and Stockmeyer [8] on 2npfa’s.
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 745

3.1. 1NPFA and tiling.
THEOREM 3.1. A language L is in 1NPFA only if the 1-tiling complexity of L is

O(1).
Proof. Suppose L is accepted by some 1npfa M with error probability ε < 1/2.

Let the states of M be {1, . . . , c}.
Consider the matrix ML. For each 1-entry [x, y] of ML, fix a nondeterministic

strategy that causes the string xy to be accepted with probability at least 1 − ε.
With respect to this strategy, define two vectors of dimension c. Let pxy be the state
probability vector at the step when the input head moves off the right end of x. That
is, the ith entry of the vector is the probability of being in state i at that moment,
assuming that the automaton is started at the left end of the input |c xy$ in the initial
state. Let rxy be the column vector whose ith entry is the probability of accepting
the string xy, assuming that the automaton is in state i at the moment that the head
moves off the right end of x. Then the probability of accepting the string xy is the
inner product pxy · rxy.

Let µ = (1/2−ε)/c. Partition the space [0, 1]c into cells of size µ×µ×· · ·×µ (the
final entry in the cross product should actually be less than µ if 1 is not a multiple of
µ). Associate each 1-entry [x, y] with the cell containing the vector pxy; we say that
[x, y] belongs to this cell.

With each cell C, associate the rectangle RC defined as

{x| there exists y such that [x, y] belongs to C}
×

{y| there exists x such that [x, y] belongs to C}.

This is the minimal submatrix that covers all of the entries associated with cell C.
We claim that RC is a valid 1-tile; that is, RC covers only 1-entries. To see this,

suppose [x, y] ∈ RC . If [x, y] belongs to C, then it must be a 1-entry. Otherwise,
there exist x′ and y′ such that [x, y′] and [x′, y] belong to C; that is, xy′, x′y ∈ L, and
pxy′ and px′y are in the same cell.

We claim that xy is accepted with probability at least 1/2 on some strategy,
namely, the strategy that, while reading x, uses the strategy for xy′, and while reading
y, uses the strategy for x′y. To see this, note that

(px′y − pxy′) · rx′y =
c∑
i=1

[px′y − pxy′ ]i[rx′y]i

≤ µ
c∑
i=1

[rx′y]i

≤ µc
= 1/2− ε, by our choice of µ.

Hence, the probability that xy is accepted on the strategy described above is

pxy′rx′y ≥ px′yrx′y − (1/2− ε)
≥ (1− ε)− (1/2− ε)
= 1/2 > ε.

Because xy is accepted with probability greater than ε on this strategy, it cannot be
that xy 6∈ L. Hence, for all [x, y] ∈ RC , xy must be in L. Therefore RC is a 1-tile in
ML.
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746 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

Every 1-entry [x, y] is associated with some cell C and is covered by the 1-tile RC
that is associated with C. Thus, every 1-entry of ML is covered by some RC .

Hence, L can be 1-tiled using one tile per cell, which is a total of d1/µec = O(1)
tiles.

3.2. 2NPFA and tiling. We next show that if L ∈ 2NPFA, then T 1
L(n) is

bounded by a polynomial.
THEOREM 3.2. A language L is in 2NPFA only if the 1-tiling complexity of L is

bounded by a polynomial in n.
Proof. Suppose L is accepted by some 2npfa M with error probability ε < 1/2.

Let c be the number of states of M . As in Theorem 3.1, for each 1-entry [x, y] of
ML(n), fix a nondeterministic strategy that causes M to accept the string xy with
probability at least 1− ε.

We construct a stationary Markov chain Hxy that models the computation of M
on xy using this strategy.

This Markov chain has d = 2c+ 4 states. 2c of the states are labeled (q, l), where
q is a state of M and l ∈ {0, 1}. The other states are labeled Initial, Accept, Reject,
and Loop. The state (q, 0) of Hxy corresponds to M being in state q while reading
the rightmost symbol of |c x. The state (q, 1) of Hxy corresponds to M being in state
q while reading the leftmost symbol of y$. The state Initial corresponds to the initial
configuration of M . The states Accept, Reject, and Loop are sink states of Hxy.

A single step of the Markov chain Hxy corresponds to running M on input xy
(using the fixed nondeterministic strategy) from the appropriate configuration for one
or more steps until M enters a configuration corresponding to one of the chain states
(q, l). If M halts in the accepting (respectively, rejecting) state before entering one of
these configurations, Hxy enters the Accept (respectively, Reject) state. If M does not
halt and never again reads the rightmost symbol of |c x or the leftmost symbol of y$,
then Hxy enters the Loop state. The transition probabilities are defined accordingly.

Consider the transition matrix of Hxy. Collect the rows corresponding to the
chain states Initial and (q, 0) (for all q) and call this submatrix Pxy. Collect the
rows corresponding to the chain states (q, 1) and call this submatrix Rxy. Then the
transition matrix looks like this:

Pxy

Rxy

0 I3

Initial

(q, 0)

(q, 1)

Accept
Reject
Loop

Hxy =
,

where I3 denotes the identity matrix of size 3. (We shall engage in a slight abuse of
notation by using Hxy to refer to both the transition matrix and the Markov chain
itself.) Note that the entries of Pxy depend only on x and the nondeterministic strat-
egy used; these transition probabilities do not depend on y. This assertion appears to
be contradicted by the fact that our choice of nondeterministic strategy may depend
on y; however, the idea here is that if we replace y with y′ while maintaining the same
nondeterministic strategy we used for xy, then Pxy′ will be identical to Pxy, because
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 747

the transitions involved simulate computation of M on the left part of its input only.
Similarly, Rxy depends only on y and the strategy, and not on x.

We now show that if |x| ≤ n and if p is a nonzero element of Pxy, then p ≥ 2−cn−1.
Form a second Markov chain K( |c x) with states of the form (q, l), where q is a state of
M and 1 ≤ l ≤ | |c x|+ 1. The chain state (q, l) with l ≤ | |c x| corresponds to M being
in state q scanning the lth symbol of |c x. Transition probabilities from these states
are obtained from the transition probabilities of M in the obvious way. Chain states
of the form (q, | |c x| + 1) are sink states of K( |c x) and correspond to the head of M
falling off the right end of |c x with M in state q. Now consider a transition probability
p in Pxy. Suppose that, in the Markov chain Hxy, p is the transition probability from
(q, 0) to (q′, 1). Then p ∈ {0, 1/2, 1}, since if Hxy makes this transition, it must be
simulating a single computation step of M . Suppose p is the transition probability
from (q, 0) to (q′, 0). If p > 0, then there must be some path of nonzero probability
in K( |c x) from state (q, | |c x|) to (q′, | |c x|) that visits no state (q′′, | |c x|), and since
K( |c x) has at most cn states that can be on this path, there must be such a path
of length at most cn + 1. Since 1/2 is the smallest nonzero transition probability of
M , it follows that p ≥ 2−cn−1. The cases where p is a transition probability from the
Initial state are similar.

Similarly, if |y| ≤ n and if r is a nonzero element of Rxy, then r ≥ 2−cn−1.
Next we present a lemma that bounds the effect of small changes in the transition

probabilities of a Markov chain. This lemma is a slight restatement of a lemma of
Greenberg and Weiss [12]. This version is due to Dwork and Stockmeyer [8].

If k is a sink state of a Markov chain R, let a(k,R) denote the probability that
R is (eventually) trapped in state k when started in state 1. Let β ≥ 1. Say that
two numbers r and r′ are β-close if either: (i) r = r′ = 0, or (ii) r > 0, r′ > 0, and
β−1 ≤ r/r′ ≤ β. Two Markov chains R = {rij}si,j=1 and R′ = {r′ij}si,j=1 are β-close
if rij and r′ij are β-close for all pairs i, j.

LEMMA 3.3. Let R and R′ be two s-state Markov chains which are β-close, and
let k be a sink state of both R and R′. Then a(k,R) and a(k,R′) are β2s-close.

The proof of this lemma is based on the Markov chain tree theorem of Leighton
and Rivest [20] and can be found in [8].

Our approach is to partition the 1-entries of ML(n) into equivalence classes, as
in the proof of Theorem 3.1, but this time we will make entries [x, y] and [x′, y′]
equivalent only if the corresponding Markov chains Hxy and Hx′y′ are β-close, where
β will be chosen small enough that we can use Lemma 3.3 to show that xy′ and x′y
are accepted with high probability by combining the strategies for xy and x′y′.

If [x, y] is a 1-entry such that |x| ≤ n and |y| ≤ n, then for any nonzero p of Pxy (or
r of Rxy), p ∈ [2−cn−1, 1], so log2p ∈ [−cn− 1, 0] (and similarly log2r ∈ [−cn− 1, 0]).

By partitioning each coordinate interval [−cn − 1, 0] into subintervals of length
µ, we divide the space [−cn− 1, 0]d

2
into at most d(cn+ 1)/µed

2

cells, each of size at
most µ× µ× · · ·µ.

Partition the 1-entries in ML(n) into equivalence classes by making xy and x′y′

equivalent if Hxy and Hx′y′ have the property that for each state transition, if p and
p′ are the respective transition probabilities, either p = p′ = 0, or log p and log p′ are
in the same (size µ) subinterval of [−cn− 1, 0].

Note that the number of equivalence classes is at most (d(cn+ 1)/µe+ 1)d
2
.

We claim that if µ is chosen small enough, these equivalence classes induce a
1-tiling of ML(n) of size at most the number of equivalence classes. As in TheoremD
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748 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

3.1, we associate with each equivalence class C the rectangle RC defined by

{x|there exists y such that [x, y] ∈ C} × {y|there exists x such that [x, y] ∈ C}.

We claim that for each [x, y] in RC , xy ∈ L. That is, all entries in the rectangle are
1, so the rectangle forms a 1-tile. Let [x, y] be in RC . There must be some y′ such
that [x, y′] ∈ C and some x′ such that [x′, y] ∈ C. Consider the associated Markov
chains Hxy′ and Hx′y, and in particular, consider the transition submatrices Pxy′ and
Rx′y. The first is associated with a particular nondeterministic strategy on x, namely,
one which assumes the input is xy′ and tries to cause xy′ to be accepted with high
probability. The second is associated with a particular nondeterministic strategy on
y, namely, one which assumes the input is x′y and tries to cause x′y to be accepted
with high probability. The two matrices Pxy′ and Rx′y taken together correspond to
a hybrid strategy on xy: while reading x, use the strategy for xy′, and while reading
y, use the strategy for x′y. We will argue that this hybrid strategy causes xy to be
accepted with probability ≥ 1/2.

We construct a hybrid Markov chain Hxy using Pxy′ and Rx′y. This chain models
the computation of M on xy using the hybrid strategy.

Since the 1-entries [x, y′] and [x′, y] are in the same equivalence class C, it follows
that if p and p′ are corresponding transition probabilities in the Markov chains Hxy′

and Hx′y, then either p = p′ = 0 or | log p − log p′| ≤ µ. Therefore, Hxy′ and Hx′y

are 2µ-close, and it immediately follows that Hxy is 2µ-close to Hxy′ (and to Hx′y).
Let axy′ be the probability that M accepts input xy′ on the strategy for xy′, and let
axy be the probability that M accepts input xy using the hybrid strategy. Then axy′
(respectively, axy) is exactly the probability that the Markov chain Hxy′ (respectively,
Hxy) is eventually trapped in the Accept state when started in the Initial state. Now
xy′ ∈ L implies axy′ ≥ 1 − ε. Since Hxy and Hxy′ are 2µ-close, Lemma 3.3 implies
that

axy
axy′

≥ 2−2dµ,

which implies

axy ≥ (1− ε)2−2dµ.

Since ε and d are constants, and since ε < 1/2, we can choose µ to be a constant
so small that axy ≥ 1/2. Therefore xy must be in L.

Since each 1-entry [x, y] is in some equivalence class, the matrix ML(n) can be
1-tiled using at most (d(cn+ 1)/µe+ 1)d

2
tiles. Therefore,

T 1
L(n) ≤ (d(cn+ 1)/µe+ 1)d

2
.

Since c, d, and µ are constants independent of n, this shows that T 1
L(n) is bounded

by a polynomial in n.

3.3. 2NPFA-polytime and tiling. We now show that if L ∈ 2NPFA-polytime,
then T 1

L(n) is bounded by a polylog function.
THEOREM 3.4. A language L is in 2NPFA-polytime only if the 1-tiling complexity

of L is bounded by a polynomial in log n.
Proof. Suppose L is accepted by some 2npfa M with error probability ε < 1/2 in

expected time at most t(n). Let c be the number of states of M . For each 1-entry
[x, y] of ML(n), fix a nondeterministic strategy that causes M to accept the string xy
with probability at least 1− ε.
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 749

We construct the Markov chain Hxy just as in Theorem 3.2.
Say that a probability p is small if p < t(n)−2; otherwise, p is large. Note that if p

is a large transition probability, then p ∈ [t(n)−2, 1], so log2p ∈ [−2 log2 t(n), 0]. When
dividing the 1-entries of ML(n) into equivalence classes, make xy and x′y′ equivalent
if Hxy and Hx′y′ have the property that for each state transition, if p and p′ are the
respective transition probabilities, either p and p′ are both small, or log p and log p′

are in the same (size µ) subinterval of [−2 log2 t(n), 0].
This time the number of equivalence classes is at most (d2 log2 t(n)/µe+ 1)d

2
.

Model the computation of M on inputs x′y, xy′, and xy by Markov chains Hx′y,
Hxy′ , and Hxy, respectively, as before.

If p and p′ are corresponding transition probabilities in any two of these Markov
chains, then either p and p′ are 2µ-close or p and p′ are both small. Let Ex′y be the
event that, when Hx′y is started in state Initial, it is trapped in state Accept or Reject
before any transition labeled with a small probability is taken; define Exy′ and Exy
similarly. Since M halts in expected time at most t(n) on the inputs x′y, xy′, and
xy, the probabilities of these events go to 1 as n increases. Therefore, by changing all
small probabilities to zero, we do not significantly change the probabilities that Hx′y,
Hxy′ , and Hxy enter the Accept state, provided that n is sufficiently large. A formal
justification of this argument can be found in Dwork and Stockmeyer [8].

After these changes, we can argue that

axy ≥ (1− ε)2−2dµ

and choose µ so that axy ≥ 1/2, as before. It then follows that

T 1
L(n) ≤ (d2 log2 t(n)/µe+ 1)d

2
(1)

for all sufficiently large n, establishing the result.

4. Bounds on the tiling complexity of languages. In this section, we obtain
several bounds on the tiling complexity of regular and nonregular languages. In section
4.1, we prove several elementary results. First, all regular languages have constant
tiling complexity. Second, the 1-tiling complexity of all nonregular languages is at
least log n − O(1) infinitely often. We also present an example of a (unary) non-
regular language which has 1-tiling complexity O(log n). In section 4.2, we use a rank
argument to show that for all nonregular languages L, either L or its complement has
“high” 1-tiling complexity infinitely often.

4.1. Simple bounds on the tiling complexity of languages. The following
lemma is useful in proving some of the theorems in this section. Its proof is implicit
in work of Melhorn and Schmidt [21]; we include it for completeness.

LEMMA 4.1. Any binary matrix A that can be 1-tiled with m tiles has at most 2m

distinct rows.
Proof. Let A be a binary matrix that can be 1-tiled by m tiles {T1, . . . , Tm}, where

Tj = (Rj , Cj). For each row r of A, let I(r) = {Tj | j ∈ {1, . . . ,m} such that r ∈ Rj}.
Suppose r1 and r2 are rows such that I(r1) = I(r2). We show that in this case, rows
r1 and r2 are identical. To see this, consider any column c of A. Suppose that entry
[r1, c] has value 1 and is covered by some tile Tj ∈ I(r1). Therefore, c ∈ Cj . Since
I(r1) = I(r2), Tj ∈ I(r2) and therefore, r2 ∈ Rj and [r2, c] is covered by tile Tj .
Hence, entry [r2, c] must have value 1, since Tj is a 1-tile. Hence, if [r1, c] has value
1, so does [r2, c]. Similarly, if [r2, c] has value 1, then so does entry [r1, c]. Therefore
r1 and r2 are identical rows. Since there are only 2m possible values for I(r), A can
have at most 2m distinct rows.
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750 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

THEOREM 4.2. The 1-tiling complexity of L is O(1) if and only if L is regular.
Proof. By the Myhill-Nerode theorem [14, Theorem 3.6], L is regular if and only

if ML has a finite number of distinct rows.
Suppose L is regular. Then by the above fact there exists a constant k such that

ML has at most k distinct rows. Consider any (possibly infinite) set R of identical
rows in ML. Let Cb be the set of columns which have bit b in the rows of R, for
b = 0, 1. Then the subset specified by (R,Cb) is a b-tile and covers all the b-valued
entries in the rows of R. It follows that the 1-valued entries of R can be covered by
a single tile, and hence there is a 1-tiling of ML(n) of size k. (Similarly, there is a
0-tiling of ML(n) of size k.)

Suppose L is not regular. Since L is not regular, ML has an infinite number of
distinct rows. It follows immediately from Lemma 4.1 that M cannot be tiled with
any constant number of tiles.

The above theorem uses the simple fact that the 1-tiling complexity T 1
L(n) of a

language L is a lower bound on the number of distinct rows of ML(n). In fact, the
number of distinct rows of ML(n), for a language L, is closely related to a measure
that has been previously studied by many researchers. Dwork and Stockmeyer called
this measure nonregularity, and denoted the nonregularity of L by NL(n) [7]. NL(n)
is the maximum size of a set of n-dissimilar strings of L. Two strings, w and w′,
are considered n-dissimilar if |w| ≤ n and |w′| ≤ n, and there exists a string v such
that |wv| ≤ n, |w′v| ≤ n, and wv ∈ L if and only if w′v 6∈ L. It is easy to show
that the number of distinct rows of ML(n) is between NL(n) and NL(2n). Previously,
Kaņeps and Freivalds [16] showed that NL(n) is equal to the number of states of the
minimal 1-way deterministic finite state automaton which accepts a language L′ for
which L′n = Ln, where Ln is the set of strings of L of length ≤ n.

Shallit [28] introduced a similar measure: the nondeterministic nonregularity of
L, denoted by NNL(n), is the minimal number of states of a 1-way nondeterministic
finite automaton which accepts a language L′ for which L′n = Ln. In fact, it is not
hard to show that

T 1
L(n) ≤ NNL(2n).

To see this, suppose that M is an automaton with NNL(2n) states, which accepts a
language L′ for which L′2n = L2n. We construct a 1-tiling of ML(n) with one tile Tq
per state q of M , where entry [x, y] is covered by Tq if and only if there is an accepting
path of M on xy which enters state q as the head falls off the rightmost symbol of
x. It is straightforward to verify that the set of tiles defined in this way is indeed a
valid 1-tiling of ML(n). A similar argument was used by Schmidt [27] to prove lower
bounds on the number of states in an unambiguous nfa.

We next turn to simple lower bounds on the 1-tiling complexity of nonregular
languages. From Theorem 4.2, it is clear that if L is nonregular, then T 1

L(n) is
unbounded. We now use a known lower bound on the nonregularity of nonregular
languages to prove a lower bound for T 1

L(n).
THEOREM 4.3. If L is not regular, then T 1

L(n) ≥ log2 n − 1 for infinitely many
n.

Proof. Kaņeps and Freivalds [16] proved that if L is not regular, then NL(n) ≥
b(n+3)/2c for infinitely many n. By the definition of NL(n), the matrix ML(n) must
have at least NL(n) distinct rows. Therefore, by Lemma 4.1, T 1

L(n) ≥ log2NL(n).
The lemma follows immediately.

We next present an example of a unary nonregular language, with 1-tiling com-
plexityO(log n). Thus, the lower bound of Theorem 4.3 is optimal to within a constant
factor.
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 751

THEOREM 4.4. Let L be the complement of the language {a2k−1 | k > 0}. Then,
L has 1-tiling complexity O(log n).

Proof. We show that the 1-valued entries of ML(n) can be covered with O(log n)
1-tiles. Let lg n denote blog2 nc+ 1, and let lg 0 = 0. Let x and y be binary numbers
of length at most lgn. Number the bits of these numbers from right to left, starting
with 1, so that, for example, y = ylgn . . . y2y1. For any binary number q, lg q is the
maximum index i such that qi = 1 (lg q = 0 if q = 0).

Clearly, if q is equal to 2k − 1 for some integer k > 0, then for all indices i, 1 ≤
i ≤ lg q, qi = 1. The next fact follows easily.

FACT. x+ y = 2k − 1 for some integer k > 0 if and only if for all j such that j ≤
max{lg x, lg y}, xj 6= yj.

Roughly, we construct a 1-tiling of ML(n), corresponding to the following non-
deterministic communication protocol. The party P1 guesses an index j and sends j
and xj to P2. Also, P1 sends P2 one bit indicating whether or not j ≤ lg x. If j ≤ lg x,
then P2 checks that yj = xj . If j > lg x, P2 checks that j ≤ lg y and that yj = xj , or
equivalently, that yj = 0. In either case, P2 can conclude that yj = xj , and so entry
[ax, ay] of ML(n) is 1. The number of bits sent from P1 to P2 is lg lg n+ 2.

We now describe the 1-tiling corresponding to this protocol. It is the union of
two sets of tiles. The first set has one tile Tj,b for each j, b such that lgn ≥ j ≥ 0 and
b ∈ {0, 1}, where

Tj,b = {ax | 0 ≤ x ≤ n, lg x ≥ j, xj = b} × {ay | 0 ≤ y ≤ n, yj = b}.

The second set of tiles has one tile Sj,0, for all j such that dlog ne ≥ j ≥ 1.

Sj,0 = {ax | 0 ≤ x ≤ n, lg x < j, xj = 0} × {ay | 0 ≤ y ≤ n, lg y ≥ j, yj = 0}.

To see that all the 1’s in the matrix are covered by one of these tiles, note that if
entry [ax, ay] of the matrix is 1, then by the above fact, there exists an index j such
that j ≤ max{lg x, lg y}, and either xj = yj = 1, or xj = yj = 0. So, for example, if
lg x ≥ lg y, and j is such that j ≤ lg x and xj = yj = 0, then entry [ax, ay] is covered
by tile Tj,0.

The nondeterministic communication protocol in the above proof is a slight vari-
ation of a simple (and previously known) protocol for the complement of the set
distinctness problem. In the set distinctness problem, each of the two parties holds
a subset of {1, . . . ,m} and must determine whether the subsets are distinct. In our
application, the problem is to determine, for m = max{lg x, lg y}, whether the subset
of {1, . . . ,m}, whose corresponding values in x are 0, is distinct from the subset of
{1, . . . ,m} whose corresponding values in y are 1.

4.2. Lower bounds on the tiling complexity of nonregular languages. In
this section we prove that if a language L is nonregular, then the 1-tiling complexity of
either L or L̄ is “high” infinitely often. To prove this, we first prove lower bounds on
the rank of ML when L is nonregular. We then apply theorems from communication
complexity relating rank to tiling complexity.

The proofs of the lower bounds on the rank of ML are heavily dependent on dis-
tinctive structural properties of ML. Consider first the case where L is a unary lan-
guage over the alphabet Σ = {a}. In this case, for all i, j where j > 1, aiaj = ai+1aj−1,
and therefore ML[ai, aj ] = ML[ai+1, aj−1]. It follows that for every n, ML(n) is such
that its auxiliary diagonal (the diagonal from the top right to the bottom left) consists
of equal elements, as do all diagonals parallel to that diagonal. An example is shown
in Figure 1. Such matrices are classically known as Hankel matrices and have been
extensively studied [15]. In fact, a direct application of known results on the rank of
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752 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

ε a1 a2 a3 a4 a5 a6

ε 1 0 0 1 0 0 1
a1 0 0 1 0 0 1 0
a2 0 1 0 0 1 0 0
a3 1 0 0 1 0 0 1
a4 0 0 1 0 0 1 0
a5 0 1 0 0 1 0 0
a6 1 0 0 1 0 0 1

FIG. 1. The Hankel matrix ML(6) for L = {ai|i ≡ 0 mod 3}.

ε 0 1 00 01 10 11 000 001 010 011 100 101 110 111
ε 1 1 1 1 0 0 1 1 0 1 0 0 1 0 1
0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 0
1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1

00 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0
01 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
10 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0
11 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1

000 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0
001 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
010 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
011 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0
100 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0
101 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
111 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

FIG. 2. The matrix M(3) for L = {w ∈ {0, 1}∗|w is a palindrome}. The bold entries in row
110 are determined by the bold entries in row 11. The bold entries in row 110 comprise split(0)(11)
for M(2, 3).

Hankel matrices shows that if L is nonregular, then rank(ML(n)) ≥ n + 1 infinitely
often. This was first proved by Iohvidov (see [15, Theorem 11.3]), based on previous
work of Frobenius [11].

If L is a nonunary language, then ML does not have the simple diagonal structure
of a Hankel matrix. Nevertheless, ML still has structural properties that we are able
to exploit. In fact, the term Hankel matrix has been extended from its classical
meaning to refer to matrices ML of nonunary languages (see [26]). In what follows,
we generalize the results on the rank of classical Hankel matrices and prove that for
any nonregular language L, over an arbitrary alphabet, rank(ML(n)) ≥ n+1 infinitely
often.

4.2.1. Notation and basic facts. Let L be a language over an arbitrary al-
phabet, and let M = ML.

Consider a row of M indexed by a string w. This row corresponds to strings that
have the prefix w. For any string s, row ws corresponds to strings with the prefix
ws. Thus the entries in row ws can be determined by looking at those entries in row
w whose columns are indexed by strings beginning with s (see Figure 2). In what
follows, we consider this relationship between the rows of M more formally.

Let M(n,m) denote the set of vectors (finite rows) of M which are indexed by
strings x of length ≤ n and whose columns are indexed by strings of length ≤ m. Let
M̂(n,m) denote the subset of vectors of M(n,m) which are indexed by strings x of
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 753

length exactly n. If v′ is row x of M(n,m+ i), where i > 0 and v is row x of M(n,m),
then v′ is called an extension of v.

Suppose v ∈ M(n,m). Let s be a string over Σ of length ≤ m (possibly the
empty string, ε). Define split(s)(v) to be the subvector formed from v by selecting
exactly those columns whose labels have s as a prefix. Also, relabel the columns of
split(s)(v) by removing the prefix s. Note that split(ε)(v) = v. Note also that if Σ

is unary, say {σ}, then split(σ)(v) is v with the first column removed. Let |v| denote
the dimension (number of entries) of vector v. If Σ is binary and σ ∈ Σ, then

| split(σ)(v)| = (|v| − 1)/2.

More generally, if |Σ| = c > 1 and σ ∈ Σ, then

|v| = cm+1 − 1
c− 1

, and

| split(σ)(v)| = |v| − 1
c

=
cm − 1
c− 1

.

Also, the vector v consists of the first entry (indexed by the empty string, ε), plus
an “interleaving” of the entries of split(σ)(v), for each σ ∈ Σ. More precisely, we have
the following fact.

FACT 4.1. Let j′, s, j ∈ Σ∗, where j′ = sj. Then, v[j′] = split(s)(v)[j].
We generalize the definition of the split function to sets of vectors. If V is a set

of vectors in M(n,m), and |s| ≤ m, let split(s)(V ) = { split(s)(v) | v ∈ V }. Then we
have the following.

FACT 4.2. ∪|s|=isplit(s)(M̂(n,m)) = M̂(n+ i,m− i). Thus,
(a) M̂(n+ i,m− i) ⊆ ∪|s|=isplit(s)(M(n,m)), and
(b) ∪|s|=isplit(s)(M(n,m)) = M(n+ i,m− i).
In what follows, the vectors we consider are assumed to be elements of vector

spaces over an arbitrary field F (e.g., our proofs will hold if F is taken to be the field
of rationals F). All references to rank, span, and linear independence apply to vector
spaces over F.

LEMMA 4.5. Suppose that b1, . . . , bp ∈M(n,m) and that

v = α1b1 + · · ·+ αpbp,

where the αi are in the field F. Suppose that for 1 ≤ k ≤ p, b′k is an extension in
M(n,m+ 1) of bk and that v′ is an extension of v to the same length as the b′k.

Suppose also that for some i, 0 ≤ i ≤ m + 1, it is the case that for all s of
length i,

split(s)(v′) = α1split(s)(b′1) + · · ·+ αpsplit(s)(b′p).

Then v′ = α1b
′
1 + · · ·+ αpb

′
p.

Proof. Clearly, v′[j] = α1b
′
1[j] + · · · + αpb

′
p[j], if j is a string of length ≤ m.

Consider a string j′ of length m+ 1. Let j′ = sj, where |s| = i. By Fact 4.1,

v′[j′] = split(s)(v′)[j].

Also,

b′k[j′] = split(s)(b′k)[j], for 1 ≤ k ≤ p.
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754 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

By the hypothesis of the lemma,

split(s)(v′)[j] = α1 split(s)(b′1)[j] + · · ·+ αp split(s)(b′p)[j].

Putting the last three equalities together, v′[j′] = α1b
′
1[j′] + · · · + αpb

′
p[j
′], as

required.
Let rank(M(n,m)) be the rank of the set of vectorsM(n,m) and let span(M(n,m))

be the vector space generated by the vectors in M(n,m). The next lemma follows
immediately from the definitions.

LEMMA 4.6. If v′ ∈ span(M(n,m)),m > 0 and v = split(σ)(v′), where σ ∈ Σ,
then

v ∈ span(split(σ)(M(n,m))).

4.2.2. A lower bound on the rank of M(n) when L is nonregular. A
trivial lower bound on the rank of M(n) is given by the following fact.

FACT 4.3. L is nonregular if and only if there is an infinite sequence of integers
pr satisfying rank(M(pr)) ≥ r + 1 for all integers r.

This is easily shown using the Myhill-Nerode theorem. Clearly, such a sequence
exists if and only if the rank of M(n) (as n increases) is unbounded. Moreover,
the rank of M(n) is unbounded if and only if the number of distinct rows in M(n) is
unbounded. The Myhill-Nerode theorem states that the number of equivalence classes
of L (equivalently, the number of distinct rows of M) is finite if and only if L is regular.
It follows that L is nonregular if and only if the rank of M(n) is unbounded. This
conclusion has already been noted (see sections II.3 and II.5 of [26], which describes
results from the literature on rational power series and regular languages).

The above lower bound is very weak. In what follows, we significantly improve
it by using the special structure of M(n). Namely, we show that there is an infinite
sequence of values of n such that rank(M(n)) ≥ n+ 1. We define the first value of n
in our sequence to be the length of the shortest word in L (clearly rank(M(n)) ≥ n+1
in this case). To construct the remainder of the sequence, we show (in Lemma 4.9)
that because L is nonregular, for any value of n, there is some m ≥ n such that
rank(M(n+ 1,m+ 1)) > rank(M(n,m+ 1)). We then prove (in Lemma 4.10 and the
proof of Theorem 4.11) that if n is such that rank(M(n)) ≥ n+ 1, and we choose the
smallest m ≥ n such that rank(M(n + 1,m + 1)) > rank(M(n,m + 1)), then in fact
rank(M(m+ 1)) ≥ m+ 2.

We begin with the following useful lemma.
LEMMA 4.7. Let n ≥ 0,m ≥ 1. Suppose that M(n + 1,m) ⊆ span(M(n,m)).

Then, for all i, 1 ≤ i ≤ m, M(n+ i,m− i+ 1) ⊆ span(M(n,m− i+ 1)).
Proof. The proof is by induction on i. The result is true by hypothesis of the

lemma in the case i = 1. Suppose 1 < i ≤ m and that the lemma is true for i− 1.
It follows from the induction hypothesis that if v ∈ M(n + i − 1,m − i + 2),

then also v ∈ span(M(n,m − i + 2)). Hence, it must also be the case that if v ∈
M(n+i−1,m−i+1), then v ∈ span(M(n,m−i+1)). It remains to consider the vectors
in M̂(n+ i,m− i+ 1). By Fact 4.2(a), each such vector v is of the form split(σ)(v′),
where v′ ∈M(n+ i− 1,m− i+ 2), for some σ, |σ| = 1. By the inductive hypothesis,
v′ ∈ span(M(n,m−i+2)). Hence, by Lemma 4.6, v ∈ span( split(σ)(M(n,m−i+2))).

Then, by Fact 4.2(b), all of the vectors in split(σ)(M(n,m− i+ 2)) are in M(n+
1,m − i + 1). Hence, v ∈ span(M(n + 1,m − i + 1)). Finally, by the hypothesis
of the lemma, span(M(n + 1,m − i + 1)) = span(M(n,m − i + 1)). Hence, v ∈
span(M(n,m− i+ 1)), as required.
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 755

COROLLARY 4.8. For any n ≥ 0, if rank(M(n + 1, 2p)) = rank(M(n, 2p)) ≤ r,
then rank(M(p)) ≤ r.

Proof. If n ≥ p, then M(p) is a submatrix of M(n, 2p) so the result follows
trivially. Otherwise, choose i so that n + i = p. Then M(p) is a submatrix of
M(n + i, 2p − i + 1), and hence by Lemma 4.7, the rows of M(p) are contained in
span(M(n, p)). Thus again, rank(M(p)) ≤ r.

The following lemma shows the existence of an m ≥ n such that rank(M(n +
1,m+ 1)) > rank(M(n,m+ 1)).

LEMMA 4.9. Let L be a nonregular language. Then for any n, there exists an
m ≥ n such that rank(M(n+ 1,m+ 1)) > rank(M(n,m+ 1)).

Proof. Let r be the number of strings of length ≤ n. Clearly, rank(M(n,m)) ≤ r
for all m, since there are r rows in M(n,m). Let p = pr as in Fact 4.3, that is,
rank(M(p)) ≥ r + 1. Hence, by Corollary 4.8, it must be the case that rank(M(n +
1, 2p)) > rank(M(n, 2p)). Thus, 2p is one possible value of m that satisfies the
lemma.

It remains to show that if n is such that rank(M(n)) ≥ n + 1, and m is the
smallest number such that m ≥ n and rank(M(n+ 1,m+ 1)) > rank(M(n,m+ 1)),
then rank(M(m + 1)) ≥ m + 2. This is clearly true if for all i ∈ [0, . . . ,m − n],
rank(M(n,m− i)) < rank(M(n,m− i+1)), because in this case rank(M(n,m+1)) ≥
m+2. The difficult case is when there exist values of i such that rank(M(n,m− i)) =
rank(M(n,m− i+ 1)). To help deal with this case, we prove the following lemma.

LEMMA 4.10. Suppose that the following properties hold:
1. M(n+ 1, n+ 1) ⊆ span(M(n, n+ 1)).
2. m is the smallest number > n such that M(n+1,m+1) 6⊆ span(M(n,m+1)).
3. i is a number in the range [0, . . . ,m− n] such that

rank(M(n,m− i)) = rank(M(n,m− i+ 1)).

Then, there is some vector in M(n+ i+ 1,m− i+ 1) which is not in span(M(n,m−
i+ 1)).

Proof. Let v′ ∈ M(n+ 1,m+ 1)− span(M(n,m+ 1)), where v′ is the extension
of some v ∈M(n+ 1,m).

Then, we claim that for some s, |s| = i, split(s)(v′) 6∈ span(M(n,m − i + 1)).
Since split(s)(v′) ∈M(n+ i+ 1,m− i+ 1) by Fact 4.2(b), this is sufficient to prove
the lemma.

Suppose to the contrary that for all s of length i, split(s)(v′) ∈ span(M(n,m −
i+ 1)).

Let {b1, . . . , bp} be a basis of M(n,m). Let {b′1, . . . , b′p} be an extension of this
basis in M(n,m + 1). By properties 1 and 2 of the lemma, v is in span(M(n,m)).
Let v = α1b1 + · · ·+ αpbp. Then, applying Fact 4.1, we see that for all s, |s| = i,

split(s)(v) = α1 split(s)(b1) + · · ·+ αp split(s)(bp).(2)

We want to show that for all s of length i,

split(s)(v′) = α1 split(s)(b′1) + · · ·+ αp split(s)(b′p).

It follows from this and Lemma 4.5 that

v′ = α1b
′
1 + · · ·+ αpb

′
p,

contradicting the fact that v′ 6∈ span(M(n,m+ 1)).
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756 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

Consider the vectors split(s)(b′k). These are in M(n + i,m − i + 1), by Fact 4.2
(b). If i = 0, this is clearly in span(M(n,m + 1)). If 0 < i ≤ m − n, by Lemma 4.7
and by property 2 of this lemma, these vectors are in span(M(n,m − i + 1)). Let
c1, . . . , cl be a basis for span(M(n,m− i)), and for 1 ≤ k ≤ l, let c′k be an extension in
M(n,m−i+1) of ck. Clearly the set {c′1, . . . , c′l} is also linearly independent, and since
rank(M(n,m−i)) = rank(M(n,m−i+1)), this set is a basis for span(M(n,m−i+1)).
Let

split(s)(b′k) = γ
(s)
k,1c
′
1 + · · ·+ γ

(s)
k,l c
′
l.(3)

Then, also

split(s)(bk) = γ
(s)
k,1c1 + · · ·+ γ

(s)
k,l cl.(4)

Also, since v ∈ M(n + 1,m), from Fact 4.2(b) it must be that the vectors
split(s)(v) are in M(n + i + 1,m − i). Hence, again by property 2 of this lemma,

and by Lemma 4.7, these vectors are in span(M(n,m− i)).
Since c1, . . . , cl is a basis for span(M(n,m − i)), it follows that there exists a

unique sequence of coefficients τ1, . . . , τl such that

split(s)(v) = τ1c1 + τ2c2 + · · ·+ τlcl.

Also, by combining equation (2) with equation (4), we see that

split(s)(v) = α1[γ(s)
1,1c1 + · · ·+ γ

(s)
1,l cl]

+ α2[γ(s)
2,1c1 + · · ·+ γ

(s)
2,l cl]

+ · · ·
+ αp[γ

(s)
p,1c1 + · · ·+ γ

(s)
p,l cl].

Thus τk = α1γ
(s)
1,k + · · ·+ αpγ

(s)
p,k for all k ∈ [1, . . . , l].

We claim

split(s)(v′) = α1[γ(s)
1,1c
′
1 + · · ·+ γ

(s)
1,l c
′
l]

+ α2[γ(s)
2,1c
′
1 + · · ·+ γ

(s)
2,l c
′
l]

+ · · ·
+ αp[γ

(s)
p,1c
′
1 + · · ·+ γ

(s)
p,l c
′
l].

We now justify the claim. By our initial assumption, split(s)(v′) is in span(M(n,m−
i+ 1)). Thus for some unique coefficients τ ′1, . . . , τ

′
l ,

split(s)(v′) = τ ′1c
′
1 + τ ′2c

′
2 + · · ·+ τ ′l c

′
l.

Each c′k is an extension of ck, and there is a unique linear combination of c1, c2, . . . cl
that is equal to split(s)(v). It follows that each τ ′k = τk. This proves the claim.

Combining the claim with equation (3) yields

split(s)(v′) = α1 split(s)(b′1) + · · ·+ αp split(s)(b′p),

as desired.
We now prove the lower bound.
THEOREM 4.11. If L is nonregular, then rank(M(n)) ≥ n+ 1 infinitely often.
Proof. The base case is n such that the shortest word in the language is of

length n.
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 757

Suppose that rank(M(n)) ≥ n+1 for some fixed n. Let m be the smallest number
≥ n such that rank(M(n + 1,m + 1)) > rank(M(n,m + 1)). By Lemma 4.9 there is
such an m. We claim that rank(M(m+ 1)) ≥ m+ 2.

If m = n, then the claim is clearly true. Suppose m > n.
Let Bk be a basis for M(n, k), n ≤ k ≤ m+ 1, where the extensions of all vectors

in Bk are in Bk+1. Let B′k−1 denote the subset of Bk which are extensions of vectors
in Bk−1.

We construct a set of m+ 2 linearly independent vectors in M(m+ 1) as follows.
For k from n to m+1, we define a linearly independent set Ck of vectors in M(m+1, k),
of size at least k + 1. Then, Cm+1 is the desired set.

Let Cn = Bn. This is by definition a linearly independent set, and it has size
≥ n + 1 because (by our initial assumption) rank(M(n)) ≥ n + 1. Suppose that
n ≤ k < m + 1 and that Ck is already constructed and is linearly independent.
Construct Ck+1 as follows.

(i) Let C ′k be the set of extensions in M(m+ 1, k + 1) of the vectors in Ck. Add
C ′k to Ck+1.

(ii) Add Bk+1 to Ck+1. (Thus, Ck+1 is expanded to contain those vectors in Bk+1
which are not in B′k.)

(iii) Finally, suppose nothing is added to Ck+1 in step (ii); that is, rank(M(n, k)) =
rank(M(n, k+1)). If i is such that k = m−i, then this is equivalent to rank(M(n,m−
i)) = rank(M(n,m − i + 1)). Thus, we can apply Lemma 4.10 to obtain a vec-
tor v′ ∈ M(n + i + 1,m − i + 1) which is not in span(M(n,m − i + 1)). (Thus,
v′ ∈M(n+m+ 1− k, k + 1) but is not in span(B′k).) Add v′ to Ck+1.

We claim that the vectors in Ck+1 are linearly independent. Clearly the set C ′k
is linearly independent. Consider each vector u′ added to Ck+1, which is not in C ′k.
By the construction, u′ is not in span(B′k). Let u′ be the extension of vector u in
M(m+ 1, k). We claim that the vector u must be linearly dependent on the set Bk.
This is true if u′ is added in step (ii), since in this case u is in M(n, k) and Bk is a
basis for M(n, k). It is also true in the case that u′ = v′, the vector added in step
(iii), since then by Lemma 4.7, u = v ∈ span(Bk).

Hence, u ∈ span(Ck), since Bk ⊆ Ck. Moreover, u can be expressed as a unique
linear combination of the vectors of Ck, with nonzero coefficients only on those vectors
in Bk.

If u′ were in span(C ′k), then since it is an extension of u, it would also be express-
ible as a unique linear combination of the vectors of C ′k, with nonzero coefficients only
on those vectors in B′k. But that contradicts the fact that u′ 6∈ span(B′k).

4.2.3. The tiling complexity lower bound.
THEOREM 4.12. If L is nonregular, then the 1-tiling complexity of either L or L̄

is at least 2
√

logn−2 − 1 infinitely often.
Proof. Melhorn and Schmidt, and, independently, Orlin, showed that for any

binary matrix A, rank(A) ≤ T̃ (A) [21, 22]. Their result holds for A over any field.
Halstenberg and Reischuk [13], refining a proof of Aho, Ullman, and Yannakakis
[1], showed that dlog T̃ (A)e ≤ dlog T 1(A)e(dlog(T 0(A) + 1)e + 2) + 1. Let T ∗(A) =
max(T 1(A), T 0(A)). Then dlog rank(A)e ≤ (dlog(T ∗(A) + 1)e+ 1)2.

By Theorem 4.11, if L is nonregular, then the rank of M(n) is at least n+ 1 in-
finitely often. It follows that for infinitely many n, T ∗(M(n)) = max(T 1

L(n), T 0
L(n)) ≥

2
√

logn−2 − 1.

5. Variations on the model. In this section, we discuss extensions of our main
results to other related models.
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758 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

We first show that Theorem 1.1 also holds for the following “alternating prob-
abilistic” finite state automaton model. In this model, which we call a 2apfa, the
nondeterministic states N are partitioned into two subsets NE and NU of existential
and universal states, respectively. Accordingly, for a fixed input, there are two types
of strategy, defined as follows for a fixed input string w = w0w1w2 . . . wnwn+1. An
existential (universal) strategy on w is a function

Ew : NE × {0, . . . , n+ 1} → Q× {−1, 0, 1},

(Uw : NU × {0, . . . , n+ 1} → Q× {−1, 0, 1}),

such that δ(q, σ, q′, d) = 1 whenever Ew(q, j) = (q′, d) (Uw(q, j) = (q′, d)) and wj = σ.
A language L ⊆ Σ∗ is accepted with bounded error probability if for some constant

ε < 1/2,
1. for all w ∈ L, there exists an existential strategy Ew on which the automaton

accepts with probability ≥ 1− ε on all universal strategies Uw, and
2. for all w /∈ L, on every existential strategy Ew, the automaton accepts with

probability ≤ ε on some universal strategy Uw.
The complexity classes 1APFA, 1APFA-polytime, and so on, are defined in the

natural way, following our conventions for the npfa model.
THEOREM 5.1. 1APFA = Regular.
Proof. As in Theorems 1.1 and 3.1, we show that if L is a language accepted by

a 1APFA, then the tiling complexity of L is bounded. We first extend the notation
of Theorem 3.1.

If E is an existential strategy on xy and U is a universal strategy on xy, let
pxy(E,U) be the state probability (row) vector at the step when the input head
moves off the right end of x, on the strategies E,U . Let rxy(E,U) be the column
vector whose ith entry is the probability of accepting the string xy, assuming that
the automaton is in state i at the moment that the head moves off the right end of
x, on the strategies E,U . For each 1-entry [x, y] of ML, fix an existential strategy
Exy, that causes xy to be accepted with probability at least 1 − ε, for all universal
strategies.

Partition the space [0, 1]c into cells of size µ× µ× · · · × µ, as before. Let C be a
nonempty subset of the cells. We say that entry [x, y] of ML belongs to C if xy ∈ L,
and C is the smallest set of cells which contain all the vectors pxy(Exy, U), for all
universal strategies U .

With each nonempty subset C of the cells, associate a rectangle RC defined as
follows.

{x | there exists y such that [x, y] belongs to C}
×

{y | there exists x such that [x, y] belongs to C}.

Then, RC is a valid 1-tile. To see this, suppose that [x, y] ∈ RC . If [x, y] belongs
to C, then it must be a 1-entry. Otherwise, there exist x′ and y′ such that [x, y′] and
[x′, y] belong to C.

Consider the strategy E that, while reading x, uses the strategy Exy′ , and while
reading y, uses the strategy Ex′y. We claim that xy is accepted with probability at
least 1/2 on existential strategy E and any universal strategy U on xy. The probability
that xy is accepted on strategies E,U is

pxy(E,U)rxy(E,U) = pxy′(Exy′ , U)rx′y(Ex′y, U).
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NONDETERMINISTIC PROBABILISTIC FINITE AUTOMATA 759

Since [x, y′] and [x′, y] belong to the same set of cells C, pxy′(Exy′ , U) and px′y(Ex′y, U ′)
are in the same cell, for some universal strategy U ′. Moreover,

px′y(Ex′y, U ′)rx′y(Ex′y, U) ≥ 1− ε.

This is because this quantity is the probability that x′y is accepted on existential
strategy Ex′y and a universal strategy which is a hybrid of U and U ′; also, by definition
of Ex′y, the probability that x′y is accepted with respect to Ex′y and any universal
strategy is ≥ 1− ε. Hence,

(px′y(Ex′y, U ′)− pxy′(Exy′ , U)) rx′y(Ex′y, U)

=
∑c
i=1[px′y(Ex′y, U ′)− pxy′(Exy′ , U)]i[rx′y(Ex′y, U)]i

≤ µ
∑c
i=1[rx′y(Ex′y, U)]i

≤ µc
= 1/2− ε, by our choice of µ.

Hence, the probability that xy is accepted on the strategies E,U is

pxy′(Exy′ , U)rx′y(Ex′y, U) ≥ px′y(Ex′y, U ′)rx′y(Ex′y, U)− (1/2− ε)
≥ (1− ε)− (1/2− ε)
= 1/2 > ε.

Since U is arbitrary, it follows that there is an existential strategy E such that on
all strategies U , the probability that xy is accepted on the strategies E,U is greater
than ε, and so it cannot be that xy 6∈ L. Hence, for all [x, y] ∈ RC , xy must be in L.
Therefore RC is a 1-tile in ML.

The proof is completed as in Theorem 3.1.
In the same way, Theorem 3.4 can also be extended to obtain the following.
THEOREM 5.2. A language L is in 2APFA-polytime only if the 1-tiling complexity

of L is bounded by 2polylog(n).
Thus, for example, the language Pal, consisting of all strings over {0, 1}∗ which

read the same forwards as backwards, is not in the class 2APFA-polytime. To see
this, consider the submatrix of ML(n), consisting of all rows and columns labeled by
strings of length exactly n. This matrix contains a fooling set of size 2n; hence a
1-tiling of ML(n) requires at least 2n tiles.

We next extend Theorem 1.2 to automata with o(log log n) space. We refer to
these as Arthur–Merlin games, since this is the usual notation for such automata
which are not restricted to a finite number of states [7]. The definition of an Arthur–
Merlin game is similar to that of an npfa, except that the machine has a fixed number
of read/write worktapes. The Arthur–Merlin game runs within space s(n) if on any
input w with |w| ≤ n, at most s(n) tape cells are used on any worktape. Thus, the
number of different configurations of the Arthur–Merlin game is 2O(s(n)).

THEOREM 5.3. Let M and M̄ be Arthur–Merlin games which recognize a nonreg-
ular language L and its complement L̄, respectively, within space o(log log n). Suppose
that the expected running time of both M and M̄ is bounded by t(n). Then, for all
b < 1/2, log log t(n) ≥ (log n)b. In particular, t(n) is not bounded by any polynomial
in n.

Proof. The proof of Theorem 1.2 can be extended to space bounded Arthur–
Merlin games to yield the following generalization of equation (1). Let c(n) be an
upper bound on the number of different configurations of M on inputs of length n,
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760 A. CONDON, L. HELLERSTEIN, S. POTTLE, AND A. WIGDERSON

and let d(n) = 2c(n) + 4. Then, for sufficiently large n, the number of 1-tiles needed
to cover ML(n) is at most

T 1
L(n) ≤ (d2 log2 t(n)/µe+ 1)d

2(n) = 2Θ(d2(n) log log t(n)).

Since M uses o(log log n) space, for any constant c > 0, d(n) ≤ (log n)c, for sufficiently
large n.

Now, suppose to the contrary that for some b < 1/2, log log t(n) < (log n)b for
sufficiently large n. Then,

d2(n) log log t(n) = o(
√

log n).

Hence, the number of tiles needed to cover the 1-valued entries of ML(n) is 2o(
√

logn).
The same argument for M̄ shows that also, for sufficiently large n, the number of tiles
needed to cover the 1-valued entries of ML̄(n) is 2o(

√
logn).

Hence, by Theorem 4.12 L must be regular, which is a contradiction.
Finally, we consider a restriction of the 2npfa model, which, given polynomial

time, can only recognize regular languages. A restricted 2npfa is a 2npfa for which
there is some ε < 1/2 such that on all inputs w and strategies Sw, the probability
that the automaton accepts is either ≥ 1− ε or < ε.

THEOREM 5.4. Any language accepted by a restricted 2npfa with bounded error
probability in polynomial time is regular.

Proof. Let L be accepted by a 2npfa M with bounded error probability in
polynomial expected time. Let Σ be the alphabet, δ the transition function, Q =
{q1, q2, . . . , q|Q|} the set of states, and N ⊂ Q the set of nondeterministic states of M .
Without loss of generality, let N = {q1, . . . , q|N |}.

We first define a representation of strategies as strings over a finite alphabet. Let
Σ′ = (N ×Q× {−1, 0, 1})|N |. Without loss of generality, assume that Σ ∩ Σ′ = 0. A
string S0S1 . . . Sn+1 corresponds to a strategy on |cw$, where |cw$ = σ0σ1 . . . σn+1,
if for 0 ≤ j ≤ n+ 1, Sj is of the form

Sj = ((q1, q
′
1, d1), (q2, q

′
2, d2), . . . , (q|N |, q′|N |d|N |)),

and δ(qi, σj , q′i, di) = 1.
Define L′ to be the set of strings of the form σ0S0σ1S1 . . . σn+1Sn+1, where each σi

is in the alphabet Σ, each Si is in the alphabet Σ′, and furthermore, S = S0S1 . . . Sn+1
corresponds to a strategy of M on input w = σ0σ1 . . . σn+1, which causes w to be
accepted.

Then, L′ is accepted by a 2pfa with bounded error probability in polynomial time.
Thus, L′ is regular [7]. Moreover, note that a string of the form w = σ0σ1 . . . σn+1 is
in L if and only if for some choice of S0, S1 . . . Sn+1, σ0S0σ1S1 . . . σn+1Sn+1 is in L′.
Let M ′ be a one-way deterministic finite state automaton for L′ and assume, without
loss of generality, that the set of states in which M ′ can be when the head is at an
even position is disjoint from the set of states in which M ′ can be when the head
is at an odd position. Then, from M ′ we can construct a one-way nondeterministic
finite state automaton for L by replacing the even position states by nondeterministic
states. Hence, L is regular.

6. Conclusions. We have introduced a new measure of the complexity of a
language, namely its tiling complexity, and have proved a gap between the tiling com-
plexity of regular and nonregular languages. We have applied these results to prove
limits on the power of finite state automata with both probabilistic and nondetermin-
istic states. These results first appeared in [5].
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An intriguing question left open by this work is whether the class 2NPFA-polytime
is closed under complement. If it is, we can conclude that 2NPFA-polytime = Regu-
lar. Recall that the class 2NPFA does contain nonregular languages, since it contains
the class 2PFA, and Freivalds [10] showed that {0n1n | n ≥ 0} is in this class. How-
ever, Kaņeps [18] showed that the class 2PFA does not contain any nonregular unary
language. Another open question is whether the class 2NPFA contains any nonregular
unary language. It is also open whether there is a nonregular language in 2APFA-
polytime.

There are several other interesting open problems. Can one obtain a better lower
bound on the tiling complexity of nonregular languages than that given by Theorem
4.12, perhaps by an argument that is not based on rank? We know of no nonregular
language with tiling complexity less than Ω(n) infinitely often, so the current gap is
wide.
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