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Abstract

In combinatorial auctions that use VCG, a seller can some-
times increase revenue by dropping bidders (see e.g. [5]). In
our previous work [26], we showed that such failures of “rev-
enue monotonicity” occur under an extremely broad range
of deterministic strategyproof combinatorial auction mecha-
nisms, even when bidders have “known single-minded” val-
uations. In this work we consider the question of whether
revenue monotonic, strategyproof mechanisms for such bid-
ders can be found in the broader class of randomized mech-
anisms. We demonstrate that—surprisingly—such mecha-
nisms do exist, show how they can be constructed, and con-
sider algorithmic techniques for implementing them in poly-
nomial time.

More formally, we characterize a class of randomized
mechanisms defined for known single-minded bidders that
are strategyproof and revenue monotonic, and furthermore
satisfy some other desirable properties, namely participa-
tion, consumer sovereignty and maximality, representing the
mechanism as a solution to a quadratically constrained linear
program (QCLP). We prove that the QCLP is always feasible
(i.e., for all bidder valuations) and give its solution analyti-
cally. Furthermore, we give an algorithm for running such a
mechanism in time polynomial in the number of bidders and
goods; this is interesting because constructing an instance of
such mechanisms from our QCLP formulation in a naive way
can require exponential time.

1 Introduction

In combinatorial auctions, multiple goods are sold simulta-
neously and bidders are allowed to place bids on bundles,
rather than just on individual goods. These auctions have
been widely studied in the last decade, with the ultimate
goal of better allocating scarce resources among bidders who
value them non-additively (see e.g. [9]). When designing
a combinatorial auction mechanism, one may desire that
it satisfy various different properties. One important prop-
erty is that it be a dominant strategy for selfish bidders to
truthfully reveal their private information to the mechanism.
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Quite a lot of work in the literature is concerned with the de-
sign of strategyproof mechanisms for combinatorial auctions
[2, 3, 6, 7, 17, 19, 25, 31, 32]. Another important class of
properties concerns an auction’s revenue. An auction mech-
anism is calledoptimal if it maximizes the expected revenue.
Optimal auctions were originally studied in the context of
single-good auctions [16, 23, 28]. More recent work has ex-
tended these ideas to design multi-unit or multi-good auc-
tions that offer strong revenue guarantees, usually achieving
a constant fraction of the optimal revenue [1, 8, 14, 20, 29].

We are concerned with describing the way an auction’s
revenue changes with the number of participating bidders.
Intuitively, one might expect that revenue weakly increases
as the number of bidders grows, as competition also in-
creases. We say that an auction mechanism isrevenue mono-
tonic when this intuition is correct: the seller’s revenue is
guaranteed to weakly increase as bidders are added.Groves
mechanisms in general and VCG in particular have gained
substantial attention because they are the only strategyproof
mechanisms that guarantee efficient allocations [15]. How-
ever, VCG has also received numerous criticisms ([5, 30]).
One of these problems is that VCG is not revenue monotonic
for bidders (unless bidders’ valuations are restricted; [4]).
Following an example due to [5], consider an auction with
three bidders and two goods for sale. Suppose that bidder2

wants both goods for the price of $2 billion whereas bidder
1 and bidder3 are willing to pay $2 billion for the first and
the second good respectively. The VCG mechanism awards
the goods to bidders1 and3 for the price of zero, yielding
the seller zero revenue. However, in the absence of either
bidder1 or bidder3, the revenue of the auction would be $2
billion. In our previous work [26, 27] we showed that this
problem is not restricted to VCG. Instead, we proved that no
revenue monotonic mechanism exists in a very broad class
of deterministic, strategyproof combinatorial auction mecha-
nisms. We define this setting and class of mechanisms in Sec-
tion 2, and also state our impossibility result. Here, we note
two lines of research that are closely related to our own past
work. First, Day and Milgrom [10, 21] used coalitional game
theory to investigate revenue monotonicity in the context of
efficient mechanisms. Second, Yokoo et al. [31, 32] inves-
tigated false-name bidding; however, their proof can also be
understood as showing that revenue monotonicity fails in ef-
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ficient strategyproof mechanisms. In contrast, we do not re-
strict ourselvesto efficient mechanisms.

There are many cases ([11, 12, 13, 18]) in which ran-
domized mechanisms are able to achieve desirable proper-
ties that cannot be obtained by deterministic mechanisms. In
Section 3 we define randomized mechanisms and some desir-
able properties for our setting. In Section 4 we show that it
is possible to circumvent our impossibility result, at least for
known single-minded bidders, by proposing a class of combi-
natorial auction mechanisms that we call “stepwise” random-
ized combinatorial auction mechanisms. We also show how
to construct such revenue-monotonic mechanisms, though
this construction can sometimes require exponential time. Fi-
nally, in Section 5 we give a polynomial-time algorithm for
constructing our mechanism.

2 Deterministic Mechanisms

To prove results about revenue monotonicity, we need to
reason about the behaviour of combinatorial auction mech-
anisms when bidders are added or dropped. We also need
to reason about mechanisms whose behavior can depend on
bidder preferences—for example, each bidder may have a
“single-minded” interest in one particular bundle. For these
reasons, we provide a set of general definitions in which the
allocation of goods and the payments imposed may depend
on which bidders participate and which goods are for sale, as
well as on bidders’ declared preferences.

Let N = {1, . . . , n} be the universal set ofn bidders—
all the potential bidders who exist in the world. LetN ⊆ N
denote the set of bidders participating in a particular auction.
Let G be the finite universe of goods for sale. LetG ⊆ G

denote the set of goods for sale in a particular auction. Let
bothN andG be common knowledge among all bidders and
the auctioneer.

A valuation functiondescribes the values that a bidder
holds for subsets of the set of goods inG. Let valuation
function vG,i for bidder i ∈ N map2G to the nonnegative
reals. For everyG ⊂ G let valuation functionvG,i be the
projection ofvG,i into G. WheneverG is understood, we
drop it from the subscript. We assume that bidders have
quasilinear utility functions; that is, bidderi’s utility for
bundleai is vi(ai) − pi, wherevi is her valuation andpi

is any payment she is required to make.
A valuation profile is an n-tuple v = (v1, . . . , vn),

where, for every participating bidderi, vi is a valuation
function. Let V denote the universal set of all possible
valuation profiles. Observe that valuation profiles always
have one entry for every potential bidder, regardless of the
number of bidders who participate in the auction. We use
the symbol∅ in such tuples as a placeholder for each non-
participating bidder (i.e., each bidderi /∈ N ). Whenv is
an n-dimensional tuple, then(v1, . . . , vi−1,∅, vi+1, . . . , vn)
is denoted byv−i. Note that if i /∈ N , thenv = v−i. Let

VN,G denote the set of all valuation profiles given a set of
participating biddersN and a set of goods for saleG; that is,
the set of all valuation profilesvG for which vi = ∅ if and
only if i /∈ N .

If asked to reveal her valuation, a bidder may not tell
the truth. Denote the declared valuation function of a
(participating) bidderi asv̂i. Let v̂ be the declared valuation
profile. Use the same notation to describe declared valuation
profiles as valuation profiles (e.g., all declared valuation
profiles aren-tuples), and furthermore write(vi, v̂−i) to
denote(v̂1, . . . , v̂i−1, vi, v̂i+1, . . . , v̂n).

In a particular auction, bidders’ valuation functions may
be drawn from some restricted set. For example, we will
need to make such an assumption to model known single-
minded bidders. LetVN,G ⊆ VN,G denote a subspace of the
universal set of valuation profiles for the set of participating
biddersN and the set of goods for saleG. (For example,
all valuations consistent with each bidder having a single-
minded interest in one known bundle.) LetVN,G denote the
universal set of valuation profile subspaces, that isVN,G =
{VN,G ∣ N ⊆ N,G ⊆ G, VN,G ⊆ VN,G}. Let V denote a
set of valuation profile subspaces with at least one member
corresponding anyN ⊆ N andG ⊆ G. That is,V ⊆ VN,G

and∃VN,G ∈ V,∀N ⊆ N,G ⊆ G. (For example, subspaces
corresponding to all the possible sets of known bundles for
different bidders.) Note that there could be more than one
subspace corresponding to a fixedN and a fixedG in V.

DEFINITION 2.1. (CA MECHANISM) Let set of valuation
profile subspacesV be given. Adeterministic direct Combi-
natorial Auction (CA) mechanismM (CA mechanism) maps
eachVN,G ∈ V, N ⊆N andG ⊆ G, to a pair(a, p) where

• a, the allocation scheme, maps eachv̂ ∈ VN,G to
an allocation tuplea = (a1(v̂), . . . , an(v̂)) of goods,
where∪iai(v̂) ⊆ G, ai(v̂) ∩ aj(v̂) = ∅ if i ≠ j, and
ai(v̂) = ∅ if v̂i = ∅.

• p, the payment scheme, maps eachv̂ ∈ VN,G to a
payment tuplep = (p1(v̂), . . . , pn(v̂)), wherepi(v̂) is
the payment from bidderi to the auctioneer such that
pi(v̂) = 0 if v̂i = ∅.

We refer toai andpi as bidderi’s allocation and pay-
ment functions respectively. Wheneverv̂ can be understood
from the context, we refer toai(v̂) andpi(v̂) by ai andpi,
respectively. If̂vi(ai) > 0, we say that bidderi “wins”. We
denote byAG the set of all possible partitions ofG into n

partitions; i.e. the set of all possible ways of distributing
goods among participating bidders. For any given allocation
a ∈ AG, we denote byai the set of goods that are allocated
to bidderi undera.

Mechanisms that give rise to dominant strategies are
especially desirable, as bidders are spared having to reason
about each others’ behavior. A direct CA mechanism is
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said to betruthful if in equilibrium bidders declare their
true valuations to the mechanism. A direct CA mechanism
is said to bestrategyproof(or dominant strategy truthful) if
every bidder has the dominant strategy of revealing her true
preferences.

The revenue of an auction is the sum of payments made
to the auctioneer. Informally, an auction mechanism is
revenue monotonic if the auctioneer could never increase
revenue by dropping a bidder.

DEFINITION 2.2. (REVENUE MONOTONICITY) A truthful
CA mechanismM is revenue monotonicif and only if for
all N ⊆N,G ⊆ G, VN,G ∈ V, v ∈ VN,G and for all biddersj,

∑
i∈N

pi(v) ≥ ∑
i∈N∖{j}

pi(v−j).

It is natural, and commonly assumed, that a bidder
should make no payment to the mechanism unless she wins.
We call this assumptionparticipation. A mechanism is
weakly maximalwith respect to a bidderi if, whenever
i values any goodg sufficiently, the mechanism does not
withhold that good or give it away to a bidder who does not
value it. (For formal definitions see [27].)

Our main results refer to a restricted class of valuation
spaces: known single-minded bidders. Our definition of
this class follows Mu’alem and Nisan [22] and Nisan [24].
Informally, a participating bidderi is single-minded if she
only values bundles that contain a particular bundlebi, and
she values all these bundles equally. Thus,i’s valuation
function vi maps supersets ofbi to some positive valuevi

and maps all other bundles to 0. A mechanism is defined
for known single-minded bidders if all bidders are single-
minded and furthermore, the mechanism “knows” the bundle
bi that is valued by each participating bidderi. Thus, bidder
i can lie about her value (declare av̂i ≠ vi), but does not even
have to declare her bundle of interestbi, and hence cannot lie
about it.

More formally, let b = (b1, b2, . . . , bn) ∈ (2G)n. Fix
N ⊆N andG ⊆ G. If i is a participating bidder, letV (b)N,G,i be
the set of all such functions, taken over all possible choices
of vi, and otherwise letV (b)N,G,i = ∅. LetV (b)N,G = V

(b)
N,G,1×⋯×

V
(b)
N,G,n. Thus,V (b)N,G is simply the space of valuation profiles

in which participating bidders are all single-minded, with the
bundle valued by participating bidderi beingbi.

Let V(ksm) denote the set of valuation profile sub-
spaces for known single-minded bidders; that isV(ksm) =
{V (b)N,G ∣ N ⊆ N,G ⊆ G, b ∈ (2G)n}. We say that a mecha-
nism isdefined for known single-minded biddersif its set of
valuation profile subspaces isV(ksm). From the definition of
mechanism (Definition 2.1), it follows that the allocation and
payment functions depend on the setV

(b)
N,G ∈ V(ksm) from

which bidders’ valuation profiles are drawn. Informally,b is
known, since the allocation and payments depend onb.

The valuation of a known single-minded bidder can be
characterized by the single parametervi, representingi’s
valuation for any superset of bundlebi. Thus in this case
we usev to denote single-minded bidders’ valuation profile,
v̂i to denote the declared valuation of a participating bidder
i, andv̂ to denote a tuple consisting of declared valuations
for each participating bidder and∅ symbols for each non-
participating bidder.

Roughly speaking, a mechanism defined for known
single-minded bidders satisfiesconsumer sovereigntyif by
bidding high enough, any bidder can win the bundle she
values—more formally, given any bidderi and the declared
values of the other bidders,̂v−i, there exists some finite
amountki ∈ R, ki > 0, such that ifi reportsv̂i = ki then
i is allocated at leastbi.

In our past work [26, 27], we proved an impossibility
result: there is no deterministic combinatorial auction mech-
anism that satisfies our desirable properties. To obtain as
strong a result as possible, we proved that the result is true
even when the bidders are known single-minded.

THEOREM 2.1. Let ∣G∣ ≥ 2 and ∣N∣ ≥ 3. Let M be a CA
mechanism defined for known single-minded bidders that of-
fers dominant strategies to bidders and satisfies participa-
tion, consumer sovereignty, and weak maximality with re-
spect to at least two bidders. ThenM is not revenue mono-
tonic.

3 Randomized Mechanisms

In this work, we study the consequences of relaxing the as-
sumption that mechanisms are deterministic. More specifi-
cally, we ask whether there are revenue monotonicrandom-
ized mechanisms that satisfy our desired properties. (As
we will see, moving to the randomized case will also re-
quire reinterpretations of these properties, particularly of
consumer sovereignty.) As the following definition states,
a randomized CA mechanism produces a distribution over
allocations and payments.

DEFINITION 3.1. (RANDOMIZED CA MECHANISM (RCAM))
LetV be given. Arandomized direct Combinatorial Auction
mechanismM (RCAM) maps eachVN,G ∈ V, N ⊆ N and
G ⊆ G, to a distribution over pairs(a, p) wherea andp are
defined exactly as in Definition 2.1.

Given VN,G ∈ V, let πa(v̂) denote the probability that
allocationa ∈ AG will be chosen given declared valuesv̂ .
Let pi(v̂) denote the expected payment ofi.

A randomized CA mechanism isstrategyproof in expec-
tation if and only if truth-telling is a dominant strategy for
all bidders in the game induced by expectation.

Randomized mechanisms can be defined for known
single-minded bidders in a manner analogous to that used
for deterministic mechanisms above. In what follows, we
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concern ourselves only with randomized mechanisms for
known single-mindedbidders.

For a randomized CA mechanism that is defined for
known single-minded bidders, letwi(v̂) denote the proba-
bility that bidderi wins—that is,i is allocated a bundle that
includesbi, givenV

(b)
N,G. Note that theπa(v̂)’s fully define

wi(v̂)’s. Formally,
(3.1) wi(v̂) = ∑

∀a∈AG,ai⊇bi

πa(v̂).

The following theorem characterizes the class of strate-
gyproof randomized mechanisms defined over known single-
minded bidders (indeed, for any single parameter domain).

THEOREM 3.1. (SEE E.G. [24]) A randomized mechanism
defined over known single-minded bidders is strategyproof
in expectation, and satisfies participation, iff for allV

(b)
N,G

and every bidderi ∈ N and every fixed̂v−i we have that

1. the functionwi(v̂i, v̂−i) is monotonically non decreas-
ing in v̂i.

2. pi(v̂i, v̂−i) = v̂i ⋅wi(v̂i, v̂−i) − ∫ t=v̂i

t=0 wi(t, v̂−i)dt.

COROLLARY 3.1. (IMMEDIATE FROM THEOREM 3.1) A
strategyproof mechanism satisfies participation if and only
if it is characterized by a set of feasible allocation distribu-
tions πa(v̂)’s that induce monotonic winning probability
functionswi(v̂) ’s andpi’s are defined as in Theorem 3.1.

Now we generalize the properties we defined for deter-
ministic mechanisms to the randomized setting.

DEFINITION 3.2. (REVENUE MONOTONIC. FOR RCAM’ S)
A truthful randomized CA mechanism isrevenue monotonic
if dropping a bidder never increases the mechanism’s
expected revenue.

DEFINITION 3.3. (PARTICIPATION FOR RCAM’ S) A
truthful randomized CA mechanism satisfiesparticipationiff
for all N ⊆ N,G ⊆ G, VN,G ∈ V, andv ∈ VN,G , pi(v) = 0

for any bidderi for whomwi(v) = 0.

Next we define maximality for randomized CA mecha-
nisms. Our definition here is stronger (more general) than the
weak maximality definition we provided for deterministic
mechanisms. We chose to use weak maximality in [26, 27]
because it strengthened our impossibility result stated there.
For randomized mechanisms, we will prove a positive re-
sult, namely the existence of revenue monotonic randomized
mechanisms with several desired properties. To make our
positive result as strong as possible, we use a more general
notion of maximality here. Informally, a mechanism is max-
imal with respect to a bidderi if, wheneveri values anysub-
setof goodss (rather than a single goodg) sufficiently, the
mechanism does not withhold that bundle or give the goods
in the bundle away to bidders who do not value them.

DEFINITION 3.4. (MAXIMALITY FOR RCAM’ S) A truth-
ful randomized CA mechanismM is maximal with respect
to bidderi iff ∀N ⊆ N and ∀G ⊆ G there exists a set of
nonnegative finite constants{αN,G,i,s ∣ s ⊆ G} such that the
following holds. For alli ∈ N , VN,G ∈ V, andv ∈ VN,G, for
any allocationa that has a positive support underM—that
is, a is chosen byM with probability above zero—either:

1. vi(ai) > 0; or

2. for any allocationa′ with vi(a′i) > αN,G,i,a′
i

anda′j =
aj ∖ a′i for all j ≠ i, it must be the case that for somej,
vj(a′j) < vj(aj).

An allocationa is maximal if it satisfies either (1) or (2)
for all biddersi. A randomized CA mechanismM satisfies
maximality if any allocation with positive support underM

is maximal.

It is somewhat harder to decide how to extend our con-
sumer sovereignty definition to randomized mechanisms for
known single-minded bidders. We first consider two possi-
ble extensions to the definition for deterministic mechanisms,
which can be seen as opposite extremes. First, we could de-
fine consumer sovereignty (I) as requiring that, fixing bids of
the others, any bidder is able to win any desired bundle with
probability one if she bids high enough. Unfortunately, in
this case we recover our previous impossibility result.

THEOREM 3.2. (INFORMAL) Let ∣G∣ ≥ 2 and ∣N∣ ≥ 3. Let
M be a randomized CA mechanism defined for known single-
minded bidders that offers dominant strategies to bidders
and satisfies participation, consumer sovereignty (I), and
weak maximality with respect to at least two bidders. Then
M is not revenue monotonic.

On the other hand, we could define consumer
sovereignty (II) as requiring that any bidder be able to win
any desired bundle withsomeprobability above zero if she
bids high enough. This leads to a different problem. Con-
sider a mechanismM with αN,G,i,s = 0 that chooses a
maximal allocation uniformly at random, and charges noth-
ing. Note that each bidder wins her desired bundle in at
least one maximal allocation. Therefore, it is easy to verify
thatM is strategyproof and satisfies participation, consumer
sovereignty, and maximality with respect to all bidders. It
also is revenue monotonic since it never collects any money.

The above arguments suggest that we ought to seek
an intermediate definition for consumer sovereignty. We
thus present the following definition, which roughly requires
that, given the valuations of the other bidders, a bidder who
starts bidding at0 and then raises her bid can increase her
probability of winning by at leastδ at leastγ times.

DEFINITION 3.5. ((γ-STEP, δ) CONSUMERSOVEREIGNTY)
A randomized CA mechanism defined for known
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single-minded bidders satisfies (γ-step, δ) consumer
sovereignty, γ ≥ 0 and δ > 0, iff for any fixed tuple
of bundles b = (b1, . . . , bn) and for some constants
0 = ci,0 < ci,1 < . . . < ci,γ < ci,γ+1 = ∞, ∀i ∈ N, the
following holds. For allN ⊆ N, G ⊆ G, bidder i ∈ N ,

v̂−i ∈ (V (b)N,G)−i, and j < γ, we have that: the winning

probabilities, wi’s, are monotonic and furthermore either
wi(ci,si+1, v̂−i) ≥ wi(ci,si

, v̂−i) + δ or wi(ci,si+1, v̂−i) = 1.

It is easy to see that if a mechanism satisfies (γ-step,δ)
consumer sovereignty for someγ = k, it then also satisfies
(γ-step,δ) consumer sovereignty for anyγ for which 0 ≤
γ ≤ k. Observe that the constantsci,si

are independent of
all bidders’ declared valuations; in a sense, they can be seen
as “bidder-specific, leveled reserve prices.” Thus, while we
do not assume that the mechanism designer knows anything
about the valuation distribution(s), if such information is
available, it can be useful for setting these constants.

We now propose a simple and useful class of random-
ized mechanisms. These define the probability that any given
bidder wins as a stepwise function of her bid amount, with a
finite number of steps.

DEFINITION 3.6. (STEPWISERANDOMIZED MECHANISM)
A randomized CA mechanism defined for known single-
minded bidders is astepwise mechanismif for somek > 0

and some constants0 = ci,0 < ci,1 < . . . < ci,k < ci,k+1 = ∞,
∀i ∈ N, the following holds. For all fixed tuples of
bundlesb = (b1, . . . , bn), for all N ⊆ N, G ⊆ G, for

all bidders i ∈ N and valuation profileŝv−i ∈ (V (b)N,G)−i,
and for all ci,si

≤ v̂i < ci,si+1, it is the case that
wN,ℓ(v̂i, v̂−i) = wN,ℓ(ci,si

, v̂−i), for all ℓ ∈ N .
We call the mechanism aγ-step randomized mechanism

if it satisfies the above fork = γ.

A γ-step randomized mechanism can be interpreted as a
mechanism that for each bidderi, cares only about specific
declared values,ci,0, ci,1, . . . , ci,γ and treats any declared
value ofi betweenci,si

andci,si+1 the same asci,si
. In fact,

one can easily verify thatwi(v̂) = wi(c1,s1
, . . . , cn,sn

), for
all v̂ whereci,si

≤ v̂i < ci,si+1 for all participating biddersi.
If a γ-step randomized mechanism additionally has the fol-
lowing monotonicity property that either (1)wi(ci,si

, v̂−i) +
δ ≤ wi(ci,si+1, v̂−i), or (2) wi(ci,si+1, v̂−i) = 1, then the
mechanism satisfies (γ-step,δ) consumer sovereignty.

Figure 1 shows a samplewi for a 6-step stepwise ran-
domized mechanism, given fixed bids by the other bidders.
Observe that, by Theorem 3.1, if the mechanism is to satisfy
strategyproofness and participation, our choice ofwi must
imply a specific choice ofpi. Here, if the bidder declares
v̂i, she must pay an amount equal to the area of the shaded
region.

pi

v̂ic4 c5c0 c1 c2 c3 c6

1

0

Figure 1: i’s probability of winning as a function of her bid
amount, given fixed bids by the other agents.

4 A Revenue Monotonic Mechanism

In this section, we construct aγ-step randomized mechanism,
which we dubMγ , that is strategyproof and revenue mono-
tonic and satisfies participation, maximality and (γ-step,δ)
consumer sovereignty, for any givenγ and for someδ > 0.
We constructMγ such that when a bidderi increases her bid
one step, her probability of winning increases byδ unless she
wins in all maximal allocations, in which case her probability
of winning is equal to1. We first give a nonlinear feasibility
programF and show that its solutions correspond to mech-
anisms that satisfy all our desired properties. We then con-
struct a quadratically constrained linear program (QLCP)P ,
and prove that all of its solutions that satisfy one additional
constraint also solveF . Finally, we constructively prove that
such solutions ofP always exist.

Given V
(b)
N,G, for all N ⊆ N let MN be the set of all

maximal allocations with respect to maximality parameters
set to zero—that is,αN,G,i,s = 0,∀i ∈ N,s ⊆ G. LetMN be
a set of maximal allocations—that isMN ⊆MN—such that
each bidder is either allocated her desired bundle or nothing
and such that each bidder wins in at least one allocation
a ∈ MN . Let 0̂ denote the tuple of declared valuations in
which all participating bidders bid0.

LEMMA 4.1. For all V
(b)
N,G, all N ′ ⊆ N ⊆N, and all bidders

i ∈ N ′, if i belongs to all allocationsa ∈ MN theni belongs
to all allocationsa′ ∈ MN ′ .

Proof. Sincei belongs to alla ∈ MN , then it must be the
case thatbi does not overlap with any other bidder’s desired
bundle; that isbi ∩ bj = ∅,∀j ∈ N, j ≠ i. Therefore, since
N ′ ⊆ N , it is also true thatbi ∩ bj = ∅,∀j ∈ N ′, j ≠ i.
Thus, i has to belong to all maximal allocations underN ′

and therefore to all allocationsa′ ∈ MN ′ . ◻

4.1 Feasibility program Observe that a mechanism is a
mapping from declared valuations to allocation probabilities
πa’s and paymentspi’s. Here we express such a mapping
as a solution to a set of feasibility programs (albeit ones with
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0 ≤ πN,a(v̂) ≤ 1 ∀N, v̂ ,a ∈AG(F.a1)

∑
a∈AG

πN,a(v̂) = 1 ∀N, v̂(F.a2)

wN,i(v̂) = ∑
a∈AG,ai⊇bi

πN,a(v̂) ∀N, i, v̂(F.w)

wN,l(v̂i, v̂−i) = wN,l(ci,si
, v̂−i) ∀N, i, l, si, v̂ ∣ci,si

≤ v̂i < ci,si+1(F.step)

wN,i(v̂) ≥ wN,i(v̂ ′) ∀N, i, v̂ , v̂
′∣v̂i ≥ v̂

′
i andv̂−i = v̂

′
−i(F.mon)

pN,i(v̂i, v̂−i) = v̂i ⋅wN,i(v̂i, v̂−i) − ∫
t=v̂i

t=0
wN,i(t, v̂−i)dt ∀N, i, v̂(F.sp)

πN,a(v̂) = 0 ∀N, v̂ ,a ∉MN(F.max)

∑
i

pN,i(v̂) ≥∑
i≠l

pN∖{l},i(v̂−l) ∀N, l, v̂(F.rm)

wN,i(ci,si+1, v̂−i) ≥ wN,i(ci,si
, v̂−i) + δ or wN,i(ci,si+1, v̂−i) = 1 ∀N, i, si, v̂−i ∈ (V (b)N,G)−i(F.cs)

δ > 0(F.δ)

Figure 2: Nonlinear feasibility programF (V (b)
N,G,G). Constants arêv ’s andci,si

’s. Variables areπN,a’s, wN,i’s, pN,i’s and
δ. We adopt the conventions thatN indexes subsets ofN, i andl index elements ofN , si indexes elements of{0, . . . , γ},
andv̂ indexes elements ofV (b)N,G. Observe that because this last set is (uncountably) infinite, the feasibility program involves
an infinite number of both variables and constraints.

some nonlinear constraints, and an uncountably infinite num-
ber of both variables and constraints). Recall that any CA
mechanism defined for known single-minded bidders is able
to condition its behavior onG,N , andV

(b)
N,G (see Definition

2.1). Because the mechanism is free to behave differently
for everyG (available set of goods) andV (b)N,G (set of known
bundles of interest for the bidders), we write a separate fea-
sibility program for each possible joint assignment to these
variables. Our feasibility program, denotedF and given in
Figure 2, is thus parameterized byV

(b)
N,G andG. Note that we

have introduced the assumption that the mechanism knows
V
(b)
N,G rather thanV (b)N,G (i.e., it knows the bundles of non-

participating bidders). This assumption will make no differ-
ence in what follows, but dramatically simplifies notation.

LEMMA 4.2. Any solution toF (V (b)
N,G,G) for all V

(b)
N,G and

G ⊆ G, corresponds to aγ-step randomized mechanism
that satisfies strategyproofness, participation, maximality,
(γ-step,δ) consumer sovereignty, and revenue monotonicity.

Proof. We must ensure that a solution to theF (V (b)
N,G,G)’s

induces a valid mechanism. First, it is necessary to ensure
thatπN,a’s correspond to probabilities. This is achieved by
Constraints (F.a1) and (F.a2). Second, Constraint (F.w) en-
sures that these allocation probabilities fully define winning
probabilities, as required by Equation (3.1). Third, Con-
straint (F.step) ensures that our mechanism is stepwise ran-
domized.

Now we must show that the mechanism satisfies our five
desired properties. First, Constraints (F.mon) and (F.sp)
together entail both strategyproofness and participation (by

Theorem 3.1). Second, Constraint (F.max) entails maxi-
mality. Third, Constraint (F.rm) entails revenue monotonic-
ity. Finally, Constraints (F.mon), (F.cs) and (F.δ) together
ensure that the mechanism satisfies (γ-step, δ) consumer
sovereignty for a givenγ and someδ > 0. ◻

4.2 Quadratically constrained linear program Con-
sider quadratically constrained linear program (QLCP)
P (V (b)

N,G,G) in Figure 3. We will prove that ifP (V (b)
N,G,G)

can be solved for allV (b)
N,G andG ⊆ G with δ > 0 then we

can construct solutions for theF (V (b)
N,G,G)’s and construct

our desired mechanism,Mγ . Recall thatF is parameterized

by an infinite size valuation space,V
(b)
N,G, and thus has an in-

finite number of variables and constraints. The main idea
in this section is that we can move from an infinite-sized
F to a finite-sized QCLPP by working with a finite sized
valuation space,◻V (b)N,G. Specifically, for each bidderi we
only need to consider the finite set of possible declared val-
uesci,0, . . . , ci,sγ

. Formally,◻V (b)N,G = {v ∣v ∈ V
(b)
N,G,∀i ∈

N,∃si ∈ {0, . . . , γ} ∶ vi = ci,si
}. To show that any solution

of P corresponds to a solution ofF we provide a mapping
from◻V (b)N,G to V

(b)
N,G.

To provide intuition for our proof, we stateP (V (b)
N,G,G)

for a simple example and show how we can find a solution
to it that setsδ > 0. Consider the bidder-bundle setting
described in the introduction, which we used to demonstrate
that VCG is not revenue monotonic. That is, letG = {g1, g2}
and N = {1,2,3}; bidders1, 2 and 3 are known single-
minded, where the bundles valued by bidders1, 2, and3
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maximizeδ subject to:

πN,a(�̂v ) = 0 ∀N, �̂v ,a ∈AG ∖MN(P.π1)

0 ≤ πN,a(�̂v ) ≤ 1 ∀N, �̂v ,a ∈ MN(P.π2)

∑
a∈MN

πN,a(�̂v ) = 1 ∀N, �̂v(P.π3)

πN,a(�̂v ) = πN,a(0̂) +∑
i

(qN,a,i ⋅ δ ⋅ si) ∀N, �̂v ,a ∈ MN ∣�̂v i = ci,si
(P.π4)

qN,a,i = 0 ∀N, i,a ∈ MN ∣∀a′ ∈ MN ,a′i = bi(P.q1)

0 ≤ qN,a,i ≤ 1 ∀N, i,a ∈ MN ∣ai = bi(P.q2)

− 1 ≤ qN,a,i ≤ 0 ∀N, i,a ∈ MN ∣ai = ∅(P.q3)

∑
a∈MN ∶ai=bi

qN,a,i = 1 ∀N, i∣∃a′ ∈ MN anda′i = ∅(P.q4)

∑
a∈MN ∶ai=∅

qN,a,i = −1 ∀N, i∣∃a′ ∈ MN anda′i = ∅(P.q5)

Figure 3: Quadratically constrained linear programP (V (b)
N,G,G). Variables areπN,a’s, qa,i’s and δ. We adopt the

conventions thatN indexes subsets ofN, i indexes elements ofN , si indexes elements of{0, . . . , γ}, and �̂v indexes
elements of◻V (b)N,G = {v ∣v ∈ V

(b)
N,G,∀i ∈ N,∃si ∈ {0, . . . , γ} ∶ vi = ci,si

}.

are b1 = {g1}, b2 = {g1, g2} and b3 = {g2} respectively.
Let S3,2 denote this three-bidder, two-good setting. We state
the constraints and explain the solution for the case when all
bidders are present and all goods are for sale. That is, let
G = G andN =N. One can easily follow the same approach
for other choices ofG andN , many of which are trivial.

It is easy to verify that there is exactly one choice
for MN : we have to either award bidder2 her desired
bundle, or award bidders1 and3 each their desired bundle.
ThereforeMN = {(∅,{g1, g2},∅), ({g1},∅,{g2})}. Let
a2 = (∅,{g1, g2},∅) and a1,3 = ({g1},∅,{g2}). Thus,

for all �̂v ∈ ◻V (b)N,G: (i) πN,a(�̂v ) = 0, for all a ∈ AG such

that a ≠ a2,a1,3 constitute (P.π1), (ii) 0 ≤ πN,a(�̂v ) ≤ 1 if
a = a2 or a = a1,3 constitute (P.π2), and (iii) πN,a2

(�̂v ) =
1 − πN,a1,3

(�̂v ) constitute (P.π3).
As each bidderi belongs to exactly one allocationa ∈

MN , Constraints (P.q1)–(P.q5) can be expressed asqN,a,i =
0, for all a ≠ a2,a1,3 and alli ∈ N , andqN,a1,3,1 = qN,a1,3,3 =
1, qN,a2,2 = 1, qN,a1,3,2 = −1, andqN,a2,1 = qN,a2,3 = −1.

Intuitively, qN,a,i ⋅ δ denotes the change toπN,a when
bidder i increases her bid by one step. We constrain the
qN,a,i’s in (P.π4) such that wheni increases her bid by one
step—fromci,si

to ci,si+1
, the probability thata ∈ MN will

be chosen weakly increases ifi belongs toai, and weakly
decreases otherwise.

One can illustrate constraints in (P.π4) by the following
graph representation. LetGRN be a graph of(γ + 1)∣N ∣
nodes, each corresponding to a different potential declared
valuation profile of bidders in◻V (b)N,G. Let there be a directed
edge between each pair of nodes that differ in only one of
the bidders’ declarations, and in which this difference is an
increase of exactly one step (i.e., fromci,si

to ci,si+1). In

other words, we can move from one node to another by
increasing one bidder’s bid by one step. If an edge indicates
an increase in bidderi’s declared value, we say the edge is of
typeei. Now, assign∣MN ∣ labels to each edge, one for each
allocation inMN . Allocationa’s label on an edge of typeei

denotes the change toπN,a by moving along an edge of type
ei (which increases bidderi’s bid amount by one step) and is
equal toqN,a,i ⋅ δ. Define the cost of a path as the absolute
value of the sum of the labels of the edges in the path.

LEMMA 4.3. In eachGRN and for all allocationsa ∈ MN ,
all paths between any two given nodess andt have the same
cost: ∣πN,a(t) − πN,a(s)∣.

Proof. For all i ∈ N , the number of edges of typeei is the
same in all paths betweens andt. Since all edges of typeei

have the same label corresponding to allocationa, the sum of
a’s associated labels along any path betweens andt is equal
to πN,a(t) − πN,a(s). ◻

Figure 4 representsGRN for S3,2. On each edge, the
label corresponding toa1,3—which denotes the change in
πN,a1,3

due to moving along the edge—is equal toqN,a1,3,i ⋅δ
for some i ∈ N and is exactly the negative of the label
corresponding toa2. The the cost of the longest path (e.g.,
between(c1,0, c2,γ , c3,0) and(c1,γ , c2,0, c3,γ)) is 3γδ.

Now let us move to the proof of our general result.

LEMMA 4.4. Any solution toP (V (b)
N,G,G) with δ > 0 corre-

sponds to a solution toF (V (b)
N,G,G).

Proof. Let a solution toP (V (b)
N,G,G) for which δ > 0 be

given. Thus we haveπN,a(�̂v ) for all �̂v ∈ ◻V (b)N,G. To give
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(γ, 0, γ)
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Figure 4: GraphGRN for our three-bidder, two-good example.
Each node(a, b, c) denotes(c1,a, c2,b, c3,c).The label correspond-
ing to a1,3 on directed edges from levelk to k + 1 is δ and on
directed edges from levelk + 1 to k is −δ, 0 ≤ k < 3γ − 1.

a solution toF (V (b)
N,G,G), we have to map theπN,a(�̂v )’s

to the allocation probabilities, winning probabilities and
payments inF (V (b)

N,G,G). For all v̂ ∈ V
(b)
N,G, let

(4.2) πN,a(v̂) = πN,a(�̂v )

where�̂v i = ci,si
for somesi ∈ {0, . . . , γ} such thatci,si

≤
v̂i < ci,si+1. Also, for all v̂ ∈ V

(b)
N,G and alli ∈ N let

(4.3) wN,i(v̂) = ∑
a∈AG,ai⊇bi

πN,a(v̂),and

(4.4) pN,i(v̂) = ∑
1≤s′

i
≤si ∣

ci,si
≤v̂i<ci,si+1

ci,s′
i
[wN,i(ci,s′

i
, �̂v −i)−

wN,i(ci,s′
i
−1, �̂v −i)].

We show that the aboveπN,a’s, wN,i’s, pN,i’s and δ

indeed constitute a solution toF (V (b)N,G,G).
Note that (4.3) is in fact (F.w). Also note thatδ > 0

induces (F.δ). It is easy to see that five of the constraints in
F are directly induced by (4.2), (4.3) and a set of constraints
in P . Precisely, (i) (F.a1) is induced by (4.2), (P.π1) and
(P.π2); (ii) (F.a2) is induced by (4.2) (P.π1) and (P.π3); (iii)
(F.max) is induced by (4.2) and (P.π1)—this simply follows
the fact that anya ∉MN is certainly not inMN ; (iv) (F.w)
is induced by (4.3); and (v) (F.step) is induced by (4.2) and
(4.3).

(F.mon) is induced by (P.π1), (P.π3), (P.π4), (P.q1)–
(P.q4), (4.2) and (4.3). To see this, note that we can
write wN,i(v̂) = ∑a∈AG,ai⊇bi

πN,a(c1,s1
, . . . , cn,sn

) =

∑a∈M,ai=bi
(πN,a(0̂)+∑ℓ∈N(qN,a,ℓ ⋅δ ⋅sℓ)). The first equality

follows from (4.2) and (4.3) and the second equality follows
from (P.π1) and (P.π4). Now, if (1) ai = bi,∀a ∈ MN ,
then,wN,i(v̂) = ∑a∈M,ai=bi

πN,a(0̂) = 1. The first equal-
ity holds by (P.q1) and the second equality holds by (P.π3).
Otherwise, let̂v ′ = (v̂ ′i , v̂−i). ThenwN,i(v̂

′) − wN,i(v̂) =
∑a∈MN ,ai=bi

(qN,a,i ⋅δ ⋅(s′i−si)) = δ ⋅(s′i−si). The first equal-
ity holds by (P.π4) and the second equality holds by (P.q4).
Now, if v̂i ≤ v̂

′
i thensi ≤ s′i and thus (2)wN,i(v̂) ≤ wN,i(v̂

′).
Thus, by (1) and (2), we have (F.mon).

(F.cs) is induced by the same set of constraints as
(F.mon); that is, by (P.π1), (P.π3), (P.π4), (P.q1)–(P.q4),
(4.2) and (4.3). Following the same argument as above, if
ai = bi,∀a ∈ MN , then,wN,i(v̂) = ∑a∈M,ai=bi

πN,a(0̂) = 1.
Otherwise,wN,i(ci,si+1, v̂−i) − wN,i(ci,si

, v̂−i) = δ. Thus
we get (F.cs).

(F.sp) is induced by (F.step) and (4.4). This is because
by (F.step), the integral part of (F.sp) is over a discrete
domain and thus we can write (F.sp) as (4.4).

(F.rm) is induced by (4.4) and the rest of the constraints
in F . As stated above, if bidderi belongs to alla ∈ MN ,
then∀v̂ , wN,i(v̂) = 1 and thuspN,i(v̂) = 0. Otherwise,
pN,i(v̂) = ∑1≤s′

i
≤si∣ci,si

≤v̂i<ci,si+1
ci,s′

i
⋅ δ. By Lemma 4.1, it

is clear that dropping bidderj ≠ i either does not change the
payment of bidderi or sets it to zero (if droppingj entails a
case in whichi belongs to all the allocation in the support of
the mechanism). Thus (F.rm) follows immediately. ◻

Constraints inP (V (b)
N,G,G) are all linear or quadratic,

and so our problem of identifying mechanismMγ can be re-
duced to solving a set of quadratically constrained linear pro-
grams where the objective function in each is to maximizeδ,
and then checking each forδ > 0. However, we can do even
better. The next result demonstrates that this QCLP is always
feasible; later, we will show how to analytically construct a
solution withδ > 0.

LEMMA 4.5. Let P (V
(b)
N,G,G) be given. For any given

πN,a(0̂) > 0,∀N ⊆ N,a ∈ MN , such that
∑a∈MN

πN,a(0̂) = 1, and any givenqN,a,i, ∀N ⊆ N, i ∈
N,a ∈ MN , such that(P.q1)–(P.q5) are satisfied, there ex-
ists a solution to(P.π1)–(P.π4) that setsδ > 0.

Proof. Let πN,a(�̂v ) = 0, ∀a ∈ AG −MN . Thus we have
(P.π1). We can write (P.π2) and (P.π4) as
(4.5) 0 ≤ πN,a(0̂) +∑

i

(qN,a,i ⋅ δ ⋅ si) ≤ 1.

Let ta denote∑i∈N(qN,a,i ⋅ si). If ta = 0 then let
πN,a = πN,a(0̂); by the assumption of the lemma, (4.5) holds.
Otherwise, we can rewrite each equation (4.5) in which

ta < 0 asδ ≤ −πN,a(0̂)

ta
, andta > 0 asδ ≤ 1−πN,a(0̂)

ta
. Now,

we have many constraints of the formδ ≤ k for different
nonnegativek’s. Denote the smallestk by k∗ and setδ = k∗.
Thus (4.5) holds and furthermore, since allπN,a(0̂)’s and all
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k’s are greater than zero,k∗ = δ is greater thanzero. Note
that if ta = 0 in all constraints (4.5), anyδ > 0 would work.

It remains to show that (P.π3) holds. We can
write ∑a∈MG

πa(�̂v ) = ∑a∈MN
(πN,a(0̂)+ ∑i(qa,i ⋅ δ ⋅

si)) = ∑a∈MN
πN,a(0̂) + δ∑a∈MN

∑i(qN,a,i ⋅ si) = 1 +
δ∑i∑a∈MN

(qN,a,i ⋅ si) = 1+ δ∑i si ⋅ (∑a∈MN ,ai=∅ qN,a,i +
∑a∈MN ,ai=bi

qN,a,i) = 1 + 0 = 1. The first equality holds by
(P.π4), the third equality holds by the lemma’s assumption.
and the fifth equality holds by (P.q1), (P.q4) and (P.q5). ◻
THEOREM 4.1. For any givenγ ≥ 0, there exists aγ-step
randomized mechanism that is strategyproof and revenue
monotonic and satisfies participation, maximality and (γ-
step,δ) consumer sovereignty, for someδ > 0.

Proof. It is easy to verify that regardless ofV
(b)
N,G andG we

can always generateπN,a(0̂)’s such that∑a∈MN
πN,a(0̂) =

1. For example, we can setπN,a(0̂) = 1

∣MN ∣
. In fact,

there are infinitely many such assignments ofπN,a(0̂)’s.
Similarly, there exist infinitely many random assignments of
theqN,a,i’s that satisfy (P.q1)–(P.q5). Now note that except

for δ, P (V
(b)
N,G,G)’s have no other variable in common.

Thus, if we setδ to be the minimum ofδ’s in the solutions
to P (V

(b)
N,G,G)’s, the rest of the proof directly follows from

Lemma 4.4 and Lemma 4.5. ◻
In the example, it is clear that3γδ ≤ 1 and thusδ ≤ 1

3γ
.

Since we have complete freedom in choosingπN,a(0)’s, we
can set them appropriately—that is to setπN,a1,3(0̂) = 1/3
andπN,a2

(0̂) = 2/3—so thatδ = 1

3γ
is feasible. Aswe said

earlier, we described the solution ofS3,2 for N = N and
G = G. To fully define the mechanism we simply have to
find δ for all choices forN andG and keep the smallestδ—
which indeed isδ = 1

3γ
.

Our QCLP formulationcharacterizes a class of random-
ized mechanisms that satisfy our desired properties. How-
ever, a mechanism designer may also hope to optimize some
additional objective function such as social welfare or rev-
enue. In our construction above, we have full or partial free-
dom to setδ,MN , πN,a, andqN,a,i. Here, we briefly discuss
tuningδ; we leave further investigations of optimization for
future work.

Fixing MN ’s, πN,a’s and qN,a,i’s, we obtain a strate-
gyproof mechanism, which yields the same social welfare
no matter how we setδ. This is because the social welfare
depends only on the allocation and bidders’ true valuations.
Since fixed sets ofMN ’s and πN,a’s always produce the
same distribution over the allocation space, the social wel-
fare is always the same in expectation regardless ofδ. On
the other hand,δ does affect payments; indeed, the maxi-
mum δ maximizes revenue. Furthermore, the biggerδ is,
the stronger is the consumer sovereignty guarantee offered to
bidders. Thus maximizingδ offers (different) benefits both
to the auctioneer and to bidders.

5 A Polynomial Time Algorithm

At first glance, it may seem that constructingMγ requires
time exponential in the number of potential biddersN and
goodsG, sinceP has an exponential number of variables and
constraints. As the exampleS3,2 in Section 4 shows, some
settings are “easy to solve” because of their special bidder-
bundle structure that let us circumvent the exponential nature
of the problem. It turns out that, even in the general case, we
can always constructMN for all V

(b)
N,G, G, andN ⊆ N in

polynomial time in∣N ∣ and∣G∣.

THEOREM 5.1. For any givenV
(b)
N,G, G and N , in time

polynomial in ∣N ∣ and ∣G∣ we can find a set of maximal
allocationsMN , whereαN,G,i,s = 0, such that each bidder
i ∈ N belongs to at least one allocation inMN and for all
a ∈ MN and all i ∈ N , ai = bi or ai = ∅.

Proof. SetMN = ∅. Randomly order all the bidders in
N and mark them as “unawarded”. Then run the following
greedy algorithm. (1) SetG′ = G. Start from the top of the
list and award each “unawarded” bidderi her desired bundle
bi if available, and removebi from G′, until there are either
no more goods or no more bidders. Mark all the bidders that
have awarded their desired bundle as “awarded”. (2) Start
from the top of the list and award each “awarded” bidderi

her desired bundlebi if available, and removebi from G′,
until there are either no more goods or no more bidders. (3)
Add the current allocation toMN . If there is any bidder
marked as “unawarded” then go to step 1. Otherwise, stop.

Steps 1-3 takeO(∣N ∣∣G∣ log(∣G∣)) time and we have to
run them at most∣N ∣ times, since in each run at least one
bidder is marked as “awarded”. Thus, the algorithm take
time O(∣N ∣2∣G∣ log(∣G∣)) to run. We add one allocation to
MN at the end of each run; thusMN is of sizeO(∣N ∣). ◻

Unfortunately, finding adesirablesolution among the
set of feasible solutions—e.g. a solution that maximizes
δ—can be complicated and dependent on the architecture
of the given bidder-bundle setting, our choice ofMN ’s and
the other parameters. However, we can construct a feasible
solution in polynomial time giving a (loose) lower bound on
the maximumδ that satisfies our constraints.

THEOREM 5.2. For any givenV (b)
N,G,G andN , we can con-

struct aγ-step randomized mechanismMγ in time polyno-
mial in ∣N ∣ and ∣G∣ such thatMγ is strategyproof and rev-
enue monotonic and satisfies participation, maximality and
(γ-step,δ) consumer sovereignty whereδ = 1

n2γ
.

Proof. ConstructMN as in the proof of Theorem 5.1. If
∣MN ∣ = 1, then the solution is trivial. (All participating
bidders win with probability equal to one.) Otherwise, if
∣MN ∣ ≥ 2, let qN,a,i = 1

∣MN,i∣
, ∀a ∈ MN , i ∈ N , where

MN,i is the set of allocationsa ∈ MN that i belongs to.
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Therefore,1
n
≤ qN,a,i ≤ 1. Let πN,a = 1

∣MN ∣
. Therefore,1

n
≤

πN,a ≤ 1

2
. Consider the combinationof constraints (P.π2)

and (P.π4) in the form we presented in the proof of Lemma

4.5. That isδ ≤ −πN,a(0̂)

ta
if ta < 0, andδ ≤ 1−πN,a(0̂)

ta
if ta > 0,

whereta = ∑i∈N(qN,a,i ⋅ si). By our choice ofπN,a’s and

qN,a,i’s in above,−πN,a(0̂)

ta
≥ 1

n2γ
and1−πN,a(0̂)

ta
≥ 1

2nγ
. Thus,

max(δ) ≥min{ 1

n2γ
, 1

2nγ
} = 1

n2γ
. ◻

6 Conclusions and Future Work

In this work, we showed that our previous impossibility re-
sult about deterministic, strategyproof, revenue monotonic
CA mechanisms can be circumvented by stepwise random-
ized mechanisms. In future work, we intend to investigate
whether our mechanisms can be extended to unknown single-
minded bidders and other variations in the auction setting.
We also intend to explore connections to the core and to false-
name bidding, and to identify stepwise randomized mecha-
nisms that maximize objective functions of interest. Further-
more, we aim to further investigate maximizingδ; we con-
jecture thatδ cannot be bounded from below by a constant.
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