
Flow Algorithms for Two Pipelined Filter Ordering
Problems ∗

Anne Condon
Dept. of Computer Science

U. British Columbia

condon@cs.ubc.ca

Amol Deshpande
Dept. of Computer Science

U. Maryland

amol@cs.umd.edu

Lisa Hellerstein, Ning Wu
Dept. of Computer and

Information Science
Polytechnic University

hstein,wning@cis.poly.edu

ABSTRACT
Pipelined filter ordering is a central problem in database
query optimization, and has received renewed attention re-
cently in the context of environments such as the web, con-
tinuous high-speed data streams and sensor networks. We
present algorithms for two natural extensions of the classical
pipelined filter ordering problem: (1) a distributional type
problem where the filters run in parallel and the goal is to
maximize throughput, and (2) an adversarial type problem
where the goal is to minimize the expected value of multi-
plicative regret. We show that both problems can be solved
using similar flow algorithms, which find an optimal order-
ing scheme in time O(n2), where n is the number of filters.
Our algorithm for (1) improves on an earlier O(n3 log n) al-
gorithm of Kodialam.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; F.2.0 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems—Gen-
eral

General Terms
Algorithms

Keywords
pipelined filter ordering, selection ordering, query optimiza-
tion, flow algorithms

∗Research conducted in part while L. Hellerstein was visiting
Univ. of Wisc., Madison, and Univ. of British Columbia.
L. Hellerstein and N. Wu were partially supported by NSF
grant ITR-0205647. Hellerstein also received support from
the Othmer Institute for Interdisciplinary Studies. A. Con-
don was supported by an NSERC grant and by the Peter
Wall Institute for Advanced Studies at UBC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06,June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0003 ...$5.00.

1. INTRODUCTION
Pipelined filter ordering (sometimes called selection order-

ing) refers to the problem of determining the order in which
to apply a given set of commutative filters (predicates) to all
the tuples of a relation, so as to find the tuples that satisfy all
the filters. In addition to conjunctive selection queries, many
commonly occurring join queries (specifically, those posed
against a star schema) reduce to pipelined filter ordering.
In recent years, pipelined filter ordering problems have re-
ceived renewed attention in the context of environments such
as the web [5, 14, 9], continuous high-speed data streams [1,
3], and sensor networks [8]. These environments present
significantly different challenges, and cost structures, than
do traditional centralized database systems. Pipelined filter
ordering problems are also studied in other areas such as
fault detection and machine learning (see e.g. Shayman et
al. [20] and Kaplan et al. [15]), under names such as learn-
ing with attribute costs [15], minimum-sum set cover [10],
and satisficing search [21]. In this paper, we present
efficient algorithms for two pipelined filter ordering
problems, both originally motivated by questions of
database query optimization. One problem is new; the
other was already studied in a different context by Kodialam
[17], and we obtain improved running time.

Pipelined filter ordering problems can be partitioned into
two types. In the “distributional” type, assumptions are
made about the probability that tuples will satisfy a given
filter, and optimization is with respect to expected behav-
ior. Probabilities may be learned from the statistics main-
tained on the tables, or on-the-fly while tuples are being
processed [1, 3]. In the “adversarial” type, the goal is to op-
timize with respect to worst-case assumptions, such as when
an adversary controls which tuples satisfy which filters.

The classical pipelined filter ordering problem [18] is a
distributional type of problem. A cost and probability are
given for each filter – the cost of applying the filter to a
tuple, and the probability that the tuple satisfies the filter
and is not eliminated. The event that a tuple satisfies a filter
is independent of whether the tuple satisfies other filters.
The problem is to find the ordering (“pipeline”) of filters
that yields minimum expected cost for processing a tuple.
A simple polynomial-time solution is to order the filters in
non-decreasing order of the ratio ci/(1 − pi), where pi is
the probability associated with filter i and ci is the cost of
applying filter i (cf. [12, 21, 18]). Variants of the classical



problem, such as finding the single best ordering for a given
set of tuples, have been studied recently, We discuss these
in more detail in Section 2.

In this paper we present algorithms for two natural ex-
tensions of pipelined filter ordering problems. We introduce
the problems here and provide formal details in Sections 3
and 4. Since our interest in filter ordering was motivated by
the problem of ordering database selection queries, we dis-
cuss our work in this context, although it can be interpreted
more generally.

• Distributional type, parallel environment: Our first
result is for a distributional type problem in a parallel or dis-
tributed environment. Our interest in this problem is moti-
vated by two increasingly prevalent scenarios: (1) massively
parallel database systems and (2) web-based structured in-
formation sources such as IMDB and Amazon. In both,
selection queries (i.e. conjunctions of predicates, or filters)
may be processed in parallel as follows. For each predicate
of the query, there is a distinct operator (processor) dedi-
cated to evaluating that predicate. Each tuple in the input
relation is routed from operator to operator, until it is found
to satisfy all predicates of the query and is output, or un-
til it is found not to satisfy a predicate, in which case it is
discarded. Each tuple can be routed individually, so that
different tuples can have different routes. At any moment,
each operator can evaluate its predicate on at most one tu-
ple, and each tuple can be evaluated by at most one pro-
cessor; but the n different operators can work in parallel on
n different tuples. The problem, then, is to determine how
best to route each tuple. In solving this problem, we assume
that the selectivity of each operator Oi, i.e. the probability
pi that a tuple satisfies Oi’s predicate, is known, and that
each operator Oi has a known rate limit ri on the expected
number of tuples it can process per unit time. (This formu-
lation is equivalent to one in which ri is defined to be the
maximum, rather than the expected, number of tuples that
Oi can process in unit time, and excess tuples are queued;
see the discussion of Kodialam’s results in Section 2.) We
also assume that the event that a tuple satisfies a predicate
is independent of whether the tuple satisfies any of the other
predicates, and of the events that other tuples satisfy any
predicates. Our goal is to route tuples so as to maximize
the throughput of tuple handling, subject to the constraint
that the expected number of tuples processed by each oper-
ator Oi per unit time does not exceed ri. We call this the
max-throughput problem.

Kodialam [17] gave algorithms that, given an instance of
the max-throughput problem (i.e. the selectivities and rate
limits of each of the n operators), find (1) the max through-
put, and (2) an optimal routing scheme. His algorithms
run in time O(n2) and O(n3 log n) respectively; they exploit
the polymatroid structure of a certain space associated with
the problem instance, and build on a constructive proof of
the Caratheodory representation theorem. We present an
algorithm for (1) that runs in linear time if the rate limits
{ri} are given in sorted order and an algorithm for (2) that
runs in O(n2) time. Our algorithms are conceptually sim-
pler than Kodialam’s; we use a flow-based algorithm for (2)
and our analysis of this algorithm provides the basis for our
linear-time algorithm for (1).

• Adversarial type, single tuple: Our second result per-
tains to a new, adversarial type of problem. We focus on
the problem of routing a single tuple through the operators,
where a cost ci is associated with each operator Oi. If a tu-
ple is processed by operators Oi1 , Oi2 , . . . , Oik before being
eliminated by Oik , then the total cost of processing the tu-
ple is ci1 + . . .+ cik . Had the tuple been routed to Oik first,
it would have incurred a cost of only cik . The multiplica-

tive regret is
ci1+...+cik

cik
, the ratio of the actual cost incurred

in processing the tuple, to the minimum possible cost that
could be incurred under an optimal routing of that tuple.

The problem is to choose a (randomized) routing of the
tuple so as to minimize the expected multiplicative regret,
under the following assumptions. We assume that the set
of filters which will eliminate the tuple are determined (in
secret) by an adversary before a routing is chosen for the tu-
ple. The goal of the adversary is to maximize the expected
multiplicative regret induced by the tuple routing. The ad-
versary (who may make random choices) will know the strat-
egy used in determining the randomized routing of the tuple,
and can choose the set of filters accordingly. We thus have
a classical zero-sum game between two players – the routing
player and the adversary – and the problem is to determine
the optimal strategy of the routing player. We call this the
game theoretic multiplicative regret (GTMR) problem. Our
algorithm for the GTMR problem is based on the same flow
techniques that we use for the max-throughput problem and
runs in time O(n2).

In what follows, we actually use an equivalent formulation
of the GTMR problem, in which we restrict the adversary to
choose exactly one filter to eliminate the tuple. The equiv-
alence follows from that fact that the restriction does not
disadvantage the adversary. It is easy to show that it is not
in the interest of the adversary to cause the tuple to satisfy
all filters (because then the multiplicative regret is 1, which
is the minimum possible), nor to choose more than one filter
to eliminate a tuple (because if S is the set of filters that
eliminate the tuple, removing all but the lowest cost filter
in S can only increase multiplicative regret).

From a practical point of view, assumption of such a pow-
erful adversary is not well motivated, since real-world data
tends not to have worst-case properties. However, from a
theoretical perspective, our analysis provides insight into
worst-case behavior of pipelined filtering with costs. We
note that the assumption of such an adversary is standard
in on-line optimization problems, in which the goal is to min-
imize the competitive ratio (which is a type of multiplicative
regret). The GTMR problem is not a proper on-line prob-
lem, however, since it takes only a single input, rather than
a sequence of inputs.

A naive strategy for minimizing multiplicative regret routes
the tuples through the operators in increasing order of their
costs. As noted by Kaplan et al. [15], this strategy incurs a
multiplicative regret of at most n. How much worse is this
strategy than the optimal strategy returned by our GTMR
algorithm? If all costs are equal, then the adversary will
cause the optimal strategy to have (expected) multiplicative
regret (n + 1)/2, and the naive strategy to have multiplica-
tive regret of n. We show that, for any set of costs, the
naive strategy achieves multiplicative regret that is within



a factor 2 of the expected multiplicative regret achieved by
the optimal strategy.

We can also show (details omitted) that variants of the
GTMR problem, in which the goal is to minimize additive
regret or total cost, rather than multiplicative regret, have
simple linear-time algorithms, assuming sorted input.

Following a discussion of related work, we present our
main results on the the max-throughput problem and the
game theoretic multiplicative regret problem in Sections 3
and 4 respectively.

2. RELATED WORK
Kodialam [17] gave an algorithm for the max-throughput

problem, but with higher running time than the algorithm
given in this paper. He first introduces a problem variant
that takes queueing delays into account. Note that our for-
mulation of the max-throughput problem implicitly assumes
that an operator Oi can sometimes process tuples at a rate
that exceeds its limit ri, since a solution only guarantees that
the expected rate of tuples arriving at Oi will not exceed ri.
Kodialam’s queueing-theory formulation imposes a limit on
maximum, rather than expected, rates, with excess tuples at
operators buffered in queues. Following early work of Coff-
man and Mitrani [6] and Gelenbe and Mitrani [13], Kodi-
alam reduces the queueing-theory formulation to a problem
that is equivalent to our formulation of the max-throughput
problem. His reduction implies that if K is an optimal
routing scheme for our formulation with max throughput F
then, for any F ∗ < F , there is a routing scheme K∗ for the
queueing-theoretic formulation (where K∗ is easily obtained
by scaling K appropriately) with throughput F ∗. We note
that Kodialam’s algorithm outputs a sparse routing scheme,
that is, a scheme which routes tuples along at most n distinct
orderings of the operators. Although our algorithm outputs
a succinct representation of an optimal routing scheme from
which it is possible to efficiently calculate tuple routings, the
scheme itself may not be sparse.

Several other variants of the pipelined filter ordering prob-
lem have been studied recently. One such problem is as fol-
lows: given a list L of tuples and for each, the subset of
filters which it satisfies, and a cost for applying each filter,
find the ordering π of the filters which minimizes the sum
of the costs of evaluating all tuples in L using π. This prob-
lem is NP-hard, and significant effort has been invested in
development of approximation algorithms [4, 7, 10, 19].

Other recent papers have addressed on-line variants of
pipelined filter ordering [15, 19]. In these settings, tuples
arrive one at a time, and the operators each have an associ-
ated cost. Tuples are processed sequentially. In the standard
version of the on-line problem, the goal is to minimize the
ratio, over the worst-case sequence of tuples, between the
cost paid on that sequence, and the cost that would have
been paid if all tuples in the sequence had been processed
according to the single ordering π incurring minimum total
cost on this sequence. This ratio is a type of multiplicative
regret, but the regret is with respect to a sequence of tuples,
rather than a single tuple.

Etzioni et al. [9] studied a web-query problem with some
similarities to the max-throughput problem. There are m
queries and n information sources. Consulting a source has

a time cost and a dollar cost, and yields the answer to a
query with a certain probability. Multiple sources can be
consulted at the same time. The goal is to answer all m
queries while minimizing the sum of the time and dollar cost.
They provide an approximation algorithm for this problem.

In generalized maximum flow problems, the amount of
flow may change as it travels through a network (cf. Fleis-
cher [11]). Although the flow problems studied in this pa-
per also have this property, the requirement that flow pass
through all operators (if not eliminated along the way) does
not arise in generalized maximum flow problems. For some
flow problems, decisions about flow routing can be made lo-
cally at nodes of the network, independently of other nodes
[2]. An interesting question is whether there are efficient
distributed local algorithms for the pipelined filter ordering
problems of this paper.

3. THE MAX-THROUGHPUT PROBLEM
We first formally define the max-throughput problem via

a linear program and present an example problem. We then
give an intuitive description of our algorithm and its mo-
tivation, followed by a formal description of the algorithm.
We also discuss the output format of our algorithm.

We will frequently refer to permutations of sets and in-
troduce our notation here. Let π be a permutation of a set
S of size l. We represent π as a sequence s1, . . . , sl of the
elements of S. For k ∈ [1 . . . l] we use π(k) to denote the
kth element of the sequence, sk. For s ∈ S, π−1(s) denotes
the position of s in the sequence, that is, π−1(s) = i such
that s = si. Suppose that π1 and π2 are permutations over
disjoint sets S1 and S2. Then π1π2 denotes the permuta-
tion of S1 ∪ S2 corresponding to the sequence formed by
concatenating the sequences representing π1 and π2.

An instance of the max-throughput problem is a list of
n selectivities (probabilities) p1, . . . , pn, and n rate limits
r1, . . . , rn. The pi are real values between 0 and 1, and the ri

are non-negative. Let φ(n) be the set of all n! permutations
of {1, . . . , n}. For j ∈ [1 . . . n], and permutation π ∈ φ(n),
let g(π, j) denote the probability that a tuple sent according
to permutation π reaches selection operator Oj without be-
ing eliminated. Thus g(π, j) = pπ(1)pπ(2) . . . pπ(m−1), where
m = π−1(j). Define n! variables fπ, one for each permu-
tation π ∈ φ(n), where each fπ represents the number of
tuples routed along permutation π per unit time. We call
the fπ flow variables. The max-throughput problem is to find
a solution to the following linear program. We refer to the
constraints of the first type as rate constraints.

Max-throughput LP: Given r1, . . . , rn > 0 and p1 . . . , pn ∈
[0, 1], maximize

F =
X

π∈φ(n)

fπ

subject to the constraintsX
π∈φ(n)

fπg(π, i) ≤ ri for all i ∈ [1 . . . n]

fπ ≥ 0 for all π ∈ φ(n)



For example, let n = 2, p1 = p2 = 1/2, r1 = 2, and
r2 = 3. If all tuples are sent to O2 first and then to O1, only
3 tuples per unit time can be processed. That is, if we set
f1,2 = 0, then the maximum possible value of F is 3. Also,
since p2 = 1/2, this solution results in an expected rate of
3/2 tuples per unit time arriving at O1, which is below the
rate limit r1 = 2 of O1. A different routing allows more
tuples to be processed, namely sending 8/3 tuples per unit
time along route O2, O1, and 2/3 tuples per unit time along
route O1, O2 (i.e. f2,1 = 8/3 and f1,2 = 2/3).

3.1 Algorithm to calculate an optimal routing
for the max-throughput problem

3.1.1 Introduction to the algorithm
We begin by giving an informal introduction to our rout-

ing algorithm. We view the problem of routing tuples as one
of constructing a flow through the operators. The capacity
of each operator is its rate limit, and the amount of flow sent
along a path through the operators is equal to the number
of tuples sent along that path per unit time. We treat an
operator having selectivity p as outputting exactly p times
the amount of flow into it, although this is actually the ex-
pected flow output. However, our arguments apply also to
expectation.

Consider first the special case in which operators all have
the same rate limit (capacity). For example, let O1, O2 be
two operators with selectivities p1 and p2, and with equal
rate limits r. If we send x units of flow along permuta-
tion O1, O2, and y units along permutation O2, O1, then O1

receives x + p2y units and O2 receives y + p1x units. If
x = r(1− p2)/(2− p1p2) and y = r(1− p1)/(2− p1p2), then
x+ p2y = y + p1x = r and both operators are saturated, i.e.
operate at full capacity. We show that any routing which
saturates all the operators achieves maximum throughput.
We also give a closed-form expression that generalizes the
above routing for the case of n > 2 operators with equal
rate limits.

Now consider the case where there are n operators and
all rate limits are distinct. In this case, we do not have a
closed-form expression for an optimal routing. Instead, we
construct a flow incrementally. Imagine pushing flow along
the single permutation On, . . . , O1, where we have indexed
the operators so that this permutation orders them in de-
creasing order of their rate limits. Suppose we continuously
increase the amount of flow being pushed, beginning from
zero, while monitoring the “residual capacity” of each oper-
ator, i.e., the difference between its rate limit and its load
(the current rate of tuples arriving at that operator). For
the moment, don’t worry about exceeding the rate limit of
an operator.

Consider two adjacent operators, Oi and Oi−1. As we
increase the amount of flow, the residual capacity of each
operator decreases continuously. Initially, at zero flow, the
residual capacity of Oi is greater than the residual capacity
of Oi−1. By continuity, the residual capacity of Oi can-
not become less than the residual capacity of Oi−1 without
the two residual capacities first becoming equal. We now
impose the following stopping condition: increase the flow
along permutation On, . . . , O1 until either (1) some operator
becomes saturated, or (2) the residual capacities of at least

two of the operators become equal. This stopping condition
ensures that when the flow increase is halted, permutation
On, . . . , O1 orders the operators in non-increasing order of
their residual capacities. (Algorithmically, we do not in-
crease the flow continuously, but instead directly calculate
the amount of flow which triggers the stopping condition.)

We show that if stopping condition (1) above holds when
the flow increase is stopped, the constructed flow is optimal.
If stopping condition (2) holds, we keep the current flow, and
then augment it by solving a new max-throughput problem
in which we set the rate limits of the operators to be equal
to their residual capacities under the current flow (their se-
lectivities remain the same).

We now generalize the case of distinct rate limits to one in
which some of the rate limits of the operators are equal. As-
sume that permutation On, . . . , O1 orders the operators in
non-increasing order of their rate limits. We group the oper-
ators into equivalence classes according to their rate limits.
We then replace each equivalence class with a single mega-
operator, with a rate limit equal to the rate limit of the con-
stituent operators, and selectivity equal to the product of
their selectivities. We then essentially apply the procedure
for the case of distinct rate limits to the mega-operators.
The one twist is the way in which we translate flow sent
through a mega-operator into flow sent through the con-
stituent operators of that mega-operator; we route the flow
through the constituent operators so as to equalize their
load. We thus ensure that the operators in each equiva-
lence class continue to have equal residual capacity. Note
that, under this scheme, the residual capacity of an oper-
ator in a mega-operator may decrease more slowly than it
would if all flow were sent directly to that operator (because
some flow may first be filtered through other operators in
the mega-operator) and this needs to be taken into account
in determining when the stopping condition is reached.

3.1.2 Example
Suppose we have 3 operators, O3, O2, O1 with rate limits

r3 = 3, r2 = 2, and r1 = 1, and selectivities p1 = p3 = 1/2
and p2 = 1/4. If we send flow along permutation O3, O2, O1,
then 1/2 of it will reach O2 and 1/8 will reach O1. The
residual capacities of O3 and O2 become equal at 2 units
of flow, the residual capacities of O2 and O1 become equal
at 8/3 units, and the minimum amount of flow needed to
saturate an operator is 3 units. Therefore, the stopping
condition is reached at 2 units. Thus for our initial flow,
we send 2 units along permutation O3, O2, O1, causing the
operators to have residual capacities 1, 1, and 3/4.

To augment this flow, we have a second stage, where we
solve the problem in which O3, O2 and O1 have rate limits
1, 1, and 3/4 respectively. Replace O3 and O2 with a mega-
operator O3,2 having selectivity 1/2 ∗ 1/4 = 1/8. Consider
sending flow along permutation O3,2, O1, dividing any flow
into mega-operator O3,2 so that 3/5 of it is sent along per-
mutation O3, O2, and 2/5 along permutation O2, O3; this
equalizes the load on O3 and O2. Under this division, t
units of flow sent into O3,2 decrease the capacity of O2 and
O3 each by 7/10 t. Since the rate limits of O2 and O3 are 1,
they therefore become saturated when 10/7 units are sent
along O3,2, O1. Any flow sent along O3,2, O1 is reduced
by a factor of 1/2 ∗ 1/4 = 1/8 before reaching O1, so O1



4.0.5 Example

O3(r3 = 3, p3 = 1
2 )

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O3,2

O3(rate limit = 3, prob =
1
2

Suppose we have 3 operators, O3, O2, O1 with rate limits
r3 = 3, r2 = 2, and r1 = 1, and selectivities p1 = p3 = 1/2
and p2 = 1/4. If we send flow along permutation O3, O2, O1,
then 1/2 of it will reach O2 and 1/8 will reach O1. The resid-
ual capacities of O3 and O2 become equal at 2 units of flow,
the residual capacities of O2 and O1 become equal at 8/3
units, and the minimum amount of flow needed to saturate
an operator is 3 units. Therefore, the stopping condition is
reached at 2 units. Thus for our initial flow, we send 2 units
along permutation O3, O2, O1, causing the operators to have
residual capacities 1, 1, and 3/4.

To augment this flow, we have a second stage, where we
solve the problem in which O3, O2 and O1 have rate lim-
its 1, 1, and 3/4 respectively. Replace O3 and O2 with a
mega-operator O3,2 having selectivity 1/2 ∗ 1/4 = 1/8. Con-
sider sending flow along permutation O3,2, O1, dividing any
flow into mega-operator O3,2 so that 3/5 of it is sent along
permutation O3, O2, and 2/5 along permutation O2, O3; this
equalizes the load on O3 and O2. Under this division, t units
of flow sent into O3,2 decrease the capacity of O2 and O3

each by 7/10 t. Since the rate limits of O2 and O3 are 1,
they therefore become saturated when 10/7 units are sent
along O3,2, O1. Any flow sent along O3,2, O1 is reduced by
a factor of 1/2 ∗ 1/4 = 1/8 before reaching O1, so O1 is sat-
urated when 6 units of flow are sent along O3,2, O1. Finally,
the residual capacities of the operators in O3,2, and opera-
tor O1 equalize at t units, where 1 − 7/10 t = 3/4 − 1/8t,
that is, t = 10/23. Thus the stopping condition is reached
at 10/23 units, when the residual capacities of the opera-
tors are equalized at 16/23. We therefore augment the ini-
tial flow with 10/23 units sent along permutation O2,3, O1;
translated, this means 6/23 units along O3, O2, O1, and 4/23
along O2, O3, O1.

In the third and final stage, we solve the max-throughput
problem for the case in which operators O3, O2, O1 have
equal rate limits of 16/23. According our closed-form expres-
sion, to equalize the load on the three operators, we should
divide flow so 2/7 of it is sent along permutation O3, O2, O1,
2/7 along permutation O2, O1, O3, and 3/7 along permuta-
tion O3, O2, O1. Under this division, 15/28 of the flow arrives
at each operator. Thus sending t = 448/345 units saturates
the operators, since 16/23 = 15/28t. We augment the flow
from the first two stages with 448/345 units of flow divided
as just described.

Together, the flows constructed in the above three stages
yield the following optimal solution to the Max-throughput
LP for the given input instance: f3,2,1 = 908/345, f2,3,1 =
4/23, f2,1,3 = 128/345, f1,3,2 = 64/115, and fπ = 0 for
all other permutations π. This flow saturates all operators,

although in general, this may not be the case. Since the
number of permutations used in routing the flow may be ex-
ponential in the number of operators, our algorithm actually
outputs a compact representation of the flow, rather than
giving the value of the non-zero f ′

πs.

14

No flow is assigned to any 
permutation in the beginning

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is:
f3,2,1 = 908

345 , f2,3,1 = 4
23 ,

f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the
π’s.
Step 2

O3(rate limit = 3, prob =
1
2

Suppose we have 3 operators, O3, O2, O1 with rate limits
r3 = 3, r2 = 2, and r1 = 1, and selectivities p1 = p3 = 1/2
and p2 = 1/4. If we send flow along permutation O3, O2, O1,
then 1/2 of it will reach O2 and 1/8 will reach O1. The resid-
ual capacities of O3 and O2 become equal at 2 units of flow,
the residual capacities of O2 and O1 become equal at 8/3
units, and the minimum amount of flow needed to saturate
an operator is 3 units. Therefore, the stopping condition is
reached at 2 units. Thus for our initial flow, we send 2 units
along permutation O3, O2, O1, causing the operators to have
residual capacities 1, 1, and 3/4.

To augment this flow, we have a second stage, where we
solve the problem in which O3, O2 and O1 have rate lim-
its 1, 1, and 3/4 respectively. Replace O3 and O2 with a
mega-operator O3,2 having selectivity 1/2 ∗ 1/4 = 1/8. Con-
sider sending flow along permutation O3,2, O1, dividing any
flow into mega-operator O3,2 so that 3/5 of it is sent along
permutation O3, O2, and 2/5 along permutation O2, O3; this
equalizes the load on O3 and O2. Under this division, t units
of flow sent into O3,2 decrease the capacity of O2 and O3

each by 7/10 t. Since the rate limits of O2 and O3 are 1,
they therefore become saturated when 10/7 units are sent
along O3,2, O1. Any flow sent along O3,2, O1 is reduced by
a factor of 1/2 ∗ 1/4 = 1/8 before reaching O1, so O1 is sat-
urated when 6 units of flow are sent along O3,2, O1. Finally,
the residual capacities of the operators in O3,2, and opera-
tor O1 equalize at t units, where 1 − 7/10 t = 3/4 − 1/8t,
that is, t = 10/23. Thus the stopping condition is reached
at 10/23 units, when the residual capacities of the opera-
tors are equalized at 16/23. We therefore augment the ini-
tial flow with 10/23 units sent along permutation O2,3, O1;
translated, this means 6/23 units along O3, O2, O1, and 4/23
along O2, O3, O1.

In the third and final stage, we solve the max-throughput
problem for the case in which operators O3, O2, O1 have
equal rate limits of 16/23. According our closed-form expres-
sion, to equalize the load on the three operators, we should
divide flow so 2/7 of it is sent along permutation O3, O2, O1,
2/7 along permutation O2, O1, O3, and 3/7 along permuta-
tion O3, O2, O1. Under this division, 15/28 of the flow arrives
at each operator. Thus sending t = 448/345 units saturates
the operators, since 16/23 = 15/28t. We augment the flow
from the first two stages with 448/345 units of flow divided
as just described.

Together, the flows constructed in the above three stages
yield the following optimal solution to the Max-throughput
LP for the given input instance: f3,2,1 = 908/345, f2,3,1 =
4/23, f2,1,3 = 128/345, f1,3,2 = 64/115, and fπ = 0 for
all other permutations π. This flow saturates all operators,
although in general, this may not be the case. Since the
number of permutations used in routing the flow may be ex-
ponential in the number of operators, our algorithm actually
outputs a compact representation of the flow, rather than
giving the value of the non-zero f ′

πs.

14

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is:
f3,2,1 = 908

345 , f2,3,1 = 4
23 ,

f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the
π’s.
Step 2

O3(rate limit = 3, prob =
1
2

Suppose we have 3 operators, O3, O2, O1 with rate limits
r3 = 3, r2 = 2, and r1 = 1, and selectivities p1 = p3 = 1/2
and p2 = 1/4. If we send flow along permutation O3, O2, O1,
then 1/2 of it will reach O2 and 1/8 will reach O1. The resid-
ual capacities of O3 and O2 become equal at 2 units of flow,
the residual capacities of O2 and O1 become equal at 8/3
units, and the minimum amount of flow needed to saturate
an operator is 3 units. Therefore, the stopping condition is
reached at 2 units. Thus for our initial flow, we send 2 units
along permutation O3, O2, O1, causing the operators to have
residual capacities 1, 1, and 3/4.

To augment this flow, we have a second stage, where we
solve the problem in which O3, O2 and O1 have rate lim-
its 1, 1, and 3/4 respectively. Replace O3 and O2 with a
mega-operator O3,2 having selectivity 1/2 ∗ 1/4 = 1/8. Con-
sider sending flow along permutation O3,2, O1, dividing any
flow into mega-operator O3,2 so that 3/5 of it is sent along
permutation O3, O2, and 2/5 along permutation O2, O3; this
equalizes the load on O3 and O2. Under this division, t units
of flow sent into O3,2 decrease the capacity of O2 and O3

each by 7/10 t. Since the rate limits of O2 and O3 are 1,
they therefore become saturated when 10/7 units are sent
along O3,2, O1. Any flow sent along O3,2, O1 is reduced by
a factor of 1/2 ∗ 1/4 = 1/8 before reaching O1, so O1 is sat-
urated when 6 units of flow are sent along O3,2, O1. Finally,
the residual capacities of the operators in O3,2, and opera-
tor O1 equalize at t units, where 1 − 7/10 t = 3/4 − 1/8t,
that is, t = 10/23. Thus the stopping condition is reached
at 10/23 units, when the residual capacities of the opera-
tors are equalized at 16/23. We therefore augment the ini-
tial flow with 10/23 units sent along permutation O2,3, O1;
translated, this means 6/23 units along O3, O2, O1, and 4/23
along O2, O3, O1.

In the third and final stage, we solve the max-throughput
problem for the case in which operators O3, O2, O1 have
equal rate limits of 16/23. According our closed-form expres-
sion, to equalize the load on the three operators, we should
divide flow so 2/7 of it is sent along permutation O3, O2, O1,
2/7 along permutation O2, O1, O3, and 3/7 along permuta-
tion O3, O2, O1. Under this division, 15/28 of the flow arrives
at each operator. Thus sending t = 448/345 units saturates
the operators, since 16/23 = 15/28t. We augment the flow
from the first two stages with 448/345 units of flow divided
as just described.

Together, the flows constructed in the above three stages
yield the following optimal solution to the Max-throughput
LP for the given input instance: f3,2,1 = 908/345, f2,3,1 =
4/23, f2,1,3 = 128/345, f1,3,2 = 64/115, and fπ = 0 for
all other permutations π. This flow saturates all operators,
although in general, this may not be the case. Since the
number of permutations used in routing the flow may be ex-
ponential in the number of operators, our algorithm actually
outputs a compact representation of the flow, rather than
giving the value of the non-zero f ′

πs.

14

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is:
f3,2,1 = 908

345 , f2,3,1 = 4
23 ,

f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the
π’s.
Step 2

O3(rate limit = 3, prob =
1
2

Suppose we have 3 operators, O3, O2, O1 with rate limits
r3 = 3, r2 = 2, and r1 = 1, and selectivities p1 = p3 = 1/2
and p2 = 1/4. If we send flow along permutation O3, O2, O1,
then 1/2 of it will reach O2 and 1/8 will reach O1. The resid-
ual capacities of O3 and O2 become equal at 2 units of flow,
the residual capacities of O2 and O1 become equal at 8/3
units, and the minimum amount of flow needed to saturate
an operator is 3 units. Therefore, the stopping condition is
reached at 2 units. Thus for our initial flow, we send 2 units
along permutation O3, O2, O1, causing the operators to have
residual capacities 1, 1, and 3/4.

To augment this flow, we have a second stage, where we
solve the problem in which O3, O2 and O1 have rate lim-
its 1, 1, and 3/4 respectively. Replace O3 and O2 with a
mega-operator O3,2 having selectivity 1/2 ∗ 1/4 = 1/8. Con-
sider sending flow along permutation O3,2, O1, dividing any
flow into mega-operator O3,2 so that 3/5 of it is sent along
permutation O3, O2, and 2/5 along permutation O2, O3; this
equalizes the load on O3 and O2. Under this division, t units
of flow sent into O3,2 decrease the capacity of O2 and O3

each by 7/10 t. Since the rate limits of O2 and O3 are 1,
they therefore become saturated when 10/7 units are sent
along O3,2, O1. Any flow sent along O3,2, O1 is reduced by
a factor of 1/2 ∗ 1/4 = 1/8 before reaching O1, so O1 is sat-
urated when 6 units of flow are sent along O3,2, O1. Finally,
the residual capacities of the operators in O3,2, and opera-
tor O1 equalize at t units, where 1 − 7/10 t = 3/4 − 1/8t,
that is, t = 10/23. Thus the stopping condition is reached
at 10/23 units, when the residual capacities of the opera-
tors are equalized at 16/23. We therefore augment the ini-
tial flow with 10/23 units sent along permutation O2,3, O1;
translated, this means 6/23 units along O3, O2, O1, and 4/23
along O2, O3, O1.

In the third and final stage, we solve the max-throughput
problem for the case in which operators O3, O2, O1 have
equal rate limits of 16/23. According our closed-form expres-
sion, to equalize the load on the three operators, we should
divide flow so 2/7 of it is sent along permutation O3, O2, O1,
2/7 along permutation O2, O1, O3, and 3/7 along permuta-
tion O3, O2, O1. Under this division, 15/28 of the flow arrives
at each operator. Thus sending t = 448/345 units saturates
the operators, since 16/23 = 15/28t. We augment the flow
from the first two stages with 448/345 units of flow divided
as just described.

Together, the flows constructed in the above three stages
yield the following optimal solution to the Max-throughput
LP for the given input instance: f3,2,1 = 908/345, f2,3,1 =
4/23, f2,1,3 = 128/345, f1,3,2 = 64/115, and fπ = 0 for
all other permutations π. This flow saturates all operators,
although in general, this may not be the case. Since the
number of permutations used in routing the flow may be ex-
ponential in the number of operators, our algorithm actually
outputs a compact representation of the flow, rather than
giving the value of the non-zero f ′

πs.

14

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is: f3,2,1 = 908
345 , f2,3,1 = 4

23 , f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the π’s.

Step 2

O3(rate limit = 3, prob =
1
2

14

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is: f3,2,1 = 908
345 , f2,3,1 = 4

23 , f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the π’s.

Step 2

O3(rate limit = 3, prob =
1
2

14

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is: f3,2,1 = 908
345 , f2,3,1 = 4

23 , f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the π’s.

Step 2

O3(rate limit = 3, prob =
1
2

14

4.0.5 Example

PLEASE IGNORE THIS PAGE - AMOL.

O3

r3 = 3, p3 = 1
2

c1 ≤ c2 ≤ . . . ≥ cn

O2

r2 = 2, p2 = 1
4

O1

r1 = 1, p1 = 1
2

O2(r2 = 2, p2 = 1
4 )

O1(r1 = 1, p1 = 1
2 )

O1(r1 = 1, p1 = 1
2 )

O3,2

Step 0

Step 1: Send 2 units of
flow along O3, O2, O1

Step 2: Send 6
23 units

along O3, O2, O1 and 4
23

units along O2, O3, O1.

Step 3: Send
128
345 along O3, O2, O1,
128
345 along O2, O1, O3,
192
345 = 64

115 along O1, O3, O2.

Optimal solution is: f3,2,1 = 908
345 , f2,3,1 = 4

23 , f2,1,3 = 128
345 , f1,3,2 = 64

115 ,
and fπ = 0 for rest of the π’s.

Step 2

O3(rate limit = 3, prob =
1
2

14

Figure 1: An example illustrating how the algorithm

works

is saturated when 6 units of flow are sent along O3,2, O1.
The residual capacities of the operators in O3,2, and opera-
tor O1 equalize at t units, where 1 − 7/10 t = 3/4 − 1/8t,
that is, t = 10/23. Thus the stopping condition is reached
at 10/23 units, when the residual capacities of the opera-
tors are equalized at 16/23. We therefore augment the ini-
tial flow with 10/23 units sent along permutation O2,3, O1;
translated, this means 6/23 units along O3, O2, O1, and 4/23
along O2, O3, O1.

In the third and final stage, we solve the max-throughput
problem in which operators O3, O2, O1 have equal rate limits
of 16/23. Using our closed-form expression (cf. Lemma 3.2)
to equalize the load on the three operators, we divide the
flow so 2/7 of it is sent along permutation O3, O2, O1, 2/7
along permutation O2, O1, O3, and 3/7 along permutation
O1, O3, O2. Under this division, 15/28 of the flow arrives at
each operator. Thus sending t = 448/345 units saturates
the operators, since 16/23 = 15/28t. We augment the flow
from the first two stages with 448/345 units of flow divided
as just described.

Together, the flows constructed in the above three stages
yield the following optimal solution to the max-throughput
LP for the given input instance: f3,2,1 = 908/345, f2,3,1 =
4/23, f2,1,3 = 128/345, f1,3,2 = 64/115, and fπ = 0 for
all other permutations π. This flow saturates all operators,
although in general, this may not be the case. Since the
number of permutations used in routing the flow may be ex-
ponential in the number of operators, our algorithm outputs
a compact representation of the flow, rather than giving the
values of the non-zero fπ .

3.1.3 Lemmas
We now present some technical lemmas, which will be

helpful in the next section.
For any feasible solution K to the max-throughput LP,

define the residual capacity of a selection operator Oi to be
ri−

P
π∈φ(n) fπg(π, i), the difference between the maximum

expected rate of tuples that can be processed by Oi, and the
expected rate of tuples arriving at Oi under K.

The following important lemma gives a sufficient condi-
tion for a feasible solution to be optimal.

Lemma 3.1. If feasible solution K to the max-throughput
LP has the property that for some non-empty subset Q ⊆
{1 . . . n}, (1) for each i ∈ Q, the rate constraint for selection
operator Oi is tight, i.e.

P
π∈φ(n) fπg(π, i) = ri, and (2) for

any flow variable fπ, fπ > 0 implies that in permutation π,
the elements of Q̄ = {1 . . . n}\Q precede the elements of Q,
then feasible solution K is also optimal and the value F of
the objective function achieved by K isP

i∈Q ri(1− pi)

(
Q

j 6∈Q pj)(1−
Q

i∈Q pi)
.

Proof. Consider the assignment to the fπ under solution
K. We have that

P
π∈φ(n) fπg(π, i) = ri, for i ∈ Q. Multi-

plying both sides of this equation by (1− pi) and summing
over all i ∈ Q we get thatX

i∈Q

X
π∈φ(n)

fπg(π, i)(1− pi) =
X
i∈Q

ri(1− pi). (1)

We now rewrite the left hand side of Equation 1. Exchang-
ing summation order and bringing out fπ shows it equalsP

π∈φ(n) fπ

P
i∈Q g(π, i)(1 − pi). Let φ′(n) denote the sub-

set of φ(n) consisting of all permutations in φ(n) in which
the elements of Q̄ = {1 . . . n}\Q precede the elements of Q.
By assumption, fπ = 0 for all π 6∈ φ′(n). Let π ∈ φ′(n).
Consider

P
i∈Q g(π, i)(1 − pi). For all i ∈ Q, g(π, i) equals

(Πj 6∈Qpj) times the product of all pm such that m ∈ Q and
π(m) < π(i). Thus

P
i∈Q g(π, i)(1− pi) =

(Πj 6∈Qpj)
P

i∈Q(Πm∈Q:π(m)<π(i) pm)(1 − pi). To simplify
this expression, we use the fact thatX

i∈Q

(Πm∈Q:π(m)<π(i) pm)(1− pi) = (1−Πi∈Qpi).

Hence X
i∈Q

g(π, i)(1− pi) = (
Y
j 6∈Q

pj)(1−
Y
i∈Q

pi)

and it follows 1 thatX
π∈φ(n)

fπ(
Y
j 6∈Q

pj)(1−
Y
i∈Q

pi) =
X
i∈Q

ri(1− pi).

Thus

F =
X

π∈φ(n)

fπ =

P
i∈Q ri(1− pi)

(
Q

j 6∈Q pj)(1−
Q

i∈Q pi)
.

1In fact, the correctness of the next equation can also be
shown as follows. For i ∈ Q, since the rate constraint for
i is tight, the expected number of tuples processed by Oi

per unit time is ri, and the expected number eliminated is
ri(1− pi). Thus the two sides of the equation both express
the total expected number of tuples per unit time eliminated
by operators Oi where i ∈ Q.



We now show that this value of F is as large as possi-
ble. Consider a modified version of the max-throughput LP
in which we eliminate all rate constraints for operators Oj

such that j 6∈ Q. Consider an optimal solution to this mod-
ified LP which assigns values f ′π to each of the variables fπ.
Let F ′ =

P
π∈φ(n) f ′π. Clearly F ′ is an upper bound on

the maximum value of the objective function for the origi-
nal max-throughput LP. Let φ′(n) be as defined above. Be-
cause operators Oj such that j 6∈ Q have no rate constraints,
and because each such operator may eliminate tuples, we
may assume without loss of generality that if f ′π > 0, then
π ∈ φ′(n). For i ∈ Q, if we multiply both sides of the rate
constraint for Oi by (1 − pi) and sum over all i ∈ Q, we
get that

P
π∈φ′(n) f ′πg(π, i)(1 − pi) ≤ ri(1 − pi). The same

argument as above shows that the left hand side of this
equation is equal to

P
π∈φ′(n) f ′π(

Q
j 6∈Q pj)(1−

Q
i∈Q pi). It

follows that F ′ ≤
P

i∈Q ri(1−pi)

(
Q

j 6∈Q pj)(1−
Q

i∈Q pi)
, and thus for the orig-

inal max-throughput LP, the value of the objective function
cannot exceed this value.

The following lemma gives the closed-form expression for
a routing that equalizes the load on n operators.

Lemma 3.2. Let ρ1 be the permutation 1, . . . , n and for
j ∈ [2 . . . n], let ρj be permutation j, j +1, . . . , n, 1, 2, . . . , j−
1, that is, the permutation obtained by performing j − 1 left
cyclic shifts on ρ1. Let t > 0. Let

fρj =
1− pj−1

n−
Pn

k=1 pk
t for all j ∈ [1 . . . n].

(where p0 = pn) and let fπ = 0 for all other π ∈ φ(n). ThenP
π∈φ(n) fπ = t and for all i ∈ [1 . . . n],X

π∈φ(n)

fπg(π, i) =
1−

Qn
k=1 pk

n−
Pn

k=1 pk
t. (2)

Proof. Clearly
P

π∈φ(n) fπ = t. Let i be in the range

[1 . . . n]. For the given assignment to the flow variables,P
π∈φ(n) fπg(π, i) =

Pn
j=1

(1−pj−1)

n−
Pn

k=1 pk
g(ρj , i)t. Recall that

by definition, g(ρj , i) = pj . . . pi−1 when j ≤ i and g(ρj , i) =
pj . . . pnp1 . . . pi−1 when j > i. Thus, by cancellation of
terms,

nX
j=1

(1− pj−1)

n−
Pn

k=1 pk
g(ρj , i)t =

1

n−
Pn

k=1 pk
t−

Qn
k=1 pk

n−
Pn

k=1 pk
t.

In our max-throughput algorithm, the selection operators
are partitioned into sets Em, . . . , E1, and we use a routing
that obeys two properties. First, it only sends tuples via per-
mutations in which the tuples travel first through the oper-
ators in Em, then through operators in Em−1, then through
the operators in Em−2, and so on. Second, for any set Ei

in the partition, the expected tuple arrival rate is the same
for all the operators in Ei. Our algorithm is based on the
following technical lemma (which follows from Lemma 3.2).

Lemma 3.3. Let Em, . . . , E1 be a partition of the set of
operators {On, . . . , O1} such that for i ∈ [1 . . . m], there exist
indices b(i) ≤ c(i) such that Ei = {Oc(i), Oc(i)−1, . . . , Ob(i)}.
Let β(i) be the set of |Ei| = c(i) − b(i) + 1 permutations
which are all cyclic shifts of the permutation c(i), . . . , b(i).

Let P be the set of
Qm

l=1 |El| permutations πm . . . π1 where
each πi ∈ β(i). Suppose we probabilistically route a total of
t tuples through the operators, dividing them among the per-
mutations in P , such that the expected rate of tuples routed
via permutation πm . . . π1 isQm

l=1(1− pz(πl))P
πm...π1∈P

Qm
l=1(1− pz(πl))

t

where z(πl) is the last element of the permutation πl. Then
for all i ∈ [1 . . . m], the expected rate of tuples arriving at
any operator in Ei is tξ(i) tuples per unit time, where

ξ(i) = pnpn−1 . . . pc(i)+1

1−
Qc(i)

j=b(i) pj

|Ei| −
Pc(i)

j=b(i) pj

. (3)

3.1.4 Algorithm description
We now present the routing algorithm. Without loss of

generality, assume that rn ≥ rn−1 ≥ . . . ≥ r1. We describe
the algorithm recursively, and rn ≥ rn−1 ≥ . . . ≥ r1 holds
in the recursive calls also.

We partition the operators into equivalence classes
Em, . . . , E1, where operators are in the same class if they
have the same rate limit. Denote the rate limits of the op-
erators in Em, . . . , E1 by Rm, . . . , R1 respectively. Assume
the Ei satisfy Rm > Rm−1 > . . . > R1.

We will use the following notation. Suppose that we send
tuples through the system at a rate of t tuples per unit time,
according to the method of Lemma 3.3. Then for every
Ei, tuples arrive at each operator in Ei at a rate of tξ(i)
tuples per unit time (where ξ(i) is as defined in Equation 3
of Lemma 3.3). Let R′

m = R′
m(t), . . . , R′

1 = R′
1(t) denote

the residual capacities of the operators in Em, Em−1, . . . , E1

respectively, and let r′n = r′n(t), . . . , r′1 = r′1(t) denote the
residual capacities of the individual operators On, . . . , O1.
Then at t = 0, R′

m > . . . > R′
1 and r′n ≥ . . . ≥ r′1. As t

increases, each R′
i (and r′j) decreases continuously.

Next, we set t̂ to be the smaller of (1) r1
ξ(1)

or (2) the

minimum of
Ri−Ri−1

ξ(i)−ξ(i−1)
, taken over all i ∈ [2 . . . m], where ξ

is as defined in Equation 3 of Lemma 3.3. The first quantity
is the smallest (positive) value of t at which the residual
capacity of O1 becomes 0, and the second quantity denotes
the value of t at which the values R′

i and R′
i−1 become equal.

Thus t̂ is the value of t that meets the stopping condition
described in Section 3.1.1. Let R̂m, . . . , R̂1 and r̂n, . . . , r̂1

denote the values of R′
m, . . . , R′

1 and r′n, . . . , r′1 respectively
when t = t̂.

We claim that R̂m ≥ . . . ≥ R̂1. Suppose not. Then
R̂i < R̂i−1 for some i. Since at t = 0, R′

i > R′
i−1, both

quantities decrease continuously as t increases, and R′
i <

R′
i−1 at t = t̂, there must be a value of t that is less than

t̂ for which R′
i = R′

i−1. But this contradicts our choice of

t̂. We have thus shown that R̂m ≥ . . . ≥ R̂1 and hence
r̂n ≥ . . . ≥ r̂1.

Let K be the assignment to the flow variables induced
by routing t̂ tuples per unit time according to Lemma 3.3.
To do our computation in polynomial time, we represent K
succinctly, as the pair consisting of the partition Em, . . . , E1

and the value t̂ (from which, using Lemma 3.3, we can de-
termine K).

If t̂ equals quantity (1), namely r1
ξ(1)

, then we output K.



Otherwise, it must be that (2) < (1), and we recursively run
the algorithm with selectivities pn, . . . , p1 and rate limits
r̂n, . . . , r̂1. Note that for any j, k, if rj = rk, then r̂j = r̂k.
Further, for at least one j, rj 6= rj+1, but r̂j = r̂j+1. Thus
the equivalence classes Ei in each recursive call are formed
by merging equivalence classes from the previous call, and
the total number of equivalence classes decreases in each
recursive call.

Let K′ be the solution returned by the recursive call. We
output K′′, the solution to the LP which is obtained by
setting each flow variable fπ to the sum of its value in K and
K′. We can represent K′′ succinctly as the concatenation
of the representations of K and K′.

This completes the description of the algorithm. The
number of equivalence classes decreases in each recursive
call, so the number of recursive calls is at most n − 1. The
time per recursive call is O(n). Therefore, the algorithm
runs in time O(n2).

It remains to prove that the algorithm outputs an optimal
solution to the max-throughput LP. In the final recursive
call, since R̂m ≥ . . . ≥ R̂1, there is a maximum i such that
R̂i = R̂i−1 = . . . = R̂1 = 0, and no other R̂j is equal to 0.
Let Oq, Oq−1, . . . , O1 be the operators in Ei, Ei−1, . . . , E1.
Let Q = {Oq, Oq−1, . . . , O1}. Then in the final solution to
the original max-throughput problem, constructed from all
the recursive calls, Q is the set of operators with residual
capacity 0. Also, since the partitions in each recursive call
are formed by merging sets of the partition in the previous
call, tuples are only routed along permutations in which the
elements in Q appear at the end (in some order). It follows
from Lemma 3.1 that the output solution is optimal.

The output of the algorithm is a list of some n′ pairs
(P1, t̂1), . . . , (Pn′ , t̂n′), where the Pi’s are the partitions of
operators and the ti’s are the t̂ values. To use this repre-
sentation in order to actually route tuples in a distributed

environment, first calculate the sum T =
Pn′

i=1 t̂i. Send
T tuples per unit time using the following procedure to
route each tuple. For each tuple, first randomly choose an
i ∈ [1 . . . n′], with probability proportional to t̂i. For the
chosen i, suppose Pi = Em, . . . , E1. For each j ∈ [1 . . . m],
randomly choose a permutation πj from the permutations in
β(j) (defined in Lemma 3.3), with probability proportional
to 1− pz(πj), where z(πj) is the last element of the ordering
πj . Then route the tuple via permutation πm . . . π1.

3.2 Algorithm to compute the value of the max
throughput

Given an instance of the max-throughput problem with
the rates r1, r2, . . . , rn in sorted order, the value of the max
throughput can be calculated in linear time, as follows. For
each q ∈ [1, . . . , n], let

Fq =

Pq
i=1 ri(1− pi)

(
Qn

j=q+1 pj)(1−
Qq

i=1 pi)
.

The algorithm simply calculates F1, F2, . . . Fn in turn, and
outputs the maximum of these values. Each value Fq+1 can
be calculated in constant time, given the numerator and
denominator of Fq.

The correctness of this algorithm follows directly from the
construction of an optimal routing given in Section 3.1.4 and
its proof of correctness. Specifically, let K be the optimal

routing of our construction. Then for some q ∈ [1, . . . , n],
the set Q = {1, . . . , q} witnesses the fact that K satisfies
the property given in the statement of Lemma 3.1. From
Lemma 3.1 it follows that value Fq is the value F of the
max throughput achieved by K.

4. THE GAME THEORETIC MULTIPLICA-
TIVE REGRET (GTMR) PROBLEM

We begin by giving a formal definition of this problem.
An instance of the GTMR problem is a list of positive real
costs c1, . . . , cn. Let h(π, i) = cπ(1)+cπ(2)+. . .+cπ(m) where
m = π−1(i). Let φ(n) denote the set of all permutations of
{1, . . . , n}. The GTMR problem is given by the minimax
formulation below. The fπ denote the probability of choos-
ing to route the tuple through the operators according to
the ordering specified by permutation π.

Game theoretic multiplicative regret:
Given c1, . . . , cn > 0, minimize

max
i∈[1...n]

X
π∈φ(n)

fπh(π, i)/ci

subject to the constraintsX
π∈φ(n)

fπ = 1

fπ ≥ 0 for all π ∈ φ(n)

For example, consider an instance of the GTMR problem
with c1 = c2 = c3. The intuitive strategy of choosing a ran-
dom routing (uniformly) is optimal. An alternative optimal
strategy is to choose the orderings 1,2,3; 2,3,1; and 3,1,2
with equal probability.

A contrasting example is when the costs are c1 = 2, c2 = 2,
and c3 = 8. If the adversary selects O1 or O2 to eliminate the
tuple, then routing the tuple to O3 first is bad – it results in
an expected multiplicative regret of at least 5 (= (8+2)/2).
In fact, it can be shown that the only optimal strategy for
the routing player is to choose one of the orderings 1,2,3
and 2,1,3, each with probability 1/2, yielding expected mul-
tiplicative regret of 3/2. Note that both these orderings
have 3 in the last position. Finally, suppose c1 = c2 = 2 and
c3 = 7. In this case, one optimal strategy is to choose from
the permutations 1,2,3; 1,3,2; and 2,1,3, with probabilities
23/57, 2/57, and 32/57, respectively.

4.1 Algorithm to calculate an optimal routing
for the GTMR problem

We relate the max-throughput problem and the GTMR
problem by studying an (artificial) problem that we call the
cumulative cost limit problem. The solution to this problem
has many similarities to the solution to the max-throughput
problem.

In the cumulative cost limit problem, we again have n op-
erators O1, O2, . . . , On with costs, and we need to decide how
many tuples per unit time to route along each permutation.
However, in this problem there is also a cost limit di associ-
ated with each operator Oi. Tuples cannot be eliminated by



operators, and the processing of each tuple is deterministic.
Costs are cumulative, so that when a tuple arrives at an op-
erator Oi, the amount that must be paid for Oi to process it
is ci plus the sum of all costs cj associated with operators Oj

that have already processed that tuple. Operators have no
limit on the number of tuples they can process per unit time.
Instead, they are limited by their cumulative cost limit di,
which is an upper bound on the total amount that can be
paid for using that operator per unit time. The problem is
to route the tuples so as to maximize the rate of tuples that
can be processed, subject to the cumulative cost limits.

Formally, the cumulative cost limit problem is given by the
linear program below, where φ(n) denotes the set of permu-
tations of {1, . . . , n} as before, and h(π, i) =

Pm
j=1 cπ(j),

where m = π−1(i).

Cumulative cost limit LP: Given c1, . . . , cn > 0 and
d1, . . . , dn > 0, maximize

F =
X

π∈φ(n)

fπ

subject to the constraintsX
π∈φ(n)

fπh(π, i) ≤ di for all i ∈ [1 . . . n]

fπ ≥ 0 for π ∈ φ(n)

The following lemma is analogous to Lemma 3.1.

Lemma 4.1. If a feasible solution to the cumulative cost
limit LP has the property that for some non-empty subset
Q ⊆ {1, . . . , n}, (1) for each i ∈ Q, the cumulative cost limit
constraint for operator Oi is tight and (2) for any flow vari-
able fπ, fπ > 0 implies that in permutation π, the elements
of Q precede the elements of Q̄, then the feasible solution
is optimal and the value of the objective function under the
feasible solution is P

i∈Q cidi

(
P

i∈Q c2
i ) + (

P
i,j∈Q,i<j cicj)

(4)

Proof. Consider a feasible solution satisfying the condi-
tions of the lemma. It specifies the rate at which tuples
should be sent along each permutation. Let CQ =

P
j∈Q cj .

For each i ∈ Q, the cumulative cost limit constraint for Oi

is tight, i.e.
P

π∈φ(n) fπh(π, i) = di. Multiplying both sides
of this constraint by ci

CQ
and summing over all i ∈ Q, we get

that X
i∈Q

X
π∈φ(n)

fπh(π, i)
ci

CQ
=

X
i∈Q

dici

CQ
. (5)

Exchanging the order of the summations on the left hand
side of the equation shows it is equal toX

π∈φ(n)

fπ

X
i∈Q

h(π, i)
ci

CQ
. (6)

Let φ′(n) denote the permutations of φ(n) in which the el-
ements of Q precede the elements of Q̄. By assumption, fπ =
0 for all π 6∈ φ′(n). Let π ∈ φ′(n). Consider

P
i∈Q h(π, i) ci

CQ
.

The quantity h(π, i) is equal to ci plus the sum of the cj

such that j precedes i in π. For any j, k ∈ Q such that
j 6= k, either j precedes k in π and cj is an element of
the sum h(π, k), or k precedes j in π, and ck is an ele-
ment of the sum h(π, j). It follows that

P
i∈Q h(π, i) ci

CQ
=

UQ/CQ, where UQ = (
P

i∈Q c2
i ) + (

P
i,j∈Q,i<j cicj). HenceP

π∈φ(n) fπUQ/CQ =
P

i∈Q
dici
CQ

. It immediately follows

that F =
P

π∈φ(n) fπ =
P

i∈Q dici

UQ
.

We now show that the value of F cannot be larger than
this value, for any feasible solution to the cumulative cost
limit LP. Consider a modified version of the cumulative cost
limit LP in which we eliminate all cost limit constraints for
selection operators Oj such that j 6∈ Q. Consider an optimal
solution to this modified problem which assigns values f ′π to
each of the variables fπ. Let F ′ =

P
π∈φ(n) f ′π be the value

of the objective function. Clearly F ′ is an upper bound
on the maximum possible value of the objective function for
the original cumulative cost limit LP. Let φ′(n) be as defined
above. Because selection operators Oj such that j 6∈ Q have
no cost limit constraints, and because each operator can only
increase the cumulative amount of cost that will be passed
on to subsequent operators, we may assume without loss of
generality that if f ′π > 0, then π ∈ φ′(n). If we take the cost
limit constraints for Oi where i ∈ Q, multiply both sides
of each by ci

CQ
, and add the resulting inequalities, we get

that
P

i∈Q

P
π∈φ(n) f ′πh(π, i) ci

CQ
≤

P
i∈Q

dici
CQ

. The same

argument as above shows that F ′ ≤
P

i∈q dici

UQ
.

We now show how to route t tuples per unit time so as to
ensure that each operator has the same cumulative cost per
unit time.

Lemma 4.2. Let ρ1 be the permutation 1, . . . , n and for
j ∈ [2 . . . n], let ρj be permutation j, j +1, . . . , n, 1, 2, . . . , j−
1, that is, the permutation obtained by performing j − 1 left
cyclic shifts on ρ1. Let t > 0. Suppose we send a total of t
tuples per unit time through the operators, using the routing
which sets fρi to t ciPn

j=1 cj
for all i ∈ [1 . . . n], and sets fπ = 0

for all other π ∈ φ(n). Then the amount that must be paid

for every operator per unit time is
(

Pn
j=1 c2j)+(

P
1≤i<j≤n cicj)Pn

j=1 cj
t.

Proof. Let i ∈ [1 . . . n]. The quantity
P

π∈φ(n) fπh(π, i)
is equal to
t

Pn
j=1

cjPn
k=1 ck

h(ρj , i), where h(ρj , i) is equal to ci plus the

sum of the ck such that k precedes i in ρj . Expanding the
term h(ρj , i) and multiplying out, each permutation ρj con-
tributes to the expression the term (c2

j/
Pn

j=1 cj)t and terms
(cjck/

Pn
j=1 cj)t for all k such that k precedes i in ρj . Con-

sider any j, k ∈ [1 . . . n] such that j < k and j, k 6= i. If
j < i < k, then j precedes i in ρk but k does not pre-
cede i in ρj . If, on the other hand, i < j or i > k,
then k precedes i in ρj , but j does not precede i in ρk.
It follows that the sum of the terms of the expression is

t
(

Pn
j=1 c2j)+(

P
1≤i<j≤n cicj)Pn

j=1 cj
.

As in the max-throughput problem, we use this lemma
to prove a technical lemma that gives a method of routing
tuples so that, given a partition Em, . . . , E1, we only send
tuples along permutations in which operators in Em are first,



Em−1 are next, and so on, and such that the cumulative cost
per unit time for an operator to process the tuples within
any given set in the partition is the same for all operators.

With the technical lemma, we have the same building
blocks that we had for the max-throughput algorithm, and
we can essentially run the same algorithm to solve the cu-
mulative cost limit problem (with the routing method for
keeping costs equal, a different calculation for computing t̂,
and with the operators ordered in increasing cost limit or-
der, rather than in decreasing rate limit order). Lemma 4.1
proves that the solution computed by the algorithm is opti-
mal.

In standard routing problems with limits on the capacity
of edges (or nodes), congestion minimization and through-
put maximization are closely related. Congestion is the
maximum, over all edges, of the relative load of an edge,
the amount of flow through the edge divided by the ca-
pacity of the edge. If there is a routing of k flow units
that achieves 5% congestion, then scaling the 5% conges-
tion routing by a factor of 20 yields throughput of 20k (with
100% congestion). Comparison of the GTMR LP to the cost
limit LP reveals that the GTMR problem is the congestion
minimization problem corresponding to the cumulative cost
limit (max-throughput) problem, and flow achieving minim-
imum (cost) congestion can be scaled to achieve maximum
throughput. In the next lemma, we formally reduce the
GTMR problem to the cumulative cost limit problem. In
what follows, for any assignment A of values to the flow
variables fπ, π ∈ φ(n), let fπ(A) denote the value assigned
to fπ by A.

Lemma 4.3. Let Imult be an instance of the GTMR prob-
lem with costs c1, . . . , cn > 0. Let Icost be the instance of the
cumulative cost limit problem with costs c1, c2, . . . , cn and
cumulative cost limits d1 = c1, d2 = c2, . . . , dn = cn. Let
K be the optimal solution to Icost, and let F be the value
of the objective function achieved by K. Let L be the as-
signment to flow variables fπ such that for each π ∈ φ(n),
fπ(L) = fπ(K)/F . Then L is an optimal solution for Imult.

Proof. Since K is an optimal solution to Icost, F is the
maximum value of the objective function for Icost. We show
that L is an optimal solution for Imult.

Since
P

π∈φ(n) fπ(K) = F ,
P

π∈φ(n) fπ(K)/F = 1. Hence
L satisfies the constraints of the GTMR problem. Since K
maximizes the value of the objective function for the in-
stance Icost of the cumulative cost limit problem, there must
be at least one i such that

P
π∈φ(n) fπ(K)h(π, i) = ci and

hence
P

π∈φ(n)(fπ(K)/F )h(π, i)/ci = 1
F

. Also, for every i,P
π∈φ(n)(fπ(K)/F )h(π, i)/ci ≤ 1

F
.

Let H be the value of the objective function achieved
by L for problem Imult. That is, H is the maximum ofP

π∈φ(n)(fπ(K)/F )h(π, i)/ci over all i. Thus H = 1
F

.
Suppose L is not an optimal solution to the instance Imult

of the GTMR problem. Then there exists some other solu-
tion L̃ that is optimal. Let H̃ be the value of the objective
function achieved by L̃. Thus H̃ < H.

Let K̃ be the assignment to the flow variables such that
fπ(K̃) = Ffπ(L̃) for all π ∈ φ(n). The value of the objec-
tive function for Icost achieved by K̃ is

P
π∈φ(n) fπ(K̃) =P

π∈φ(n) Ffπ(L̃) = F because
P

π∈φ(n) fπ(L̃) = 1.

Since H̃ < H, under solution L̃, for all i,X
π∈φ(n)

fπ(L̃)h(π, i)/ci ≤ H̃ < H =
1

F
,

and thus
P

π∈φ(n) Ffπ(L̃)h(π, i) < ci.

Therefore,
P

π∈φ(n) fπ(K̃)h(π, i) < ci. That is, K̃ is a
feasible solution to Icost such that none of the constraints
are tight. It follows that there is a feasible solution M̃ to
Icost such that the value of the objective function under M̃ is
greater than F . But this contradicts that F is the maximum
possible value of the objective function for Icost.

The above reduction, together with the algorithm for the
cumulative cost limit problem, yield an O(n2) algorithm for
solving the GTMR problem.

4.2 Comparison of naive vs. optimal strate-
gies for the GTMR problem

Consider the GTMR problem, with costs 0 < c1 ≤ . . . ≤
cn. Let Naive be the deterministic strategy for the rout-
ing player that orders the operators in increasing order of
their costs. Let Opt be the optimal strategy for the routing
player that we obtain in Lemma 4.3. Let vGTMR(Naive) be
the expected multiplicative regret when the routing player
uses strategy Naive and the adversary uses the best (pos-
sibly randomized) strategy against Naive. Similarly, let
vGTMR(Opt) be the expected multiplicative regret when the
routing player uses Opt and the adversary uses the best (pos-
sibly randomized) strategy against Opt. Note that

vGTMR(Naive) = max
k

Pk
i=1 ci

ck
.

This is because
Pk

i=1 ci

ck
is the multiplicative regret when

the routing player uses Naive and the adversary chooses
operator k to discard the tuple; thus the best strategy of
the adversary against Naive maximizes this value.

Also, it is the case that

vGTMR(Opt) = max
k

Pk
i=1 c2

i +
P

1≤i<j≤k cicjPk
i=1 c2

i

. (7)

Briefly, this follows from two inequalities. To obtain the
first, consider the strategy of the adversary that chooses Oi

(to be the operator which discards the tuple) with prob-

ability
c2iPk

i=1 c2i
if i ∈ [1 . . . k] and with probability 0 oth-

erwise. It can be shown that for any permutation π, if
the routing player routes the tuple (deterministically) ac-
cording to π, the expected multiplicative regret is at leastPk

i=1 c2i +
P

1≤i<j≤k cicjPk
i=1 c2i

against this strategy of the adversary.

Hence,

max
k

Pk
i=1 c2

i +
P

1≤i<j≤k cicjPk
i=1 c2

i

≤ vGTMR(Opt).

Second, Lemmas 4.1 and 4.3, together with the algorithm of
Lemma 4.2, imply that for some k,

vGTMR(Opt) =

Pk
i=1 c2

i

(
Pk

i=1 c2
i ) + (

P
1≤i<j≤k cicj)

.



Hence vGTMR(Opt) ≤ maxk

Pk
i=1 c2i

(
Pk

i=1 c2i )+(
P

1≤i<j≤k cicj)
. Com-

bining both inequalities yields (7).

Lemma 4.4.

vGTMR(Naive)

vGTMR(Opt)
≤ 2.

Proof. Let m = arg maxk

Pk
i=1 ci

ck
, that is, m is the value

of k that maximizes the multiplicative regret under the Naive

strategy. Thus vGTMR(Naive) =
Pm

i=1 ci

cm
. Note that

vGTMR(Opt) = max
k

Pk
i=1 c2

i +
P

1≤i<j≤k cicjPk
i=1 c2

i

≥
Pm

i=1 c2
i +

P
1≤i<j≤m cicjPm

i=1 c2
i

=
(
Pm

i=1 ci)
2 +

Pm
i=1 c2

i

2
Pm

i=1 c2
i

.

Therefore,

vGTMR(Naive)

vGTMR(Opt)
≤

„ Pm
i=1 ci

cm

« „
2

Pm
i=1 c2

i

(
Pm

i=1 ci)2 +
Pm

i=1 c2
i

«
≤

„ Pm
i=1 ci

cm

« „
2cm

Pm
i=1 ci

(
Pm

i=1 ci)2

«
= 2.

Acknowledgments We thank Joseph M. Hellerstein for
illuminating discussions and for initiating this work. We
thank Boris Aronov, Richard Van Slyke, and Shiyan Hu for
their insights and for a conjecture that led to a linear-time
algorithm for the dual of the GTMR problem. We thank
Kamesh Munagala for useful background information and
Rachel Pottinger for valuable feedback on an earlier draft.

5. REFERENCES
[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously

adaptive query processing. In Proceedings of the 2000
ACM SIGMOD International Conference on
Management of Data, pages 261–272. ACM Press,
2000.

[2] B. Awerbuch and F. T. Leighton. A simple
local-control approximation algorithm for
multicommodity flow. In Proceedings of the 34th IEEE
Symposium on Foundations of Computer Science,
pages 459–468. IEEE Computer Society, 1993.

[3] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream
filters. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data,
pages 407–418. ACM Press, 2004.

[4] A. Bar-Noy, M. Bellare, M.M. Halldórsson,
H. Shachnai, and T. Tamir. On chromatic sums and
distributed resource allocation. Inform. and Comput.,
140(2):183–202, 1998.

[5] S. Chaudhuri, U. Dayal, and T. W. Yan. Join queries
with external text sources: Execution and
optimization techniques. In Proceedings of the 1995
ACM SIGMOD International Conference on
Management of Data, pages 410–422. ACM Press,
1995.

[6] E. Coffman and I. Mitrani. A characterization of
waiting time performance realizable by single server
queues. Operations Research, 20:810–821, 1980.

[7] E. Cohen, A. Fiat, and H. Kaplan. Efficient sequences
of trials. In Proceedings of the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
737–746. ACM Press, 2003.

[8] A. Deshpande, C. Guestrin, S. Madden, and W. Hong.
Exploiting correlated attributes in acquisitional query
processing. In Proceedings of the 21st International
Conference on Data Engineering (ICDE), pages
143–154. IEEE Computer Society, 2005.

[9] O. Etzioni, S. Hanks, T. Jiang, R. M. Karp,
O. Madani, and O. Waarts. Efficient information
gathering on the internet. In Proceedings of the 37th
IEEE Symposium on Foundations of Computer
Science, pages 234–243. IEEE Computer Society, 1996.

[10] U. Feige, L. Lovász, and P. Tetali. Approximating
min-sum set cover. Algorithmica, 40(4):219–234, 2004.

[11] L. Fleischer and K. Wayne. Fast and simple
approximation schemes for generalized flow.
Mathematical Programming, 91(2):215–238, 2002.

[12] M. Garey. Optimal task scheduling with precedence
constraints. Discrete Mathematics, 4:37–56, 1973.

[13] E. Gelenbe and I. Mitrani. Analysis and synthesis of
computer systems. Academic Press, 1980.

[14] R. Goldman and J. Widom. Wsq/dsq: A practical
approach for combined querying of databases and the
web. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data,
pages 285–296. ACM, 2000.

[15] H. Kaplan, E. Kushilevitz, and Y. Mansour. Learning
with attribute costs. In The Thirty-Seventh Annual
ACM Symposium on Theory of Computing (STOC),
pages 356–365. ACM Press, 2005.

[16] S. Karlin. Mathematical Methods and Theory in
Games, Programming, and Economics. Dover, 2003.

[17] M.S. Kodialam. The throughput of sequential testing.
In Integer Programming and Combinatorial
Optimization (IPCO) LNCS 2081, pages 280–292.
Springer-Verlag Berlin Heidelberg, 2001.

[18] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo.
Optimization of nonrecursive queries. In Wesley W.
Chu, Georges Gardarin, Setsuo Ohsuga, and Yahiko
Kambayashi, editors, VLDB’86 Twelfth International
Conference on Very Large Data Bases, August 25-28,
1986, Kyoto, Japan, Proceedings, pages 128–137.
Morgan Kaufmann, 1986.

[19] K. Munagala, S. Babu, R. Motwani, and J. Widom.
The pipelined set cover problem. In Tenth Intl. Conf.
on Database Theory, pages 83–98, 2005.

[20] M.A. Shayman and E. Fernandez-Gaucherand.
Risk-sensitive decision-theoretic diagnosis. IEEE
Transactions on Automatic Control, 46:1166–1171,
2001.

[21] H. Simon and J. Kadane. Optimal problem-solving
search: All-or-none solutions. Artificial Intelligence,
6:235–247, 1975.


