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Abstract Quite a lot of work in the literature is concerned with the de-

In combinatorial auctions that use VCG, a seller can sorfitgn of strategyproof mechanisms for combinatorial auctions
times increase revenue by dropping bidders (see e.g. [5])[4n3: 6, 7, 17, 19, 25, 31, 32]. Another important class of
our previous work [26], we showed that such failures of sreroperties concerns an auction’s revenue. An auction mech-
enue monotonicity” occur under an extremely broad rangBiSm is calledptimalif it maximizes the expected revenue.
of deterministic strategyproof combinatorial auction mecHgptimal auctions were originally studied in the context of
nisms, even when bidders have “known single-minded” vaitgle-good auctions [16, 23, 28]. More recent work has ex-
uations. In this work we consider the question of whethi§nded these ideas to design multi-unit or multi-good auc-
revenue monotonic, strategyproof mechanisms for such @0s that offer strong revenue guarantees, usually achieving
ders can be found in the broader class of randomized métfonstant fraction of the optimal revenue [1, 8, 14, 20, 29].
anisms. We demonstrate that—surprisingly—such mecha- e are concerned with describing the way an auction’s
nisms do exist, show how they can be constructed, and d&¥eénue changes with the number of participating bidders.
sider algorithmic techniques for implementing them in pol{ituitively, one might expect that revenue weakly increases
nomial time. as the number of bidders grows, as competition also in-
More formally, we characterize a class of randomizé&d€éases. We say that an auction mechanisemvsnue mono-

mechanisms defined for known single-minded bidders th@hic when this intuition is correct: the seller's revenue is
are strategyproof and revenue monotonic, and furthermgkranteed to weakly increase as bidders are added.Groves
satisfy some other desirable properties, namely particiftgchanisms in general and VCG in particular have gained
tion, consumer sovereignty and maximality, representing igostantial attention because they are the only strategyproof
mechanism as a solution to a quadratically constrained linB¥chanisms that guarantee efficient allocations [15]. How-
program (QCLP). We prove that the QCLP is always feasiti¥er; VCG has also rec;eived numerous criticisms ([5, 30]).
(i.e., for all bidder valuations) and give its solution analyf2ne of these problems is that VCG is not revenue monotonic
cally. Furthermore, we give an algorithm for running suchfar bidders (unless bidders’ valuations are restricted; [4]).
mechanism in time polynomial in the number of bidders af@!lowing an example due to [5], consider an auction with
goods; this is interesting because constructing an instancib¢e bidders and two goods for sale. Suppose that bitider
such mechanisms from our QCLP formulation in a naive w#gnts both goods for the price of $2 billion whereas bidder

the second good respectively. The VCG mechanism awards
1 Introduction the goods to bidders and3 for the price of zero, yielding

. . . . . the seller zero revenue. However, in the absence of either
In combinatorial auctions, multiple goods are sold simulta- : .
. : idder1 or bidder3, the revenue of the auction would be $2
neously and bidders are allowed to place bids on bundle : :
. o . illion. In our previous work [26, 27] we showed that this
rather than just on individual goods. These auctions have . .
. I ; . roblem is not restricted to VCG. Instead, we proved that no

been widely studied in the last decade, with the ultimate . . R
venue monotonic mechanism exists in a very broad class

_ . r
3§|?|Ieofcr?eertr:err1 g‘:‘_’;ggi?i% sca(r:eeereesourfge]i ar\'/]vohnegnbécéiieri ivr(\é%aeterministic, strategyproof combinatorial auction mecha-
y 9. ) 9 ms. We define this setting and class of mechanisms in Sec-

a combinatorial auction mechanism, one may desire tha . .
. . . . . : tion 2, and also state our impossibility result. Here, we note
it satisfy various different properties. One important prop- .

; . . , : wo lines of research that are closely related to our own past
erty is that it be a dominant strategy for selfish bidders 10

S . 4 .~ work. First, Day and Milgrom [10, 21] used coalitional game
truthfully reveal their private information to the meChaerﬂieory to investigate revenue monotonicity in the context of

efficient mechanisms. Second, Yokoo et al. [31, 32] inves-
tigated false-name bidding; however, their proof can also be
understood as showing that revenue monotonicity fails in ef-
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ficient strategyproof mechanisms. In contrast, we do not ¥&v ¢ denote the set of all valuation profiles given a set of

strict ourselveso efficient mechanisms. participating biddergv and a set of goods for sale that is,
There are many cases ([11, 12, 13, 18]) in which rahe set of all valuation profiles; for which v; = @ if and

domized mechanisms are able to achieve desirable propely if i ¢ N.

ties that cannot be obtained by deterministic mechanisms. In If asked to reveal her valuation, a bidder may not tell

Section 3 we define randomized mechanisms and some d#sir-truth. Denote the declared valuation function of a

able properties for our setting. In Section 4 we show tha{jitarticipating) bidde¥ as®;. Let v be the declared valuation

is possible to circumvent our impossibility result, at least fprofile. Use the same notation to describe declared valuation

known single-minded bidders, by proposing a class of comfmiefiles as valuation profiles (e.g., all declared valuation

natorial auction mechanisms that we call “stepwise” randopmefiles aren-tuples), and furthermore writév;,v_;) to

ized combinatorial auction mechanisms. We also show hdenote(?1, ..., 0;_1, Vi, Di+1, - - -, 0n ).

to construct such revenue-monotonic mechanisms, though In a particular auction, bidders’ valuation functions may

this construction can sometimes require exponential time. bé- drawn from some restricted set. For example, we will

nally, in Section 5 we give a polynomial-time algorithm foneed to make such an assumption to model known single-

constructing our mechanism. minded bidders. LeVy ¢ € V¢ denote a subspace of the
universal set of valuation profiles for the set of participating
2 Deterministic Mechanisms bidders N and the set of goods for sate. (For example,

To prove results about revenue monotonicity, we need &b valuations consistent with each bidder having a single-
reason about the behaviour of combinatorial auction mefHnded interest in one known bundle.) Dék ¢ denote the
anisms when bidders are added or dropped. We also nd@tyersal set of valuation profile subspaces, thatig: =

to reason about mechanisms whose behavior can dependonc | N € N,G € G, Vy ¢ € Vyg}. LetV denote a
bidder preferences—for example, each bidder may havé® of valuation profile subspaces with at least one member
“single-minded” interest in one particular bundle. For the§8rresponding an ¢ N andG < G. Thatis,V € Vi
reasons, we provide a set of general definitions in which Rgd3Vv.¢ € V,VN € IN,G ¢ G. (For example, subspaces
allocation of goods and the payments imposed may dep@ﬁgespoanQ to all the possible sets of known bundles for
on which bidders participate and which goods are for sale dierent bidders.) Note that there could be more than one
well as on bidders’ declared preferences. subspace corresponding to a fix¥dand a fixed= in V.

LetIN = {1,...,n} be the universal set of bidders— DEFINITION 2.1. (CA MECHANISM) Let set of valuation

all the potential bidders who exist in the world. LBtc N rofile subspace¥ be given. Adeterministic direct Combi-

denote the set of bidders participating in a particular auc“ﬁﬁtorial Auction (CA) mechanis/ (CA mechanism) maps
Let G be the finite universe of goods for sale. l@&tc G eachVy ¢ €V, N c N andG < G, to a pair (a, p) where
denote the set of goods for sale in a particular auction. Let ¢~ 77 = - ’

both N andG be common knowledge among all bidders and ¢ a, the allocation scheme, maps eathe Vy ¢ to

the auctioneer. an allocation tuplea = (a1(9),...,a,(0)) of goods,
A valuation functiondescribes the values that a bidder ~ whereu,a;(9) € G, a;(0) na;(?) = @ if ¢ # j, and
holds for subsets of the set of goodsGh Let valuation a;(0)=@if b, =2

function vg ; for bidderi e IN map2© to the nonnegative
reals. For every& c G let valuation functionvg ; be the
projection ofvg ; into G. WheneverG is understood, we
drop it from the subscript. We assume that bidders have
quasilinear utility functions; that is, biddeis utility for

bundlea; is v;(a;) — p;, wherev; is her valuation ang; We refer toa; andp; as bidderi’s allocation and pay-
is any payment she is required to make. ment functions respectively. Whenewiecan be understood

A valuation profileis an n-tuple v = (v1,...,va), from the context, we refer ta;(¢) andp; () by a; andp;,
where, for every participating bidder v; is a valuation regpectively. If6;(a;) > 0, we say that bidder “wins”. We
function. LetV denote the universal set of all possiblgenote byA..; the set of all possible partitions 6 into n
valuation profiles. Observe that valuation profiles a|Wa¥)%1rtitions; i.e. the set of all possible ways of distributing
have one entry for every potential bidder, regardless of {§§ods among participating bidders. For any given allocation
number of bidders who participate in the auction. We uge A, we denote by, the set of goods that are allocated
the symbolg in such tuples as a placeholder for each nag-pigderi undera.
participating bidder (i.e., each bidder¢ ). Whenw is Mechanisms that give rise to dominant strategies are
an n-dimensional tuple, thew, , ..., vi1,@,vi11,.--,vn)  especially desirable, as bidders are spared having to reason
is denoted byv_;. Note that ifi ¢ N, thenv = v_;. Let apout each others’ behavior. A direct CA mechanism is

* p, the payment scheme, maps edche Vy ¢ to a
payment tuple = (p1(9),...,p.(0)), wherep;(?) is
the payment from bidderto the auctioneer such that
p,(f)) =0ifo; =@
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said to betruthful if in equilibrium bidders declare their The valuation of a known single-minded bidder can be
true valuations to the mechanism. A direct CA mechanistharacterized by the single parameter representing’s
is said to bestrategyproofor dominant strategy truthful) if valuation for any superset of bundle Thus in this case
every bidder has the dominant strategy of revealing her tue usev to denote single-minded bidders’ valuation profile,
preferences. 7; to denote the declared valuation of a participating bidder
The revenue of an auction is the sum of payments magdend > to denote a tuple consisting of declared valuations
to the auctioneer. Informally, an auction mechanism fier each participating bidder and symbols for each non-
revenue monotonic if the auctioneer could never incregsaticipating bidder.
revenue by dropping a bidder. Roughly speaking, a mechanism defined for known
single-minded bidders satisfiesnsumer sovereignty by
; | - ) bidding high enough, any bidder can win the bundle she
CA mechanism\/ is revenue monotonicif and only if for y4,65” more formally, given any biddeand the declared
al NcIN,G <G, VeV, veVygandforall biddersj, 5 es of the other biddersy_;, there exists some finite
Zpi(v) > Z pi(v_j). gmountki € R, k; > 0, such that ifi reportsz; = k; then
ielN ieN~{5} i is allocated at leagt;.
_ ) In our past work [26, 27], we proved an impossibility
It is natural, and commonly assumed, that a biddglgi. there is no deterministic combinatorial auction mech-
should make no payment to the mechanism unless she Wit that satisfies our desirable properties. To obtain as
We call this assumptioparticipation. A.mechanlsm 'S strong a result as possible, we proved that the result is true
yveakly maximalwith re_spect to a biddet |f,_ whenever even when the bidders are known single-minded.
i values any goog sufficiently, the mechanism does not
withhold that good or give it away to a bidder who does n@tHEOREM2.1. Let |G| > 2 and|IN| > 3. Let M be a CA
value it. (For formal definitions see [27].) mechanism defined for known single-minded bidders that of-
Our main results refer to a restricted class of valuatiggrs dominant strategies to bidders and satisfies participa-
spaces: known single-minded bidders. Our definition §6n, consumer sovereignty, and weak maximality with re-
this class follows Mu’alem and Nisan [22] and Nisan [243pect to at least two bidders. Théi is not revenue mono-
Informally, a participating biddet is single-minded if she tonic.
only values bundles that contain a particular burigjeand
she values all these bundles equally. Thils,valuation 3 Randomized Mechanisms

function v; maps supersets 6f to some positive value; |, yhis work, we study the consequences of relaxing the as-
and maps all other bundles to 0. A mechanism is definggntion that mechanisms are deterministic. More specifi-
for known single-minded bidders if all bidders are smglgé"y we ask whether there are revenue monotessiciom-

minded and furthermore, the mechanism *knows” the bundlg,q e chanisms that satisfy our desired properties. (As
b; that is valued by each participating biddefThus, bidder ;.o il see, moving to the randomized case will also re-

i can lie about her value (declgrejla;t v;), but does not even quire reinterpretations of these properties, particularly of

have to declare her bundle of interéstand hence cannot liensmer sovereignty.) As the following definition states,

aboutit. ¢u, .. arandomized CA mechanism produces a distribution over
More formally, letb = (b1, b, ....bn) € (29)". FiX gjiocations and payments.

N c IN andG c G. If i is a participating bidder, Idt}f,bgi be

the set of all such functions, taken over all possible choid@sFINITION 3.1. (RANDOMIZED CA MECHANISM (RCAM))

of ;, and otherwise IV, ("), , = . LetV,{"), = V"), | x...x LetV be given. Aandomized direct Combinatorial Auction

Vlf,b,)gyn. Thus,V]f,lf)G is simply the space of valuation profile%ic?}aqgsgvgs(g& ?I(\)Ar)l g:/aees :?;ZIN ’?V\e/hz,rezc\j agnd]N ?ﬂg
in which participating bidders are all single-minded, with the = P P p

bundle valued by participating biddebeingb;. Gefined exactly as in Definition 2.1.

Let V(*sm) denote the set of valuation profile sub-  Given Vi.c € V, let () denote the probability that
spaces for known single-minded bidders; thaVi§*™ = gjiocationa ¢ A will be chosen given declared valués
{V]&; | N cN,G c G,be (29)"}. We say that a mechadiet p;(7) denote the expected paymentiof
nism isdefined for known single-minded biddéris set of A randomized CA mechanism sfrategyproof in expec-
valuation profile subspaces¥$*s™). From the definition of tation if and only if truth-telling is a dominant strategy for
mechanism (Definition 2.1), it follows that the allocation anall bidders in the game induced by expectation.
payment functions depend on the i‘ag&b)G e Y(Esm) from Randomized mechanisms can be defined for known
which bidders’ valuation profiles are drawn. Informallyis single-minded bidders in a manner analogous to that used
known, since the allocation and payments depenid on  for deterministic mechanisms above. In what follows, we

DEFINITION 2.2. (REVENUE MONOTONICITY) A truthful
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concern ourselves only with randomized mechanisms EFINITION 3.4. (MAXIMALITY FOR RCAM’S) A truth-
known single-mindedbidders. ful randomized CA mechanisi is maximal with respect

For a randomized CA mechanism that is defined fay bidder: iff YN ¢ IN and VG ¢ G there exists a set of
known single-minded bidders, let;(z) denote the proba-nonnegative finite constanfsiy ¢ ;s | s € G} such that the
bility that bidderi wins—that is,i is allocated a bundle thatfollowing holds. For alli € N, Viy ¢ € V, andv € Viy ¢, for
includesb;, givenV\"),. Note that ther,(2)'s fully define any allocationa that has a positive support und@f—that
wi(9)’s. Formally, ' is, a is chosen by\/ with probability above zero—either:
(3.1) w;(7) = , AZ ) Ta (7). 1. vi(a;) > 0; or

a€A g,a;20;

The following theorem characterizes the class of strate2. for any allocationa’ with v;(a;) > an g.i,.; andaj =
gyproof randomized mechanisms defined over known single- a; ™ a; for all j # i, it must be the case that for some
minded bidders (indeed, for any single parameter domain).  v;(a}) < v;(a;).

THEOREM3.1. (SEE EG. [24]) A randomized mechanisnf*N allocationa is maximal if it satisfies either (1) or (2)
defined over known single-minded bidders is strategyprd®f all biddersi. A randomized CA mechanisii satisfies
in expectation, and satisfies participation, iff for Em(vbg maximality if any allocation with positive support undef

and every biddef € N and every fixed._; we have that is maximal.

1. the functionw;(#;, 7_;) is monotonically non decreas- It is somewhat harder to decide how to extend our con-

inain 7 sumer sovereignty definition to randomized mechanisms for
ginu;. : : . . : :

o . o o A known single-minded bidders. We first consider two possi-

2. pi(0i,v-) = 0 - wi(0;, v-) — [,_ wi(t, v_;)dt. ble extensions to the definition for deterministic mechanisms,
which can n ite extremes. First, w I -
COROLLARY 3.1. (MMEDIATE FROM THEOREM3.1) A vnich ca be see as oppos te ext emes St’. ve cou d de

fine consumer sovereignty (1) as requiring that, fixing bids of

strategyproof mechanism satisfies participation if and o . - X . .
if it is characterized by a set of feasible allocation distribrlk— e others, any bidder is able towin any desired bundle with

tions m,(7)’s that induce monotonic winning probabilitypr.Obablllty one if she bids h'gh er)ough. .U.r_1fortunate|y, n
. N ) ) : this case we recover our previous impossibility result.
functionsw; (7) 's andp;’s are defined as in Theorem 3.1.

HEOREM3.2. (NFORMAL) Let |G| > 2 and|IN| > 3. Let
be a randomized CA mechanism defined for known single-
minded bidders that offers dominant strategies to bidders
DEFINITION 3.2. (REVENUE MONOTONIC. FORRCAM'’s) and satisfies participation, consumer sovereignty (I), and
A truthful randomized CA mechanismreenue monotonic weak maximality with respect to at least two bidders. Then
if dropping a bidder never increases the mechanismd is not revenue monotonic.
expected revenue.

Now we generalize the properties we defined for det
ministic mechanisms to the randomized setting.

On the other hand, we could define consumer
DEFINITION 3.3. (RRTICIPATION FORRCAM'S) A sovereignty (ll) as requiring that any bidder be able to win
truthful randomized CA mechanism satisfiesticipationiff any desired bundle withomeprobability above zero if she
foral NcN,G c G, Vyg €V, andv € Vi, pi(v) =0 bids high enough. This leads to a different problem. Con-
for any bidderi for whomuw;(v) = 0. sider a mechanism/ with ay ¢, = 0 that chooses a
) o ) maximal allocation uniformly at random, and charges noth-
Next we define maximality for randomized CA mechgyg.  Note that each bidder wins her desired bundle in at
nisms. Our definition here is stronger (more general) than {Bgst one maximal allocation. Therefore, it is easy to verify
weak maximality definition we provided for deterministighat 1/ is strategyproof and satisfies participation, consumer
mechanisms. We chose to use weak maximality in [26, Z@vereignty, and maximality with respect to all bidders. It
because it strengthened our impossibility result stated theygy is revenue monotonic since it never collects any money.
For randomized mechanisms, we will prove a positive re- The above arguments suggest that we ought to seek
sult, namely the existence of revenue monotonic randomizgd intermediate definition for consumer sovereignty. We
mechanisms with several desired properties. To make gi|is present the following definition, which roughly requires
positive result as strong as possible, we use a more geng{a, given the valuations of the other bidders, a bidder who
notion of maximality here. Informally, a mechanism is maxtarts bidding a0 and then raises her bid can increase her

imal with respect to a bidderif, whenever: values anysub-  propapility of winning by at least at leasty times.
setof goodss (rather than a single goag sufficiently, the

mechanism does not withhold that bundle or give the goddsFINITION 3.5. ((y-STER §) CONSUMER SOVEREIGNTY)
in the bundle away to bidders who do not value them. A randomized CA mechanism defined for known
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single-minded bidders satisfies -¢tep, ) consumer 1
soveeignty, v > 0 and § > 0, iff for any fixed tuple

of bundlesb (b1,...,b,) and for some constants
0= Ci,o0 < Ci1 < ... < Ciy < Ciyyl = OO, Vi € IN, the —__,—,7
following holds. For allN ¢ N, G ¢ G, bidderi € N, ,

v € (Vlf,bg) ,andj < v, we have that: the winning
’ -1

probabilities, w;'s, are monotonic and furthermore either Di —

Wi (Ci 5,41, V=i) 2 Wi(C 5,5 Vi) + 0 OF wi(C4 6,41, Vi) = 1.

It is easy to see that if a mechanism satisfiestep,o) 0 [ . .
consumer sovereignty for some= k, it then also_satlsﬂes o c o 3 4
(y-step,d) consumer sovereignty for any for which 0 <
v < k. Observe that the constants,, are independent of Figure 1:_ i's probability of winning as a function of her bid
all bidders’ declared valuations; in a sense, they can be sB@qunt. given fixed bids by the other agents.
as “bidder-specific, leveled reserve prices.” Thus, while wle A Revenue Monotonic Mechanism

do not assume that the mechanism designer knows anythifighis section, we constructastep randomized mechanism,
about the valuation distribution(s), if such information ighich we dub)z,, that is strategyproof and revenue mono-
available, it can be useful for setting these constants. tonic and satisfies participation, maximality andstep, )

We now propose a simple and useful class of randoggnsumer sovereignty, for any givenand for somes > 0.
ized mechanisms. These define the probability that any giyga construct\Z., such that when a biddeincreases her bid
bidder wins as a stepwise function of her bid amount, withyge step, her probability of winning increasesihynless she
finite number of steps. wins in all maximal allocations, in which case her probability

of winning is equal tal. We first give a nonlinear feasibility

DEFINITION 3.6. (STEPWISERANDOMIZED MECHANISM) programF and show that its solutions correspond to mech-
A randomized CA mechanism defined for known singleisms that satisfy all our desired properties. We then con-
minded bidders is atepwise mechanisif for somek > 0 struct a quadratically constrained linear program (QLEP)
and some constants=c¢; g < ¢;1 < ... < ¢ < ¢ k+1 = o0, and prove that all of its solutions that satisfy one additional
Vi € IN, the following holds. For all fixed tuples ofconstraint also solvé&'. Finally, we constructively prove that
bundlesb = (b1,...,b,), forall N ¢ N, G < G, for such solutions of always exist.
all biddersi ¢ N and valuation profiles_; ¢ (ij,b)G , Given Vﬂffjg;, for all N ¢ IN let My be the set of all
and for all ¢;,,, < % < cigq1, it is the case tﬁat maximal allocatlo_nS with respec.t to maximality parameters
wio (75, 9-5) = wn .o (Cis,, 7). forall € N setto zero—_that iSyN.cis=0,Vie N,scG. LetMy be

"We call the mechanism-astep randomized mechanisn? S€t Of maximal allocations—thately ¢ My—such that
if it satisfies the above fdr = . each bidder is either aI.Iocated.her.deswed bundle or noth_lng

and such that each bidder wins in at least one allocation

. . . a € My. Let0 denote the tuple of declared valuations in
A ~-step randomized mechanism can be interpreted 5fch all participating bidders bid

mechanism that for each biddgrcares only about specific

declared valuesg; o, c; 1, ..., ci and treats any declared gmma 4.1. Forall V{2, all N’ ¢ N ¢ IN, and all bidders
value ofi betweerr; ;; andc; s, +1 the same as; ;. Infact, ; ¢ N7 if ; belongs to all allocations € My theni belongs
one can easily verify that,(v) = wl—(cl_,.sll, . ..,cn,s_n), for to all allocationsa’ € M ..
all v whereg; 5, < v; < ¢; 5,41 for all participating bidders.
If a y-step randomized mechanism additionally has the fBroof. Sincei belongs to all € My, then it must be the
lowing monotonicity property that either (L);(c; s,, 7-;) + case thab; does not overlap with any other bidder’s desired
6 < wi(ci,s,u,@-i), or (2) wi(cis;+1,7-;) = 1, then the bundle; that ish; nb; = @,Vj € N,j # i. Therefore, since
mechanism satisfies {step,§) consumer sovereignty. N’ ¢ N, itis also true thab; nb; = @,Vj € N',j # i.
Figure 1 shows a sample; for a 6-step stepwise ranThus,: has to belong to all maximal allocations undgf
domized mechanism, given fixed bids by the other biddeaad therefore to all allocationrs € M . ]
Observe that, by Theorem 3.1, if the mechanism is to satisfy
strategyproofness and participation, our choicevpimust 4.1 Feasibility program Observe that a mechanism is a
imply a specific choice op;. Here, if the bidder declaresmapping from declared valuations to allocation probabilities
7;, she must pay an amount equal to the area of the shadgd and payment;’s. Here we express such a mapping
region. as a solution to a set of feasibility programs (albeit ones with

i Cs Ce

SE - — -
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(F.aq1) OSﬂ'N,a(%/)Sl VN,?/,aeAG

(F.az) Z Tna(?) =1 VN, v
acA g
(Fw) ’LUN’i(TA)) = Z ﬂNﬁa(’El) VNJ,TA}
aeAg,a;2b;
(Fstep)  wn (25, 7-) = wni(Cis;r Vi) VN, i, 1,85, 0|ci s, < U5 < Ciga1
(F.mon) ’LUN’i(TA)) > wN’i(’l;') VN,i, IA/, 7;’|1A1i > 7;’1‘ and'?)_i = ’AUiZ
t=7; R A
(F.sp) N, (T, 02) = U5 - wi i (05, 02) — f wy,i(t, v_;)dt VN,i,v
t=0
(F.max) WN,a(%/) =0 VN, @,aeéIMN
(F.rm) Yooni(0) 2 D p,i(2-r) VN,l,v
i i#l
(F'.cs) Wi (Ciosiv1s U-i) 2 WN,i(Cirsiy Doi) + 0 OF Wi (Ci v, Poi) = 1 VN, i,84,0_; € (Vﬁf};)_i
(F.6) 6>0

Figure 2: Nonlinear feasibility progratﬁ(Vﬂglfg G). Constants are’s andc; s,’s. Variables arery ,’s, wy 'S, py ;'S and
§. We adopt the conventions that indexes subsets @, : and! index elements oV, s; indexes elements df, ..., v},

andw indexes elements dfjf,bg Observe that because this last set is (uncountably) infinite, the feasibility program involves
an infinite number of both variables and constraints.

some nonlinear constraints, and an uncountably infinite ndrheorem 3.1). Second, Constraint iffax) entails maxi-
ber of both variables and constraints). Recall that any @#ality. Third, Constraint (m) entails revenue monotonic-
mechanism defined for known single-minded bidders is alig Finally, Constraints (fmon), (F'cs) and (F.) together

to condition its behavior ot#, N, andV\"), (see Definition ensure that the mechanism satisfiess{ep, J) consumer
2.1). Because the mechanism is free to behave differera@yereignty for a givery and some > 0. O

for everyG (available set of goods) aﬁqf,bé (set of known . ) .

bundles of interest for the bidders), we write a separate fdg Quadratically constrained linear program Con-
sibility program for each possible joint assignment to theSiler quadratically constrained linear program (QLCP)
variables. Our feasibility program, denotétand given in P(Vﬂﬁf’é, G) in Figure 3. We will prove that ifP(Vn@;a G)
Figure 2, is thus parameterized b bé andG. Note that we can be solved for awﬂgbé andG ¢ G with 6 > 0 then we

ha}\b/)e introduced thg)assumption that the mechanism kn%\gﬁ construct solutions for thlé(VﬂfIbé,G)’s and construct
Vi rather thanVy ¢, (i.e., it knows the bundles of nongyr desired mechanism/,. Recall thatF is parameterized
partlc!patlng bidders). This assumpnon_ W'”. make ”O.d'ﬁeﬁy an infinite size valuation spacﬁ(b) and thus has an in-
ence in what follows, but dramatically simplifies notation. finite number of variables and coP?{sGtraints. The main idea

LEMMA 4.2. Any solution tOF(VngbévG) for all anlbé and in this section is that we can move from an infinite-sized

G ¢ G, corresponds to ay-step randomized mechanismi’” to a finite-sized QCLR by working with a finite sized
that satisfies strategyproofness, participation, maximalifluation spacel]ﬂﬁ\l;?g. Specifically, for each bidder we
(ry_step,é) consumer Sovereignt% and revenue monotonicif_y_]ly need to consider the finite set of pOSSibIe declared val-
. ®) uescio,---,Ci s, Formally, ME\?)G = {7|v € V]f,lfg;,w €
Proof. We must ensure that a solution to theVyy ;. G)'S N 35, € {0,....~} : v = c;.5,}. To show that any solution

induces a valid mechanism. First, it is necessary to ensgfep corresponds to a solution @ we provide a mapping
thatmy ,'s correspond to probabilities. This is achieved bf¥om 7® 1oy ®
NG P VNG

Constraints (F.q) and (F.¢). Second, Constraint (£)uen- A )
sures that these allocation probabilities fully define winning 10 Provide intuition for our proof, we stat€(Vyy ¢, G)
probabilities, as required by Equation (3.1). Third, Col2r @ Simple example and show how we can find a solution
straint (F.step) ensures that our mechanism is stepwise fanft that setsd > 0. Consider the bidder-bundle setting
domized. described in the introduction, which we used to demonstrate
Now we must show that the mechanism satisfies our fif#&t VCG is not revenue monotonic. Thatis,@et {g1, g2}
desired properties. First, Constraints (F.mon) andsgf. @d N = {1,2,3}; bidders1, 2 and 3 are known single-
together entail both strategyproofness and participation (Bjnded, where the bundles valued by biddérs, and3
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maximized subject to:

(P.m1) N a(2) =0 VN, @,ae Ag~ My

(P.72) 0<mna(@) <1 VN, @,a€ My

(P71'3) Z WNya()I]. VN,
aeMpy

(P.m4) TNa(@) = TN a(0) + Y (qnai 6 5) VN, @,a€ My|@; =ci s,

(P.q1) qN,ai =0 VN,i,ae My|Va' e My, a; =b;

(PQQ) OS(]N@_’Z' <1 VN,i,ae/\/lN|ai Zbi

(P.q3) -1<qN,a: <0 VN,i,ae Myla; =@

(P.q4) Y gnai=1 VN,i|3a" e My anda] = @
aeM n:a;=b;

(P.q5) Y anai=-1 VN,i|3a" e My anda = @
aeMn:a; =g

Figure 3: Quadratically constrained linear progrd?(lvﬂgbé,G). Variables arery,'s, ¢a;'s and . We adopt the
conventions thafV indexes subsets dR, i indexes elements oWV, s; indexes elements ofo0,...,~}, and@ indexes
elements OME\Z;)G ={v|ve V]f,bg, VieN,3s;€{0,....,7}: v =¢i s, }-

areby = {¢g1}, b2 = {g1,92} andbs = {go} respectively. other words, we can move from one node to another by
Let S5 o denote this three-bidder, two-good setting. We stdtereasing one bidder’s bid by one step. If an edge indicates
the constraints and explain the solution for the case whenallincrease in biddeis declared value, we say the edge is of
bidders are present and all goods are for sale. That is,tigtee;. Now, assignM x| labels to each edge, one for each
G = G andN = IN. One can easily follow the same approacdhllocation inM . Allocationa’s label on an edge of type
for other choices ofs and N, many of which are trivial. denotes the change gy , by moving along an edge of type

It is easy to verify that there is exactly one choice; (which increases biddéis bid amount by one step) and is
for My: we have to either award biddér her desired equal togy »; - §. Define the cost of a path as the absolute
bundle, or award bidders and3 each their desired bundlevalue of the sum of the labels of the edges in the path.

ThereforeMy = {(2,{91.92},9). ({91},2.{92})}. Let .
az = (2,{91,02.2) andar 5 = ({g1},2,{g2}). Thus, LEMMA 4.3. In eachG R and for all allocationsa € My,

all paths between any two given nodesndt¢ have the same

- o) . g 2\ —
for all @ e W/,: (i) mna(@) = 0, for alla € Ag such COSE [T () — 7. (5)].

thata # as,a; 3 constitute (P.), (i) 0 < my..(@) < 1 if
a = ap Ora = aj 3 constitute (P.5), and (i) 7v.., (@) = Proof. For alli ¢ N, the number of edges of type is the
1 - 7N, , (@) constitute (P.5). same in all paths betweerandt. Since all edges of type
As each bidder belongs to exactly one allocatiene  have the same label corresponding to allocaticthe sum of
My, Constraints (P.g)—(P.¢5) can be expressed a§..,; = a's associated labels along any path betweandt is equal

0, for a||a¢a2,a173 andall: e N, andQN,al,S’l = QN33 1O WN,a(t)_TrN,a(s)- O
Lgnas2 =1, dN,ay 3,2 = -1, andqjv»'dzvl =(Na,3 =1
Intuitively, gn a,; - 6 denotes the change toyv . when Figure 4 represent§' Ry for S3 5. On each edge, the

bidder i increases her bid by one step. We constrain thehel corresponding ta; ;—which denotes the change in
4N .a,i'S In (P.m4) such that when increases her bid by oner ,, , due to moving along the edge—is equal i@, , ;-6
step—frome; s, t0 ¢; s,,,, the probability that e My will  for somei ¢ N and is exactly the negative of the label
be chosen weakly increasesiibelongs toa;, and weakly corresponding ta,. The the cost of the longest path (e.g.,
decreases otherwise. between(ci o, ¢2.~,¢3,0) and(ci 4, c2,0,¢3,4)) IS 3796.

One can illustrate constraints in (B)dy the following Now let us move to the proof of our general result.
graph representation. L&tRy be a graph of(y + 1)V
nodes, each corresponding t?b;a different potential declatggvma 4.4. Any solution tOP(Vng%,G) with & > 0 corre-
valuation profile of bidders i1}’ ~. Let there be a directed i (b)
edge betvseen each pair of ngdcés that differ in only oneso%onds to @ solution tF(V]N’QG)'

the bidders’ declarations, and in which this difference is ?proof. Let a solution toP(Vﬂg% @) for which § > 0 be

increase of exactly one step (i.e., fram, t0 ¢; 5,41). In A A ®
given. Thus we havey (@) for all @ € MN)G. To give
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3y (7,9.7) Y aentasmb; (TN, (0)+ X ey (aN,a,000-5¢) ). The first equality

follows from (4.2) and (4.3) and the second equality follows

from (P.m) and (P.7). Now, if (1) a; = b;,Va € My,
Sl (10,9 (L7 (1.09-1) then, wn i (7) = Yacata,ms, T (0) = 1. The first equal-

ity holds by (P.q) and the second equality holds by (B«

Otherwise, letr’ = (9/,7_;). Thenwy ;(7") — wn i (?) =
32 (1-2,0,7) (-1, 1,7) (v-1,0,9-1)(7, 2,7) (7, L.y-1) (7,0, 7-2) YoMyt (AN 2,0 (8]-8:)) = 6-(s}~s;). The firstequal-
ity holds by (P.m) and the second equality holds by (P.g
Now, if 7; < 7/ thens; < s; and thus (2ux;(7) < wy i (7).
Thus, by (1) and (2), we have (fon).

(F.cs) is induced by the same set of constraints as
(F.mon); that is, by (P.1), (P.73), (P.74), (P.g1)—(P.q4),
(4.2) and (4.3). Following the same argument as above, if
a; = b;, Va e My, then le(v) Y aeM al b, 7rNa(0) =1.
Otherwise,wy ;(¢; s;+1, V-i) — Wni(Cis;, U—i) = 0. Thus
we get (Fcs).

(F.sp) is induced by (/step) and (4.4). This is because
by (F'step), the integral part of (8p) is over a discrete
0 (0,7,0) domain and thus we can write @p) as (4.4).

(F.rm) is induced by (4.4) and the rest of the constraints

2 (2,7,0) (1,7-1,0) (1,7,1) (0,4-2,0) (0,7-1,1) (0,7,2)

1 (17770) (0!’\/'170) (U%’Yal)

Figure 4: GraphGRy for our three-bidder, two-good example;
Each node(a, b.c) denotes(c1 o, ., cs.. ). The label correspond- in F. As stated above, if bidderbelongs to alla € My,

ing to a; 3 on directed edges from levél to k + 1 is 6 and on then Vo, wy () = 1 and thuspy,(v) = 0. Otherwise,

directed edges from levél+ 1to kis-J,0 < k < 3y - 1. DN, %(7}) Yiss, §<8ilCi s, SVi<Cis 41 Ci,s] -0. By Lemma 4.1, it
is clear that dropping’ blddgr;t i either does not change the

a solution toF(VngbgG) we have to map they .(@)'s payment of biddef or sets it to zero (if dropping entails a
to the allocation probabilities, winning probabilities andase in which belongs to all the allocation in the support of

payments inF (V"2 G). For all o e V', let the mechanism). Thus (#h) follows immediately. O
(4.2) TN ,a(?) = TN (D) Constraints inP(V,{"s,G) are all linear or quadratic,

R and so our problem of |dent|fy|ng mechanisvh, can be re-
where@; = c; s, for somes; € {0,...,v} such that; ;, < ducedto solving a set of quadratically constrained linear pro-

U; < ¢is;41- Also, for all o e VJS, candallie N let grams where the objective function in each is to maxinjize
(4.3) wyi ()= Y wna(?),and and then checking each for> 0. However, we can do even
aeh g .a:2b; better. The next result demonstrates that this QCLP is always
. . feasible; later, we will show how to analytically construct a
44) pni(?) = 2 Cisp[wni(Cis;, B-i) = solution withé > 0.

’
1<si<s;]

Ci,s; SUi<Ci,s

i+1 LEMMA 4.5. Let P(Vngbé,G) be given. For any given

wN,i(Ci,-1, 2-)]. mna(0) > 0,YN ¢ Na e My, such that
, Yacmy TN,a(0) = 1, and any giveryy ., VN ¢ IN,i €
We show that the abovey,.’s, ww,i's, pn,’'s andd N,a € My, such that(P.q;)—(P.gs) are satisfied, there ex-

b
indeed constitute a solution E(VJ(V % G). ists a solution tqP.7;)—(P.,) that setss > 0.
Note that (4.3) is in fact (F.% Also note thaty > 0

induces (F.). Itis easy to see that five of the constraints iRroof. Let 7y .(@) = 0, Va € Ag — My. Thus we have

F are directly induced by (4.2), (4.3) and a set of constrairffd 7). We can write (P.z) and (P.7) as

in P. Precisely, (i) (F.q) is induced by (4.2), (P.5) and (4.5) 0<mNa(0)+ Y (g 6-5;) <1

(P.m2); (ii) (F.az) is induced by (4.2) (P.g) and (P.m); (iii) i

(F.max) is induced by (4.2) and (B)—this simply follows Let t, denoteY;cn(qn,a,i - 5i). If ta = 0 then let

the fact that any. ¢ My is certainly not inM y: (iv) (F.w) TN, = Tn,a(0); by the assumption of the lemma, (4.5) holds.

is induced by (4.3); and (v) (Btep) is induced by (4.2) angOtherwise, we can rewrite each equation (4.5) in which

4.3). ta <Oas§<””—a(0) andt, >0a55<17”tv—aw) Now,
(F.mon) is induced by (P.p), (P.73), (P.74), (P.q1)— we have many constramts of the forfn< k for different

(P.q4), (4.2) and (4.3). To see this, note that we carmonnegativeé:’s. Denote the smalledtby £* and set) = k*.

write wy i (7) = YacAg.aizb; TN,a(Cl,s15- -5 Cns,) = Thus (4.5) holds and furthermore, sincem{;l,a(f))'s and all
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k's are greater than zerd,” = ¢ is greater tharzero. Note 5 A Polynomial Time Algorithm

thatift, = 0 i_n all constraints (4.5), any > 0 would work. A first glance, it may seem that constructing, requires

It remains to show that (Pg holds. ~We can time exponential in the number of potential bidd@fsand
write Yacamt Ta(@) = Taery (Tv,a(0)+ Xilgai - 9 - goods, sinceP has an exponential number of variables and
$i)) = Laemy T™Na(0) + 0 Xacpmy Li(an,ai - 8i) = 1+ constraints. As the examplg » in Section 4 shows, some
0% Yaemy (AN ai+8:) =1+0%; 8 (Zacmy ,aimp IN.0.i + Settings are “easy to solve” because of their special bidder-
YaeMu ai=b; IN,ai) = 1 +0 = 1. The first equality holds by bundle structure that let us circumvent the exponential nature
(P.m4), the third equality holds by the lemma’s assumptiogt the problem. It turns out that, even in the general case, we
and the fifth equality holds by (5}, (P.¢2) and (P.¢).- B can always constructt y for all Vi, G, and N ¢ IN in

THEOREM4.1. For any giveny > 0, there exists ay-step polynomial time in| V| and|G].

randomized mechanism that is strategyproof and revenue _ ®) o

monotonic and satisfies participation, maximality and (JHEOREMS.1. For any givenVy ', G and N, in time

step,d) consumer sovereignty, for somie 0. polynomial in|N| and |G| we can find a set of maximal
. . b) allocationsM y , whereay ¢ i s = 0, such that each bidder

Proof. Itis easy to verify that regardless by ; andG: We ; ¢ v pelongs to at least one allocation iy and for all

can always generatey .(0)'s such thats,c v, 7v,2(0) = ae My andalli € N, a; = b; or a; = @.

1. For example, we can sety ,(0) = m In fact,

there are infinitely many such assignments mf\;ya(f))’s. Proof. Set My = @. Randomly order all the bidders in

g AN i N and mark them as “unawarded”. Then run the following
Similarly, there exist infinitely many random assignments Sfeedy algorithm. (1) Sef” = G. Start from the top of the
theqn a,i's tg?t sat’|sfy (P-q)=(P.g5). Now note that except ;s o4 award each “unawarded” bidderer desired bundle
for 9, P(Viyg,G)'s have no other variable in commony, it available, and remove; from G, until there are either
Thus, |f(;/)ve seb to be the minimum 0b's in the solutions ng more goods or no more bidders. Mark all the bidders that
to P(Vy i, G)'s, the rest of the proof directly follows frompaye awarded their desired bundle as “awarded”. (2) Start
Lemma 4.4 and Lemma 4.5. O from the top of the list and award each “awarded” biddler
In the example, it is clear thatyd < 1 and thuss < 3L her desired bundlé; if available, and remové; from G’,

. until there are either no more goods or no more bidders. (3)
Add the current allocation toV1 . If there is any bidder
andwNm(()) = 2/3—so0 thats = r% is feasible. Asve said Marked as “unawarded” then go to step 1. Otherwise, stop.

earlier, we described the solution 6§, for N = IN and Steps 1-3 tak@(|N]|G|log(|G])) time and we have to

G = G. To fully define the mechanism we simply have tg" them at mostN| times, since in each run at least one

find & for all choices forN andG and keep the smallege— Didder is m2arked as “awarded”. Thus, the algorithm take
which indeed is5 = 3% time O(|N|?|G|log(|G|)) to run. We add one allocation to

at the end of each run; thuet y is of sizeO(|N|). O

Since we hae complete freedom in choosingy . (0)'s, we
can set them appropriately—that is to sgf .1 3(0) = 1/3

Our QCLP formulatiorcharacterizes a class of randonf¥{~
ized mechanlsr_ns that gaﬂsfy our desired properpe;. How- Unfortunately, finding adesirablesolution among the
ever, a mechanism designer may also hope to optimize sqy

S o . . F of feasible solutions—e.g. a solution that maximizes
additional objective function such as social welfare or rey- .. "\ complicated and dependent on the architecture

enue. In our construction above, we have full or partial freg-, given bidder-bundle setting, our choice/efy’s and
dom to ?eg' M, TN o, NN a,i- HEre, we briefly discuss o e parameters. However, we can construct a feasible
tuning §; we leave further investigations of optimization fogOlution in polynomial time giving a (loose) lower bound on

future_ vyork. ) , , . the maximumy that satisfies our constraints.
Fixing My’s, mn 'S andgy a,;'S, we obtain a strate-

gyproof mechanism, which yields the same social welfargieorem5.2. For any givenvﬂgbé, G and N, we can con-
no matter how we set. This is because the social welfar@truct a~-step randomized meéhani% in time polyno-
depends only on the allocation and bidders’ true valuatiopfial in | N| and |G| such thatM., is strategyproof and rev-
Since fixed sets ofMx’'s and 7y ,,’s always produce the enue monotonic and satisfies participation, maximality and
same distribution over the allocation space, the social Welstep,§) consumer sovereignty whefe- ——.

fare is always the same in expectation regardless dbn "

the other handg does affect payments; indeed, the maoof. ConstructM  asin the proof of Theorem 5.1. If
mum ¢ maximizes revenue. Furthermore, the bigges, |[Mx| = 1, then the solution is trivial. (All participating
the stronger is the consumer sovereignty guarantee offereligislers win with probability equal to one.) Otherwise, if
bidders. Thus maximizing offers (different) benefits both|/Mn| > 2, let gn . = W—1N| Va € My,i € N, where
to the auctioneer and to bidders. My ; is the set of allocations ¢ My thati belongs to.
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Therefore,% <gnai <1l Letmy, = \M_lzvl Therefore,}L < [13] U. Feige and J. Vondrak. Approximation algorithms for
TN e < 1 consider the combinatioaf constraints (P.5) allocation problems: Improving the factor bf- 1/e. FOCS
' '06, pages 667-676, 2006.

2
and (P.m) in the form we presented in the proof of Lemm?l4] A. Goldberg and J. D. Hartline. Envy-free auctions for digital

4.5. Thatis) < _Tr+:(0) if t, <0,ando < 1_7TIZ—:(O) if t, >0, goods.EC’03, pages 29-35, 2003.
wheret, = Y,;n(gn.ai - ;). By our choice ofry ,’s and [15] J. Green and J. Laffont. Characterization of satisfactory

N ai'sin above,_”N’a(O) > L andl_”’a(o) > 21 . Thus, mechanisms for the revelation of preferences for public goods.
o ta ney ta ny Econometrica, 45(2):427-438, 1977.

: 1 1 _ 1

max(J) > mln{m7 ﬁ} = 2y D [16] M. Harisand A. Riley. Allocation mechanisms and the design
] of auctions.Econometrica, 49(6):1477-1499, 1981.

6 Conclusionsand Future Work [17] R. Lavi, A. Mualem, and N. Nisan. Towards a characteri-

In this work, we showed that our previous impossibility re- zation of truthful combinatorial auctionsFOCS'03, pages
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