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Abstract

Pipelined filter ordering is a central problem in database query optimization. The problem is
to determine the optimal order in which to apply a given set of commutative filters (predicates) to
a set of elements (the tuples of a relation), so as to find, as efficiently as possible, the tuples that
satisfy all of the filters. Optimization of pipelined filter ordering has recently received renewed
attention in the context of environments such as the web, continuous high-speed data streams,
and sensor networks. Pipelined filter ordering problems are also studied in areas such as fault
detection and machine learning under names such as learning with attribute costs, minimum-
sum set cover, and satisficing search. We present algorithms for two natural extensions of the
classical pipelined filter ordering problem: (1) a distributional type problem where the filters run
in parallel and the goal is to maximize throughput, and (2) an adversarial type problem where the
goal is to minimize the expected value of multiplicative regret. We present two related algorithms
for solving (1), both running in time O(n2), which improve on the O(n3 log n) algorithm of
Kodialam. We use techniques from our algorithms for (1) to obtain an algorithm for (2).

1 Introduction

Pipelined filter ordering is a central problem in database query optimization. The problem is to
determine the optimal order in which to apply a given set of commutative filters (predicates) to
a set of elements (the tuples of a relation), so as to find, as efficiently as possible, the tuples that
satisfy all of the filters. Optimization of conjunctive selection queries reduces to pipelined filter
ordering, as does optimization of certain commonly occuring join queries (specifically, those posed
against a so-called star schema [23, 28]). Pipelined filter ordering problems are also studied in other
domains such as fault detection and machine learning (see e.g. Shayman et al. [25] and Kaplan et
al. [19]) under names such as learning with attribute costs [19], minimum-sum set cover [12], and
satisficing search [26]. Since our interest in filter ordering was motivated by the problem of ordering
database selection queries, we discuss our work in this context, although it can be interpreted more
generally.

Recently, the problem of pipelined filter ordering has received renewed attention in the context
of environments such as the web [6, 11, 16], continuous high-speed data streams [1, 3], and sensor
networks [10]; query optimization in these environments presents significantly different challenges
than those posed in traditional database systems. In this paper, we present efficient algorithms
for two pipelined filter ordering problems. The first problem was studied previously in a different
context by Kodialam [20]. We present two algorithms for solving this problem, both achieving
better running time than Kodialam’s. One algorithm outputs a sparse solution; the other algoithm
does not, but we present it because it leads naturally to our methods for minimizing multiplicative
regret. We use techniques from these two algorithms to obtain an algorithm for the second pipelined
filter ordering problem. Some of the results in this paper appeared in an earlier conference version
[9].

Pipelined filter ordering problems can be partitioned into two types. In the “distributional”
type, assumptions are made about the probability that tuples will satisfy a given filter, and op-
timization is with respect to expected behavior. Probabilities may be learned from the statistics
maintained on the tuples, or on-the-fly while tuples are being processed [1, 3]. In the “adversarial”
type, the goal is to optimize with respect to worst-case assumptions, such as when an adversary
controls which tuples satisfy which filters.

The classical pipelined filter ordering problem [18, 21] is a distributional type of problem. A
cost and probability are given for each filter – the cost of applying the filter to a tuple, and the
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probability that the tuple satisfies the filter and is not eliminated. The event that a tuple satisfies
a filter is independent of whether the tuple satisfies other filters. The problem is to find the
ordering (“pipeline”) of filters that yields minimum expected cost for processing a tuple. A simple
polynomial-time solution is to order the filters in non-decreasing order of the ratio ci/(1−pi), where
pi is the probability associated with filter i and ci is the cost of applying filter i (cf. Garey [14],
Ibaraki and Kameda [18], Krishnamurthy et al. [21], and Simon and Kadane [26]).

Other pipelined filter ordering problems, both distributional and adversarial, have been studied
recently. We discuss this work in more detail in Section 2.

The first piplined filter ordering problem we consider is a distributional type problem in a
parallel or distributed environment. The second is an adversarial type problem in a centralized
environment.

• Problem 1: Distributional type, parallel environment: Our interest in this problem is mo-
tivated by two increasingly prevalent scenarios: (1) massively parallel database systems and (2)
web-based structured information sources such as IMDB and Amazon. In both, selection queries
(i.e. conjunctions of predicates, or filters) may be processed in parallel as follows. For each pred-
icate of the query, there is a distinct operator (processor) dedicated to evaluating that predicate.
Each tuple in the input relation is routed from operator to operator, until it is found to satisfy all
predicates of the query and is output, or until it is found not to satisfy a predicate, in which case
it is discarded. Each tuple can be routed individually, so that different tuples can have different
routes. At any moment, each operator can evaluate its predicate on at most one tuple, and each
tuple can be evaluated by at most one processor; but the n different operators can work in parallel
on n different tuples. The problem, then, is to determine how best to route each tuple.

In solving this problem, we assume that the selectivity of each operator Oi, i.e. the probability
pi that a tuple satisfies Oi’s predicate, is known, and that the selectivities lie strictly between 0
and 1 (that is, cannot be 0 or 1). The assumption that selectivities are not equal to 0 or 1 is
justified, given our motivation, because if the outcome of applying a predicate to a tuple is known
definitively in advance, there is no need to evaluate the predicate on the tuple. (Our solutions
can easily be generalized to handle selectivities that are 0 and 1, but the exposition is significantly
simplified by removing these cases.) We also assume that each operator Oi has a known rate limit
ri on the expected number of tuples it can process per unit time. This formulation is equivalent to
one in which ri is defined to be the maximum, rather than the expected, number of tuples that Oi

can process in unit time, and excess tuples are queued; see the discussion of Kodialam’s results in
Section 2.

We assume that the event that a tuple satisfies a predicate is independent of whether the tuple
satisfies any of the other predicates, and of the events that other tuples satisfy any predicates. Our
goal is to route tuples so as to maximize the throughput of tuple handling, subject to the constraint
that the expected number of tuples processed by each operator Oi per unit time does not exceed
ri. We call this the max-throughput problem.

Kodialam [20] gave algorithms that, given an instance of the max-throughput problem (i.e.
the selectivities and rate limits of each of the n operators), find (a) the value of the maximum
throughput, and (b) an optimal routing scheme. His algorithms run in time O(n2) and O(n3 log n)
respectively; they exploit the polymatroid structure of a certain space associated with the problem
instance, and build on a constructive proof of the Caratheodory representation theorem. We
present an algorithm for (a) that runs in linear time if the rate limits {ri} are given in sorted
order and two algorithms for (b) that run in O(n2) time. Kodialam’s algorithm for (b) outputs
a sparse routing scheme, that is, a scheme which routes tuples along at most n distinct orderings
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of the operators. A sparse solution is desirable as it would would be easier to integrate it into a
database query processor, and would result in lower per-tuple overhead in practice. The first of
our algorithms for (b) outputs a sparse scheme, but the second does not. A straightforward version
of the second algorithm routes tuples along a potentially exponential number of orderings; we also
present a modification of the algorithm that reduces the number of orderings to be less than n2,
but still do not obtain a sparse solution, in general. Our main motivation for presenting the second
algorithm is that it is based on a somewhat different technique than the first algorithm, which is
useful in solving the adversarial type filter ordering problem addressed in the second part of this
paper. Interestingly, there are special cases of the max throughput algorithm in which the second
algorithm does output a sparse solution, but that solution is very different from the solution output
by the first algorithm.

Our algorithms are conceptually simpler than Kodialam’s; we use flow-based algorithms for (b)
and our analysis of the algorithms provides the basis for our linear-time algorithm for (a).1

A naive strategy for routing the tuples would be to send them all along the route in which
operators are ordered in decreasing order of their rate limits. A simple argument shows that this
strategy maximizes throughput under the restriction that a common single ordering must be used
to route all tuples [27]. We show that allowing individual tuples to be routed via different orderings
can improve on the throughput achievable using the optimal single ordering, but the improvement
is at most a factor of n, and this factor is tight.

• Problem 2: Adversarial type, single tuple: Our second result pertains to a new, adversarial
type of problem. We focus on the problem of routing a single tuple through the operators, where
a cost ci is associated with each operator Oi. If a tuple is processed by operators Oi1 , Oi2 , . . . , Oik

before being eliminated by Oik , then the total cost of processing the tuple is ci1 + . . .+ cik . Had the
tuple been routed to Oik first, it would have incurred a cost of only cik . The multiplicative regret

is
ci1

+...+cik

cik

, the ratio of the actual cost incurred in processing the tuple, to the minimum possible

cost that could be incurred under an optimal routing of that tuple.
The problem is to choose a (randomized) routing of the tuple so as to minimize the expected

multiplicative regret, under the following assumptions. We assume that the set of filters which
will eliminate the tuple is determined (in secret) by an adversary before a routing is chosen for
the tuple. The goal of the adversary is to maximize the expected multiplicative regret induced by
the tuple routing. The adversary (who may make random choices) will know the strategy used in
determining the randomized routing of the tuple, and can choose the set of filters accordingly. We
thus have a classical zero-sum game between two players – the routing player and the adversary –
and the problem is to determine the optimal strategy of the routing player. We call this the game
theoretic multiplicative regret (GTMR) problem. Our algorithm for the GTMR problem is based
on the same flow techniques that we use for the max-throughput problem and runs in time O(n2).
There is an algorithm that finds the value of the optimal solution to the GTMR problem in linear
time, given the costs of the operators in sorted order. The proof and the algorithm are analogous
to those presented for the max-throughput problem.

In what follows, we actually use an equivalent formulation of the GTMR problem, in which we
restrict the adversary to choose exactly one filter to eliminate the tuple. The equivalence follows

1The conference version of this paper [9] had substantive errors in its presentation of the algorithm for (a), which
we correct here. Also, the first algorithm for (b), achieving a sparse solution, did not appear in the conference version.
The second algorithm for (b) did appear in the conference version, but this paper reduces the number of orderings
along which tuples are routed from exponential to less than n2.
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from that fact that the restriction does not disadvantage the adversary. It is easy to show that
it is not in the interest of the adversary to cause the tuple to satisfy all filters (because then the
multiplicative regret is 1, which is the minimum possible), nor to choose more than one filter to
eliminate a tuple (because if S is the set of filters that eliminate the tuple, removing all but the
lowest cost filter in S can only increase multiplicative regret).

From a practical point of view, assumption of such a powerful adversary is not well motivated,
since real-world data tends not to have worst-case properties. However, from a theoretical perspec-
tive, our analysis provides insight into worst-case behavior of pipelined filter ordering with costs.
We note that the assumption of such an adversary is standard in on-line optimization problems, in
which the goal is to minimize the competitive ratio (which is a type of multiplicative regret). The
GTMR problem is not a proper on-line problem, however, since it takes only a single input, rather
than a sequence of inputs.

A naive strategy for minimizing multiplicative regret routes the tuples through the operators in
increasing order of their costs. As noted by Kaplan et al. [19], this strategy incurs a multiplicative
regret of at most n. How much worse is this strategy than the optimal strategy returned by our
GTMR algorithm? If all costs are equal, then the adversary will cause the optimal strategy to have
(expected) multiplicative regret (n+1)/2, and the naive strategy to have multiplicative regret of n.
We show that, for any set of costs, the naive strategy achieves multiplicative regret that is within
a factor 2 of the expected multiplicative regret achieved by the optimal strategy. We also show
that variants of the GTMR problem, in which the goal is to minimize additive regret or total cost,
rather than multiplicative regret, have simple linear-time algorithms, assuming sorted input.

Following a discussion of related work in Section 2, we present our results on solving the max-
throughput problem in Section 3. We present our first algorithm for the max-throughput problem,
and its analysis, in Section 3.1. In Section 3.2 we present our linear-time algorithm for computing
the optimal value of the maximum throughput. We present our second algorithm in Section 3.3, and
its analysis in Section 3.4. In Section 3.5 we describe how to reduce the number of permutations
used by the second algorithm to O(n2), and in Section 3.6 we compare the output of the two
algorithms in the special case of equal rate limits. In Section 3.7 we show that the naive strategy
for the max-throughput problem achieves a solution that is within a factor of n of optimal. We
present our results on the game theoretic multiplicative regret problem and its variants in Section
4. In Section 4.1 we present the description of the algorithm for the GTMR problem, in Section 4.2
we analyze the performance of the naive strategy for solving the GTMR problem, and in Section
4.3 we give algorithms for solving versions of the game theory problem with other types of regret.

2 Related work

As discussed above, Kodialam [20] previously gave an algorithm for the max-throughput problem,
but with higher running time than the algorithms given in this paper. He first introduces a problem
variant that takes queueing delays into account. Note that our formulation of the max-throughput
problem implicitly assumes that an operator Oi can sometimes process tuples at a rate that exceeds
its limit ri, since a solution only guarantees that the expected rate of tuples arriving at Oi will
not exceed ri. Kodialam’s queueing-theory formulation imposes a limit on maximum, rather than
expected, rates, with excess tuples at operators buffered in queues. Following early work of Coffman
and Mitrani [7] and Gelenbe and Mitrani [15], Kodialam reduces the queueing-theory formulation
to a problem that is equivalent to our formulation of the max-throughput problem. His reduction
implies that if K is an optimal routing scheme for our formulation with max throughput F then,
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for any F ∗ < F , there is a routing scheme K∗ for the queueing-theoretic formulation (where K∗ is
easily obtained by scaling K appropriately) with throughput F ∗.

Several other variants of the pipelined filter ordering problem have been studied recently. One
such problem is as follows: given a list L of tuples and for each, the subset of filters which it
satisfies, and a cost for applying each filter, find the ordering π of the filters which minimizes the
sum of the costs of evaluating all tuples in L using π. This problem is NP-hard, and significant
effort has been invested in development of approximation algorithms [4, 8, 12, 22].

Other recent papers have addressed on-line variants of pipelined filter ordering [19, 22]. In these
settings, tuples arrive one at a time, and the operators each have an associated cost. Tuples are
processed sequentially. In the standard version of the on-line problem, the goal is to minimize the
ratio, over the worst-case sequence of tuples, between the cost paid on that sequence, and the cost
that would have been paid if all tuples in the sequence had been processed according to the single
ordering π incurring minimum total cost on this sequence. This ratio is a type of multiplicative
regret, but the regret is with respect to a sequence of tuples, rather than a single tuple.

Etzioni et al. [11] studied a web-query problem with some similarities to the max-throughput
problem. There are m queries and n information sources. Consulting a source has a time cost and
a dollar cost, and yields the answer to a query with a certain probability (independent of whether
other sources provide the answer). Multiple sources can be consulted at the same time. The goal
is to answer all m queries while minimizing the sum of the time and dollar cost. They provide an
approximation algorithm for this problem.

Srivastava et al. [5, 27] recently studied yet other variations, motivated by query processing
over web services. In their most general version [5], as in our problem, queries are handled by
operators, each operator has an associated selectivity, operators can run in parallel, and the goal is
to maximize the rate at which queries are handled. Their problem is more general than ours in one
aspect, namely that there are precedence constraints on the order in which queries can be handled
by processors, but less general in another, namely that all queries are handled in the same order.
The authors give an efficient greedy algorithm to determine the optimal order in which queries can
be handled by operators, and use network flow techniques at each step of the greedy algorithm to
determine which operator to add next to the optimal order.

In generalized maximum flow problems, the amount of flow may change as it travels through
a network (cf. Fleischer [13]). Although the flow problems studied in this paper also have this
property, the requirement that flow pass through all operators (if not eliminated along the way)
does not arise in generalized maximum flow problems. For some flow problems, decisions about
flow routing can be made locally at nodes of the network, independently of other nodes [2]. An
interesting question is whether there are efficient distributed local algorithms for the pipelined filter
ordering problems of this paper. The methods of Plotkin et al. [24] and Grigoriadis [17] for finding
approximate solutions for fractional packing problems may apply to our problems; however these
methods do not provide exact solutions and cannot yield faster algorithms than we obtain.

3 The max-throughput problem

We first formally define the max-throughput problem via a linear program and present an example
problem. We then describe our two algorithms for solving this problem.

We will frequently refer to permutations of sets and introduce our notation here. Let π be a
permutation of a set S of size l. We represent π as a sequence (s1, . . . , sl) of the elements of S.
For k ∈ {1, . . . , l} we use π(k) to denote the kth element of the sequence, sk. For s ∈ S, π−1(s)
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denotes the position of s in the sequence, that is, π−1(s) = i such that s = si. Suppose that π1 and
π2 are permutations over disjoint sets S1 and S2. Then π1π2 denotes the permutation of S1 ∪ S2

corresponding to the sequence formed by concatenating the sequences representing π1 and π2. We
let π∗ = (n, n − 1, . . . , 1), since we need to refer to this permutation frequently. An instance of
the max-throughput problem is a list of n selectivities (probabilities) p1, . . . , pn, and n rate limits
r1, . . . , rn. The pi are real values that lie strictly between 0 and 1, and the ri are non-negative
real values. Let φ(n) be the set of all n! permutations of {1, . . . , n}. For i ∈ {1, . . . , n}, and
permutation π ∈ φ(n), let g(π, i) denote the probability that a tuple sent according to permutation
π reaches selection operator Oi without being eliminated. Thus if π−1(i) = 1 then g(π, i) = 1,
and if π−1(i) > 1 then g(π, i) = pπ(1)pπ(2) . . . pπ(m−1), where m = π−1(i). Define n! real-valued
variables fπ, one for each permutation π ∈ φ(n), where each fπ represents the number of tuples
routed along permutation π per unit time. We call the fπ flow variables. The max-throughput
problem is to find an optimal solution F , and corresponding assignment K to the flow variables,
in the following linear program. We refer to the constraints of the first type in the linear program
as rate constraints. If an assignment K satisfies the ith rate constraint with equality, we say that
operator Oi is saturated.

Max-throughput LP: Given r1, . . . , rn > 0 and p1 . . . , pn ∈ (0, 1), maximize

F =
∑

π∈φ(n)

fπ

subject to the constraints

∑

π∈φ(n)

fπg(π, i) ≤ ri for all i ∈ {1, . . . , n}

fπ ≥ 0 for all π ∈ φ(n)

For example, let n = 2, p1 = p2 = 1/2, r1 = 2, and r2 = 3. If all tuples are sent to O2 first
and then to O1, only 3 tuples per unit time can be processed. That is, if we set f1,2 = 0, then the
maximum possible value of F is 3. Also, since p2 = 1/2, this solution results in an expected rate
of 3/2 tuples per unit time arriving at O1, which is below the rate limit r1 = 2 of O1. A different
routing allows more tuples to be processed, namely sending 8/3 tuples per unit time along route
O2, O1, and 2/3 tuples per unit time along route O1, O2 (i.e. f2,1 = 8/3 and f1,2 = 2/3).

3.1 First algorithm to calculate an optimal routing for the max-throughput
problem

3.1.1 Introduction to the algorithm

We begin by giving an informal introduction to our routing algorithm. We view the problem of
routing tuples as one of constructing a flow through the operators. The capacity of each operator
is its rate limit, and the amount of flow sent along a path through the operators is equal to the
number of tuples sent along that path per unit time. We treat an operator having selectivity p as
outputing exactly p times the amount of flow into it, although this is actually the expected flow
output. However, our arguments apply also to expectation.

6



Consider first the special case in which there are two operators, O1 and O2, with selectivities
p1 and p2, and rate limits r1 and r2, such that r1p1 = r2. For example, let r1 = 2, r2 = 1, and
p1 = 1/2. In this special case, it makes sense to route all of the flow through O1 first. Specifically, if
r1 units of flow are routed through O1 then O1 is saturated; also this causes r2 = r1p1 units of flow
to be routed through O2, so that O2 is also saturated. As we will show below (Corollary 3.1), any
routing that saturates all of the operators is guaranteed to be optimal. In contrast, any solution
that routes some flow through O2 first will fail to saturate O1, and can be shown not be optimal.

Now consider the general case where there are n operators. We construct a flow incremen-
tally. Order the operators from n to 1 in decreasing order of their rate limits. Imagine pushing
flow through the operators according to permutation π∗ = (n, n − 1, . . . , 1) that is, in the order
On, . . . , O1. (Intuitively, it makes sense to send flow along this permutation, since tuples are elim-
inated as they pass through operators, and we’d like to eliminate as many tuples as we can before
the tuple flow reaches the operators with low rate limits.) Suppose we continuously increase the
amount of flow being pushed, beginning from zero, while monitoring the “residual capacity” of
each operator, i.e., the difference between its rate limit and its load (the current rate of tuples
arriving at that operator). Consider two adjacent operators, Oi+1 and Oi. Initially, at zero flow,
the residual capacity of Oi+1 is greater than the residual capacity of Oi. As we increase the amount
of flow, the residual capacity of each operator decreases continuously, with the residual capacity
of Oi+1 decreasing at a faster rate than that of Oi. We stop increasing the flow when one of the
following stopping conditions is satisfied: (1) for some i, 1 ≤ i ≤ n, Oi becomes saturated, or (2) for
some i, 1 ≤ i < n, the residual capacity of Oi times its selectivity pi becomes equal to the residual
capacity of Oi+1. (Algorithmically, we do not increase the flow continuously, but instead directly
calculate the amount of flow which triggers the stopping condition.)

We show that if stopping condition (1) above holds when the flow increase is stopped, the
constructed flow is optimal. If stopping condition (2) holds for some i when the flow increase is
stopped, our special case above suggests that we should order Oi+1 immediately after Oi in routing
any additional flow; in this way, if one becomes saturated, then the other will become saturated
at exactly the same time. Thus, we keep the current flow, then replace Oi and Oi+1 by a single
“mega-operator” Oi,i+1 with rate limit equal to the residual capacity of Oi and selectivity equal
to the product pipi+1. We can solve the resulting smaller problem recursively (no resorting of
operators is needed for the recursive call). Any flow that is routed through Oi,i+1 in the solution
to the smaller problem is actually routed though Oi, immediately followed by Oi+1, in the final
solution.

3.1.2 Example of first max-throughput algorithm

Suppose we have 3 operators, O3, O2, O1 with rate limits r3 = 3, r2 = 2, and r1 = 1, and selectivities
p1 = p3 = 1/2 and p2 = 1/4 (see Figure 1). If we send an amount t of flow along permutation
O3, O2, O1, then 1/2 of it will reach O2 and 1/8 will reach O1. Stopping condition (2) becomes
true for O2 when (3 − t) = (2 − t/2)/4, that is, when t = 20/7. Stopping condition (2) becomes
true for O3 when (2 − t/2) = (1 − t/8)/2, that is, when t = 24/7. Since 20/7 is the smaller of
these quantities, and no operator becomes saturated while the flow is increased from 0 to 20/7,
the stopping condition is reached at 20/7 tupes per unit time. Thus for our initial flow, we send
20/7 units along permutation O3, O2, O1, causing the operators to have residual capacities 1/7
(= 3− 20/7), 4/7 (= 2− 20/14), and 9/14 (= 1− 20/56).

To augment this flow, we have a second stage, where we recursively solve the problem in which
O3 and O2 are merged to form a mega-operator O2,3 with selectivity 1/8 (that is, the product of the

7



Step 1: Send 20

7
units of

flow along O3 → O2 → O1

Step 2: Send 4

15
units of

flow along O2 → O3 → O1

Step 3: Send 64

105
units of

flow along O1 → O2 → O3

Optimal solution is f3,2,1 = 20

7
, f2,3,1 = 4

15
, f1,2,3 = 64

105

and fπ = 0 for all other permutations π.

No flow is assigned to any

permutation in the beginning.

O3

r3 = 3, p3 = 1

2

O2

r2 = 2, p2 = 1

4

O1

r1 = 1, p1 = 1

2

Figure 1: An example illustrating the first max-throughput algorithm.

selectivities of O2 and O3) and rate limit (capacity) 4/7 (the rate residual capacity of O2). Operator
O1 is included with capacity 9/14 and selectivity 1/2. Now, consider sending an increasing amount
t of flow along permutation O2,3, O1. Stopping condition (2) holds when (4/7− t) = (9/14− t/8)/2,
that is, when t = 4/15 and again, this flow can be achieved before either operator is saturated.
We therefore augment the initial flow with 4/15 units sent along permutation O2,3, O1; translated,
this means that 4/15 units are routed along O2, O3, O1. The residual capacity of O2,3 is then
4/7 − 4/15 = 32/105 and the residual capacity of O1 is 9/14 − 1/30 = 64/105.

In the third and final stage, we solve the max-throughput problem with a single mega-operator
O1,2,3, which has residual capacity 64/105. This mega-operator becomes saturated when the flow
is 64/105; this translates to a flow of 64/105 routed through O1, O2, O3.

Together, the flows constructed in the above three stages yield the following optimal solution to
the max-throughput LP for the given input instance: f3,2,1 = 20/7, f2,3,1 = 4/15, f1,2,3 = 64/105,
and fπ = 0 for all other permutations π. This flow saturates all operators, although in general, this
may not be the case.

3.1.3 Algorithm description

Algorithm 1 is a recursive algorithm that takes as input the selectivities p1, . . . , pn and rate limits
r1, . . . , rn, of operators O1, . . . , On, such that each pi is a real number with 0 < pi < 1, each rate
limit ri is a non-negative real, and ripi ≤ ri+1 for all i, 1 ≤ i ≤ n− 1. The algorithm constructs an
assignment, represented as a set K = {(π, fπ) | fπ > 0}, to the flow variables of the corresponding
max-throughput LP.

Before the initial call to the algorithm, the condition ripi ≤ ri+1 for all i, 1 ≤ i ≤ n− 1, can be
satisfied by numbering the operators (in advance) in decreasing order of their rate limits, that is,
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so ri ≤ ri+1 for all i, 1 ≤ i ≤ n− 1, since ri ≤ ri+1 implies ripi ≤ ri+1.
The algorithm works as follows. It initializes K to be the empty set. For each operator Oi,

it determines si, the smallest (non-negative) amount of flow through the operators in the order
specified by π∗ = (n, . . . , 1) which would cause either stopping condition (1) or (2) to hold for i.
An amount si of flow, sent through the operators in the order π∗, causes stopping condition (1) to
hold for i if Oi becomes exactly saturated by that flow. More precisely, since sending si amount of
flow in the order π∗ results in sig(π∗, i) amount of flow reaching operator Oi, si satisfies stopping
condition (1) when sig(π∗, i) = ri, or equivalently when

si = ri/g(π∗, i). (1)

For i, 1 ≤ i ≤ n − 1, si satisfies stopping condition (2) for i when ri+1 − sig(π∗, i + 1) = (ri −
sig(π∗, i))pi, or equivalently when

si =
ri+1 − ripi

g(π∗, i + 1)− g(π∗, i)pi
. (2)

Thus, when 1 ≤ i < n, we set si to be the minimum of quantities on the right hand side of Equalities
(1) and (2), and we set sn to be the quantity on the right hand side of Equality (1). All quantities
are non-negative, given our preconditions on the inputs.

The algorithm then determines the index, x, of the first operator for which a stopping condition
would hold if the flow were to be increased from 0 (breaking ties arbitrarily). Namely, x ←
argmini{si | 1 ≤ i ≤ n}.

If the flow sx is greater than 0, then amount of flow sx is routed through the operators in the
order given by permutation π∗, i.e. (π∗, sx) is added to K.

Then, if sx satisfies stopping condition (2) for x (note that sx may be 0), the algorithm subtracts
sxg(π∗, i) from the rate limit of each operator Oi 6= Ox+1, to obtain new rate limits r′i for these
operators, sets the new selectivity of each Oi, i 6= x, x+1 to be p′i = pi, and sets the new selectivity
of Ox to be pxpx+1. The algorithm deletes Ox+1, so Ox effectively becomes a mega-operator, which
is the merge of Ox and Ox+1. Then, the problem is solved recursively with the resulting n − 1
operators, using the new rate limits and selectivities.

Finally, routes are added to the solution K in the following way. First, the solution K ′′ output
by the recursive call is adjusted, to renumber the operator indices and then to insert x + 1 right
after x in each permutation. For example, if n = 5 and x = 2, then operator 3 is removed in the
recursive call, leaving operators 1, 2, 4 and 5. However, a permutation π′′ in the solution K ′′ refers
to these, in order, as 1, 2, 3 and 4. Permutation π′ renames 3 and 4 back to 4 and 5. Thus, if
π′′ = (3, 1, 2, 4) then π′ = (4, 1, 2, 5). Operator 3 is inserted in π′ just after operator 2, to yield
permutation π+ = (4, 1, 2, 3, 5). The flow fπ′′ assigned to permutation π′′ in solution K ′′ is now
assigned to permutation π+, and (π+, fπ′′) is added to K.

Each recursive call can be completed in O(n) time; the recursion depth is at most n, and so
the total running time is O(n2). Each recursive call adds at most one additional permutation to
the solution. Hence the number of permutations in the solution is at most n, and so the solution
is sparse.

3.1.4 Correctness

Lemma 3.1 If inputs p1, . . . , pn, r1, . . . , rn to Algorithm SolveMaxThroughput1 (Algorithm 1) sat-
isfy the preconditions, and a recursive call to SolveMaxThroughput1 is made, then the preconditions
also hold for the inputs to the recursive call.
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algorithm SolveMaxThroughput1(p1, . . . , pn, r1, . . . , rn)
input: n selectivities p1, . . . , pn; n rate limits r1, . . . , rn

preconditions: n ≥ 1, ri ≥ 0 and 0 < pi < 1 for all i, 1 ≤ i ≤ n
ripi ≤ ri+1 for all i, 1 ≤ i ≤ n− 1

output: optimal solution K to max-throughput problem
for the given input parameters

π∗ ← (n, n− 1, . . . , 1);
for (each i ∈ {1, . . . , n− 1})
{

// determine the smallest value at which a stopping condition holds for Oi

si ← min{ri/g(π∗, i), ri+1−ripi

g(π∗,i+1)−g(π∗,i)pi
}

}
sn ← rn/g(π∗, n);
x← argmini{si | 1 ≤ i ≤ n}; // break ties arbitrarily

if (sx 6= 0) { K ← {(π∗, sx)} } else { K ← empty set }

if (x < n and sx = rx+1−rxpx

g(π∗,x+1)−g(π∗,x)px
) // sx satisfies stopping condition (2) for x

{
// update flows and selectivities and solve subproblem recursively
for (each i ∈ {1, . . . , x, x + 2, . . . , n}) { r′i ← ri − sxg(π∗, i) }
for (each i ∈ {1, . . . , x− 1, x + 2, . . . , n}) { p′i ← pi }; p′x ← pxpx+1;
K ′′ ← SolveMaxThroughput1(p′1, . . . , p

′
x, p′x+2 . . . , p′n, r′1, . . . , r

′
x, r′x+2, . . . , r

′
n);

// renumber entries in permutations of K ′′

K ′ ← {(π′, fπ′) | (π′′, fπ′′) ∈ K ′′} where fπ′ = fπ′′ and π′ is given by

π′(i) =

{

π′′(i), if π′′(i) ≤ x
π′′(i) + 1, if π′′(i) > x

// insert x + 1 to obtain K
K ← K ∪ {(π+, fπ+) | (π′, fπ′) ∈ K ′} where fπ+ = fπ′ and π+ is given by

π+(i) =







π′(i), if i ≤ (π′)−1(x)
x + 1, if i = (π′)−1(x) + 1
π′(i− 1), if i > (π′)−1(x) + 1

}
return K

Algorithm 1: Pseudocode of first algorithm for calculating an optimal routing for the max-
throughput problem.
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Proof. If a recursive call is made, then n must be at least 2, and so in the recursive call,
the number of operators, n − 1, must be at least 1. Each selectivity parameter, pi, satisfies the
precondition that it lies strictly between 0 and 1. Since each selectivity parameter, p′i, in the
recursive call is either pi or, when i = x, the product pxpx+1, the p′i also must lie strictly between
0 and 1.

We next consider the preconditions on the rate limits. Since for any i, 1 ≤ i ≤ n, g(π∗, i) > 0,
the quantity ri − sg(π∗, i) is continuously decreasing as s increases from 0. Thus, we have that

ri − sxg(π∗, i) ≥ ri − sig(π∗, i) ≥ 0, (3)

where the first inequality follows since sx ≤ si and the second by our choice of si.
Similarly, since for any i, 1 ≤ i < n, g(π∗, i + 1) > g(π∗, i) (by the precondition that all

selectivities lie strictly between 0 and 1), the quantity (ri+1 − sg(π∗, i + 1)) − (ri − sg(π∗, i))pi is
non-negative when s = 0, and also is continuously decreasing as s increases from 0. Thus, we also
have that

(ri+1 − sxg(π∗, i + 1))− (ri − sxg(π∗, i))pi ≥ (ri+1 − sig(π∗, i + 1)) − (ri − sig(π∗, i))pi ≥ 0,

and so

(ri+1 − sxg(π∗, i + 1)) ≥ (ri − sxg(π∗, i))pi. (4)

Now, to see that r′i ≥ 0 for any i, 1 ≤ i ≤ n, i 6= x + 1, note that

r′i = ri − sxg(π∗, i) ≥ 0, (by Inequality (3)). (5)

To see that r′ip
′
i ≤ r′i+1 for any i, 1 ≤ i ≤ n with i 6= x and i 6= x + 1, note that if i 6= x,

r′ip
′
i = (ri − sxg(π∗, i))pi

≤ ri+1 − sxg(π∗, i + 1) (by Inequality (4))

= r′i+1.

Finally, to see that r′xp′x ≤ r′x+2 in the case that x + 2 ≤ n, note that

r′xp′x = (rx − sxg(π∗, x))pxpx+1

≤ (rx+1 − sxg(π∗, x + 1))px+1 (by Inequality (4))

≤ rx+2 − sxg(π∗, x + 2) (again, by Inequality (4))

= r′x+2.

2

Lemma 3.2 On any input (p1, . . . , pn, r1, . . . , rn) satisfying the preconditions, the solution K con-
structed by Algorithm 1 is a feasible solution of the max-throughput LP.

Proof. The proof is a very straightforward induction on n, the number of operators. In the
base case, when n = 1, there is only one permutation, namely π∗, where fπ∗ = r1 ≥ 0, and it can
easily be seen that this flow assignment satisfies the flow constaint.

For the induction step, let n > 1. First note that the flow assigned to permutation π∗ must be
non-negative by construction. Also, if a recursive call is made then by Lemma 3.1 the preconditions

11



must hold in the recursive call and so by induction the flow assigned to any permutation in any
K ′′ must be non-negative. Since the values of flows in K are either flows in K ′′ or the flow to π∗,
the LP constraints that fπ ≥ 0 are satisfied by K.

It remains to show that the rate constraints of the LP are satisfied. By construction, for each
(π′′, fπ′′) ∈ K ′′, there is a corresponding flow assignment (π+, fπ+) in K, where fπ′′ = fπ+ and π+

is obtained from π′′ by first renumbering, to obtain π′, and then inserting x+1 after x in π′. Rather
than reasoning about solution K ′′, we reason instead using K ′, since numbering of operators in K ′

agrees with numbering in K.
Let g′(π′, i) denote the probability that a tuple, sent according to permutation π′, reaches

selection operator Oi without being eliminated, for the instance of the max-throughput problem in
the recursive call, namely when the selectivities are p′1, . . . , p

′
x, p′x+2, . . . , p

′
n. Thus if (π′)−1(i) = 1

then g(π′, i) = 1, and if (π′)−1(i) = m > 1 then g(π′, i) = pπ′(1)pπ′(2) . . . pπ′(m−1). By the induction
hypothesis, the solution K ′ satisfies the rate constraints for the subproblem of the recursive call,
and so for i ∈ {1, . . . , x, x + 2, . . . , n},

∑

(π′,fπ′)∈K ′

fπ′g′(π′, i) ≤ r′i. (6)

Also, for all i ∈ {1, . . . , x, x + 2, . . . , n},

g′(π′, i) = g(π+, i), (7)

by the definition of selectivities p′i, i 6= x+1. Therefore, for i ∈ {1, . . . , x, x+2, . . . , n} we have that

∑

π∈φ(n)

fπg(π, i) =
∑

(π+,f
π+)∈K

fπ+g(π+, i)

=
∑

(π′,fπ′)∈K ′

fπ′g′(π′, i) + sxg(π∗, i)

(by Equation (7) and construction of K from K ′)

≤ r′i + sxg(π∗, i) (by Inequality (6))

= ri − sxg(π∗, i) + sxg(π∗, i) (by the definition of r′i)

= ri. (8)

Also,

∑

π∈φ(n)

fπg(π, x + 1) =
∑

(π+,f
π+ )∈K

fπ+g(π+, x + 1)

=
∑

(π′,fπ′)∈K ′

fπ′g′(π′, x)px + sxg(π∗, x + 1)

(by Equation (7) and construction of K from K ′)

≤ r′xpx + sxg(π∗, x + 1) (by Inequality (6))

= (rx − sxg(π∗, x))px + sxg(π∗, x + 1) (by the definition of r′x)

= rx+1 − sxg(π∗, x + 1) + sxg(π∗, x + 1) (9)

(since sx satisfies stopping condition (2) for x)

= rx+1. (10)
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2

Let K be a feasible solution to the max-throughput LP with n operators. We say that K has the
saturated-suffix property if for some non-empty “witness” subset Q ⊆ {1 . . . n}, (1) Oi is saturated,
i.e.

∑

π∈φ(n) fπg(π, i) = ri, if and only if i ∈ Q, and (2) for any flow variable fπ, fπ > 0 implies

that in permutation π, the elements of Q̄ = {1 . . . n}\Q precede the elements of Q.
Next, we show that the solution constructed by our first max-throughput algorithm (Algorithm

1) has the saturated-suffix property.

Lemma 3.3 If K is the output of the SolveMaxThroughput1 algorithm (Algorithm 1), then K has
the saturated-suffix property with witness Q = {1, . . . , q}, for some q where 1 ≤ q ≤ n.

Proof. The proof is by induction on n. When n = 1, Q = {1} trivially satisfies the conditions
of the saturated-suffix property.

Let n > 1 and suppose the lemma is true for instances with n− 1 operators. We first consider
part (1) of the saturated-suffix property. If no recursive call is made, then K is either the empty
set or K = {(π∗, sx)}. If K is the empty set, then at least one operator must have rate limit equal
to 0, and by the preconditions on the input, the set of operators with rate limit equal to 0 must be
numbered from 1 to q for some q. If K = {(π∗, sx)}, let q be the highest index of an operator that
is saturated by K. We claim that all operators with indices in {1, . . . , q} are saturated. If not, let
j < q be the largest index such that Oj is not saturated. Since Oj+1 is saturated, we have that

rj+1 − sxg(π∗, j + 1) = 0. (11)

By Inequality (4), it must also be that

rj+1 − sxg(π∗, j + 1) ≥ (rj − sxg(π∗, j))pj . (12)

But then Equation (11) and Inequality (12) together imply that rj−sxg(π∗, j)pj ≤ 0, contradicting
the assumption that Oj is not saturated.

Next we consider part (1) of the saturated-suffix property if a recursive call is made. By the
induction hypothesis, the solution K ′ satisfies the saturated-suffix property. Let Q′ be the set of
operators which are saturated by solution K ′, with respect to rates r′i. Thus, for each i ∈ Q′,

∑

(π′,fπ′)∈K ′

fπ′g′(π′, i) = r′i. (13)

Let Q = Q′ if x 6∈ Q′ and let Q = Q′ ∪ {x + 1} otherwise. We claim that Q witnesses the fact
that K satisfies the saturated-suffix property. In the derivation leading to Equation (8), the single
inequality can be replaced by an equality if i ∈ Q′, by (13) above, showing that

∑

π∈φ(n)

fπg(π, i) = ri. (14)

Similarly, in the derivation leading to Equation (10), the inequality can be replaced by an equality
if and only if Ox is saturated, and thus Ox+1 is saturated if and only if Ox is. Finally, no operator
in {1, . . . , x, x + 2, . . . , n}\Q is saturated, because in the derivation leading to Equation (8), the
single inequality can be replaced by a strict inequality (that is, “≤” can be replaced by “<”), since
the operators in {1, . . . , x, x + 2, . . . , n}\Q are not saturated in K ′.
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We now show that part (2) of the saturated-suffix property holds, namely that for any (π, fπ)
in K, the elements of Q̄ = {1, . . . , n}\Q precede the elements of Q in π; we also show that
Q = {1, . . . , q} for some q. There are two types of permutations in K: the permutations π+ derived
from permutations in K ′ constructed in the recursive call, and the permutation π∗. By induction,
the elements in Q̄′ = {1, . . . , x, x + 2, . . . , n}\Q′ precede the elements of Q′ in each permutation of
K ′. Moreover, the elements of Q′ are either {1, . . . , q} for some q ≤ x, or {1, . . . , x, x+2, . . . , q} for
some q ≥ x+2. Since x+1 is adjacent to x in each permutation π+ in K and the order of operators
is otherwise unchanged, and since x+1 is in Q if and only if x is, the elements of Q̄ = {1, . . . , n}\Q
precede the elements of Q in each permutation π+. Moreover, Q = {1, . . . , q} for some q. Finally,
part (2) holds for the permutation π∗ since π∗ orders indices from highest to lowest. 2

The following lemma upper bounds the optimal value of the objective function of the max-
throughput problem, in terms of an arbitrary subset Q of the operators.

Lemma 3.4 Let F ∗ be the optimal value of the objective function in the max-throughput problem.
Let Q ⊆ {1, . . . , n}. Then

F ∗ ≤

∑

i∈Q ri(1− pi)

(
∏

j 6∈Q pj)(1−
∏

i∈Q pi)
.

Proof. Consider a modification of the max-throughput LP in which we remove all rate con-
straints for operators not in Q, i.e. we remove all constraints

∑

π∈φ(n) fπg(π, i) ≤ ri where i 6∈ Q.

Let F ′ be the optimal value of the objective function for this modified max-throughput LP. Clearly
F ∗ ≤ F ′.

Consider an optimal solution K ′ to the modified LP. Let K ′ = {f ′
π | π ∈ φ(n)}. Let φ′(n) be

the set of permutations π ∈ φ(n) such that the elements of Q̄ = {1 . . . n}\Q precede the elements
of Q in π. Because operators Oj such that j 6∈ Q have no rate constraints, and because each such
operator has selectivity pj < 1 and thus eliminates some of the amount of flow that passes through
it, we may assume without loss of generality that if f ′

π > 0, then π ∈ φ′(n).
Since K ′ satisfies the rate constraints for all i ∈ Q, it follows that for i ∈ Q,

∑

π∈φ(n) f ′
πg(π, i) ≤

ri. If we multiply both sides of this inequality by (1− pi) and sum over all i ∈ Q, we get that

∑

i∈Q

∑

π∈φ(n)

f ′
πg(π, i)(1 − pi) ≤

∑

i∈Q

ri(1− pi). (15)

We now rewrite the left hand side of Equation (15). Exchanging summation order and bringing out
f ′

π shows it equals
∑

π∈φ(n) f ′
π

∑

i∈Q g(π, i)(1 − pi). By assumption, f ′
π = 0 for all π 6∈ φ′(n). Let

π ∈ φ′(n). Consider
∑

i∈Q g(π, i)(1 − pi). For all i ∈ Q, g(π, i) equals (Πj 6∈Qpj) times the product
of all pm such that m ∈ Q and π(m) < π(i). Thus

∑

i∈Q

g(π, i)(1 − pi) = (Πj 6∈Qpj)
∑

i∈Q

(Πm∈Q:π(m)<π(i) pm)(1− pi).

To simplify this expression, we use the fact that

∑

i∈Q

(Πm∈Q:π(m)<π(i) pm)(1− pi) = (1−Πi∈Qpi).

Hence
∑

i∈Q

g(π, i)(1 − pi) = (
∏

j 6∈Q

pj)(1 −
∏

i∈Q

pi)
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and it follows 2 that
∑

π∈φ(n)

f ′
π(

∏

j 6∈Q

pj)(1 −
∏

i∈Q

pi) ≤
∑

i∈Q

ri(1− pi).

Thus

F ′ =
∑

π∈φ(n)

f ′
π ≤

∑

i∈Q ri(1− pi)

(
∏

j 6∈Q pj)(1−
∏

i∈Q pi)
.

2

We are now ready to prove the following important lemma, which shows that any feasible
solution that has the saturated-suffix property is optimal.

Lemma 3.5 If feasible solution K to the max-throughput LP has the saturated-suffix property, and
Q is the set of operators saturated by K, then K is an optimal solution to the max-throughput
problem and the value F of the objective function achieved by K is

∑

i∈Q ri(1− pi)

(
∏

j 6∈Q pj)(1−
∏

i∈Q pi)
.

Proof. Consider the assignment to the fπ under solution K. We have that
∑

π∈φ(n) fπg(π, i) =
ri, for i ∈ Q. Multiplying both sides of this equation by (1 − pi) and summing over all i ∈ Q we
get that

∑

i∈Q

∑

π∈φ(n)

fπg(π, i)(1 − pi) =
∑

i∈Q

ri(1− pi). (16)

This is analogous to Equation (15), except with equality instead of inequality. By the same argu-
ments as in the proof of Lemma 3.4, it follows that

F =
∑

π∈φ(n)

fπ =

∑

i∈Q ri(1− pi)

(
∏

j 6∈Q pj)(1−
∏

i∈Q pi)
.

By Lemma 3.4, this value is at least as large as the optimal value of the max-throughput LP.
Therefore, it is equal to the optimal value. 2

We note the following corollary to Lemma 3.5, which follows immediately since any solution
saturating all operators trivially satisfies the saturated-suffix property.

Corollary 3.1 If a feasible solution K to the max-throughput LP saturates all operators, then K
is optimal.

Finally, we put the previous results together to show that the algorithm is correct.

Theorem 3.1 Algorithm 1, the SolveMaxThroughput1 algorithm, finds an optimal solution K to
the max-throughput LP

2In fact, the correctness of the next equation can also be shown as follows. For i ∈ Q, the expected number of
tuples processed by Oi per unit time is at most ri, and the expected number eliminated is ri(1 − pi). Thus the two
sides of the equation both express the total expected number of tuples per unit time eliminated by operators Oi

where i ∈ Q.
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Proof. Lemma 3.2 shows that the SolveMaxThroughput1 algorithm outputs a feasible solution
to the max-throughput LP. Lemma 3.3 shows that it outputs a solution to the max-throughput LP
that satisfies the saturated-suffix property. Lemma 3.5 shows that a feasible solution that satisfies
the saturated-suffix property is an optimal solution. 2

We remark that our algorithm can be adapted to output a succinct description of the routing
scheme in O(n log n) time. Roughly, this is because a heap data structure can be used to manage the
si values; the recursive call can be changed to an iterative scheme, and can avoid the need to update
rate limits and all selectivities except for one per iteration; and the change in “current” permutation
from one iteration to the next can be represented succinctly. Since the details complicate the
exposition, and since Θ(n2) time is needed in any case to write down the full routing scheme, we
do not present the details here.

3.2 Algorithm to compute the value of the maximum throughput

A simple algorithm for computing the value of the maximum throughput can be easily derived from
the following lemma:

Lemma 3.6 The optimal value of the objective function for the max-throughput problem, when
r1 ≤ r2, . . . ≤ rn, is the minimum of

Fq =

∑q
i=1 ri(1− pi)

(
∏n

j=q+1 pj)(1 −
∏q

i=1 pi)
.

over all q ∈ {1, . . . , n}.

Proof. By Lemma 3.4, each of the values Fi is an upper bound on the value of the maxmum
throughput. By Lemmas 3.3 and 3.5, our max-throughput algorithm finds an optimal solution
having the saturated-suffix property, with the saturated suffix being Q = {1, . . . , q} for some q.
Further, since the value of that solution is Fq for some q, the optimal value of the maximum
throughput is equal to Fq for some q. The lemma follows. 2

The max-throughput problem with the rates r1, r2, . . . , rn in sorted order can thus be solved
by simply computing F1, F2, . . . Fn in turn, and outputing their minimum. Each value Fq+1 can be
calculated in constant time, given the numerator and denominator of Fq. Thus if the rate limits
are given in sorted order, this algorithm finds the value of the maximum throughput in linear time.

3.3 A second algorithm for solving the max-throughput problem

We now present our second algorithm for solving the max-throughput problem. As mentioned
previously, the approach used in this algorithm is also useful in our solution to the GTMR problem.

3.3.1 Introduction to the second max-throughput algorithm

Consider the special case of the max-throughput problem in which operators all have the same rate
limit (capacity). For example, let O1, O2 be two operators with selectivities p1 and p2, and with
equal rate limits r. If we send x units of flow along permutation (1, 2), and y units along permutation
(2, 1), then O1 receives x+ p2y units and O2 receives y + p1x units. If x = r(1− p2)/(2− p1p2) and
y = r(1−p1)/(2−p1p2), then x+p2y = y +p1x = r and both operators are saturated. Further, for
any 0 ≤ q ≤ 1, if we send qx units along permutation (1, 2) and qy units along permutation (2, 1),
the residual capacities of O1 and O2 remain equal. Below we give a closed-form expression that
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O3,2

No flow is assigned to any

permutation in the beginning.

Step 1: Send 2 units of flow

along O3 → O2 → O1

Step 2: Send 6

23
units along O3 → O2 → O1

and 4

23
units along O2 → O3 → O1.

Step 3: Send 128

345
along O3 → O2 → O1,

128

345
along O2 → O1 → O3,

192

345
= 64

115
along O1 → O3 → O2.

Optimal solution is: f3,2,1 = 908

345
, f2,3,1 = 4

23
, f2,1,3 = 128

345
,

f1,3,2 = 64

115
, and fπ = 0 for rest of the π’s.

O3

r3 = 3, p3 = 1

2

O2

r2 = 2, p2 = 1

4

O1

r1 = 1, p1 = 1

2

Figure 2: An example illustrating the second max-throughput algorithm

generalizes the above routing for the special case of n > 2 operators with equal rate limits; it gives
a way to route flow so as to ensure that the operators continue to have equal residual capacity, if
they start off with equal residual capacity.

We use the solution for the above special case as the basis for our second max-throughput
algorithm. In the second algorithm, as in the first, we construct the flow routing in stages, re-
cursively. In each recursive call, we partition the operators into equivalence classes according to
their rate limits. Conceptually, we view each equivalence class as a mega-operator, with rate limit
equal to the rate limit of its constituent operators. We order these mega-operators in decreasing
order of the rate limits, and (conceptually) send a continuously increasing amount of flow through
the mega-operators in this order. The twist is how we route flow within the mega-operator: when
it reaches a mega-operator, we divide it as dictated by the solution to the special case, so as to
preserve the property that the operators within a mega-operator have equal residual capacity. We
continue increasing the flow amount until either (1) some operator becomes saturated or (2) the
residual capacity of the operators in one mega-operator (equivalence class) becomes equal to the
residual capacity of operators in another mega-operator. When one of the stopping conditions is
reached, we add the current flow to the solution, and then recurse on the original set of operators,
with rate limits equal to their residual capacities.

Note that the residual capacity of an operator in a mega-operator may decrease more slowly
than it would if all flow were sent directly to that operator, because some flow may first be filtered
through other operators in the mega-operator. This needs to be taken into account in determining
when a stopping condition is reached. We discuss this in more detail below, but first give an
example.

3.3.2 Example

Suppose we have 3 operators, O3, O2, O1 with rate limits r3 = 3, r2 = 2, and r1 = 1, and selectivities
p1 = p3 = 1/2 and p2 = 1/4 (see Figure 2). If we send flow along permutation O3, O2, O1, then 1/2
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of it will reach O2 and 1/8 will reach O1. Thus, O3 and O2 achieve equal residual capacity when
2 units of flow are sent, O2 and O1 achieve equal residual capacity when 8/3 units are sent, and
the minimum amount of flow needed to saturate an operator is 3 units. Therefore, the stopping
condition is reached at 2 units, and so for our initial flow, we send 2 units along permutation O3, O2,
O1, causing the operators to have residual capacities 1, 1, and 3/4.

To augment this flow, we have a second stage, where we solve the problem in which O3, O2

and O1 have rate limits 1, 1, and 3/4 respectively. Replace O3 and O2 with a mega-operator O3,2

having selectivity 1/2 ∗ 1/4 = 1/8. Consider sending flow along permutation O3,2, O1, dividing
any flow into mega-operator O3,2 so that 3/5 of it is sent along permutation O3, O2, and 2/5 along
permutation O2, O3; this equalizes the load on O3 and O2. Under this division, t units of flow sent
into O3,2 decrease the capacity of O2 and O3 each by 7/10 t. Since the rate limits of O2 and O3 are
1, they therefore become saturated when 10/7 units are sent along O3,2, O1. Any flow sent along
O3,2, O1 is reduced by a factor of 1/2 ∗ 1/4 = 1/8 before reaching O1, so O1 is saturated when 6
units of flow are sent along O3,2, O1. The residual capacities of the operators in O3,2, and operator
O1 equalize at t units, where 1 − 7/10 t = 3/4 − 1/8t, that is, t = 10/23. Thus the stopping
condition is reached at 10/23 units, when the residual capacities of the operators are equalized at
16/23. We therefore augment the initial flow with 10/23 units sent along permutation O2,3, O1;
translated, this means 6/23 units along O3, O2, O1, and 4/23 along O2, O3, O1.

In the third and final stage, we solve the max-throughput problem in which operators O3, O2, O1

have equal rate limits of 16/23. Using our closed-form expression (cf. Lemma 3.7) to equalize the
load on the three operators, we divide the flow so 2/7 of it is sent along permutation O3, O2, O1, 2/7
along permutation O2, O1, O3, and 3/7 along permutation O1, O3, O2. Under this division, 15/28
of the flow arrives at each operator. Thus sending t = 448/345 units saturates the operators, since
16/23 = 15/28t. We augment the flow from the first two stages with 448/345 units of flow divided
as just described.

Together, the flows constructed above yield the following optimal solution to the max-throughput
LP for the given input instance: f3,2,1 = 908/345, f2,3,1 = 4/23, f2,1,3 = 128/345, f1,3,2 = 64/115,
and fπ = 0 for all other permutations π. This flow saturates all operators, although in general,
this may not be the case. Since the number of permutations used in routing the flow may be ex-
ponential in the number of operators, our algorithm outputs a compact representation of the flow,
rather than giving the values of the non-zero fπ .

3.4 Correctness and further details of the second algorithm

The following lemma gives the closed-form expression for a routing that equalizes the load on n
operators. This is used to route flow through the operators in a mega-operator.

Lemma 3.7 Let ρ1 be the permutation 1, . . . , n and for j ∈ [2 . . . n], let ρj be permutation j, j +
1, . . . , n, 1, 2, . . . , j − 1, that is, the permutation obtained by performing j − 1 left cyclic shifts on
ρ1. Let t > 0. Let

fρj
=

1− pj−1

n−
∑n

k=1 pk
t for all j ∈ [1 . . . n].

(where p0 = pn) and let fπ = 0 for all other π ∈ φ(n). Then
∑

π∈φ(n) fπ = t and for all i ∈ [1 . . . n],

∑

π∈φ(n)

fπg(π, i) =
1−

∏n
k=1 pk

n−
∑n

k=1 pk

t. (17)
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Proof. Clearly
∑

π∈φ(n) fπ = t. Let i be in the range [1 . . . n]. For the given assignment to the

flow variables,
∑

π∈φ(n) fπg(π, i) =
∑n

j=1
(1−pj−1)

n−
Pn

k=1 pk
g(ρj , i)t. Recall that by definition, g(ρj , i) =

pj . . . pi−1 when j ≤ i and g(ρj , i) = pj . . . pnp1 . . . pi−1 when j > i. Thus, by cancellation of terms,

n
∑

j=1

(1− pj−1)

n−
∑n

k=1 pk
g(ρj , i)t =

1

n−
∑n

k=1 pk
t−

∏n
k=1 pk

n−
∑n

k=1 pk
t.

2

In each recurisve call of the second max-throughput algorithm, the operators are partitioned
into sets (mega-operators) Em, . . . , E1, and we push flow through the operators using a routing that
obeys two properties. First, it only sends flow along permutations in which it goes first through
the operators in Em, then through operators in Em−1, then through the operators in Em−2, and
so on. Second, for any set Ei in the partition, the amount of incoming flow is the same for all the
operators in Ei. We rely on the following technical lemma (which follows from Lemma 3.7).

Lemma 3.8 Let Em, . . . , E1 be a partition of the set of operators {On, . . . , O1} such that for
i ∈ [1 . . . m], there exist indices b(i) ≤ c(i) such that Ei = {Oc(i), Oc(i)−1, . . . , Ob(i)}. Let β(i)
be the set of |Ei| = c(i) − b(i) + 1 permutations which are the left cyclic shifts of the permutation
c(i), . . . , b(i). Let P be the set of

∏m
l=1 |El| permutations πm . . . π1 where each πi ∈ β(i). Sup-

pose we probabilistically route a total of t tuples through the operators, dividing them among the
permutations in P , such that the expected rate of tuples routed via permutation πm . . . π1 is

∏m
l=1(1− pz(πl))

∑

πm...π1∈P

∏m
l=1(1− pz(πl))

t

where z(πl) is the last element of the permutation πl. Then for all i ∈ [1 . . . m], the expected rate
of tuples arriving at any operator in Ei is tξ(i) tuples per unit time, where

ξ(i) = pnpn−1 . . . pc(i)+1

1−
∏c(i)

j=b(i) pj

|Ei| −
∑c(i)

j=b(i) pj

. (18)

We now describe our second max-throughput algorithm in detail. Pseudocode is given in Algo-
rithm 2. Assume that rn ≥ rn−1 ≥ . . . ≥ r1. The algorithm is recursive, and rn ≥ rn−1 ≥ . . . ≥ r1

holds in the recursive calls also.
We partition the operators into equivalence classes Em, . . . , E1, where operators are in the same

class if they have the same rate limit. Denote the rate limits of the operators in Em, . . . , E1 by
Rm, . . . , R1 respectively. Assume the Ei satisfy Rm > Rm−1 > . . . > R1.

We will use the following notation. Suppose that we send tuples through the system at a rate of
t tuples per unit time, according to the method of Lemma 3.8. Then for every Ei, tuples arrive at
each operator in Ei at a rate of tξ(i) tuples per unit time (where ξ(i) is as defined in Equation (18)
of Lemma 3.8). Let R′

m = R′
m(t), . . . , R′

1 = R′
1(t) denote the residual capacities of the operators

in Em, Em−1, . . . , E1 respectively, and let r′n = r′n(t), . . . , r′1 = r′1(t) denote the residual capacities
of the individual operators On, . . . , O1. Then at t = 0, R′

m > . . . > R′
1 and r′n ≥ . . . ≥ r′1. As t

increases, each R′
i (and r′j) decreases continuously.

Next, we set t̂ to be the smaller of (1) r1
ξ(1) or (2) the minimum of

Ri−Ri−1

ξ(i)−ξ(i−1) , taken over all

i ∈ [2 . . . m], where ξ is as defined in Equation (18) of Lemma 3.8. The first quantity is the smallest
(positive) value of t at which the residual capacity of O1 becomes 0, and the second quantity denotes
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the value of t at which the values R′
i and R′

i−1 become equal. Thus t̂ is the value of t that meets

the stopping condition described in Section 3.3.1. Let R̂m, . . . , R̂1 and r̂n, . . . , r̂1 denote the values
of R′

m, . . . , R′
1 and r′n, . . . , r′1 respectively when t = t̂.

We claim that R̂m ≥ . . . ≥ R̂1. Suppose not. Then R̂i < R̂i−1 for some i. Since at t = 0,
R′

i > R′
i−1, both quantities decrease continuously as t increases, and R′

i < R′
i−1 at t = t̂, there must

be a value of t that is less than t̂ for which R′
i = R′

i−1. But this contradicts our choice of t̂. We

have thus shown that R̂m ≥ . . . ≥ R̂1 and hence r̂n ≥ . . . ≥ r̂1.
Let K be the assignment to the flow variables induced by routing t̂ tuples per unit time according

to Lemma 3.8. To do our computation in polynomial time, we represent K succinctly, as the pair
consisting of the partition Em, . . . , E1 and the value t̂ (from which, using Lemma 3.8, we can
determine K).

If t̂ equals quantity (1), namely r1
ξ(1) , then we output K. Otherwise, it must be that (2) < (1),

and we recursively run the algorithm with selectivities p1, . . . , pn and rate limits r̂1, . . . , r̂n. Note
that for any j, k, if rj = rk, then r̂j = r̂k. Further, for at least one j, rj 6= rj+1, but r̂j = r̂j+1.
Thus the equivalence classes Ei in each recursive call are formed by merging equivalence classes
from the previous call, and the total number of equivalence classes decreases in each recursive call.

Let K ′ be the solution returned by the recursive call. We output K ′′, the solution to the LP
which is obtained by setting each flow variable fπ to the sum of its value in K and K ′. We can
represent K ′′ succinctly as the concatenation of the representations of K and K ′.

This completes the description of the algorithm. The number of equivalence classes decreases
in each recursive call, so the number of recursive calls is at most n− 1. The time per recursive call
is O(n). Therefore, the algorithm runs in time O(n2).

It remains to prove that the algorithm outputs an optimal solution to the max-throughput LP.
In the final recursive call, since R̂m ≥ . . . ≥ R̂1, there is a maximum i such that R̂i = R̂i−1 = . . . =
R̂1 = 0, and no other R̂j is equal to 0. Let Oq, Oq−1, . . . , O1 be the operators in Ei, Ei−1, . . . , E1.
Let Q = {1, . . . , q}. Then in the final solution to the original max-throughput problem, constructed
from all the recursive calls, Q is the set of indices of operators with residual capacity 0. Also, since
the partitions in each recursive call are formed by merging sets of the partition in the previous call,
tuples are only routed along permutations in which the operators indexed by elements of Q appear
at the end (in some order). It follows that the solution obeys the saturated-suffix property, and
hence, by Lemma 3.5 is optimal.

The output of the algorithm is a list of some n′ pairs (P1, t̂1), . . . , (Pn′ , t̂n′), where the Pi’s are the
partitions of operators and the t̂i’s are the t̂ values. To use this representation in order to actually
route tuples in a distributed environment, first calculate the sum T =

∑n′

i=1 t̂i. Send T tuples per
unit time using the following procedure to route each tuple. For each tuple, first randomly choose
an i ∈ [1 . . . n′], with probability proportional to t̂i. For the chosen i, suppose Pi = Em, . . . , E1.
For each j ∈ [1 . . . m], randomly choose a permutation πj from the permutations in β(j) (defined
in Lemma 3.8), with probability proportional to 1− pz(πj), where z(πj) is the last element of the
ordering πj. Then route the tuple via permutation πm . . . π1.

3.5 Reducing the number of permutations in the second algorithm

The potentially exponential number of permutations used by the second algorithm can be reduced
to O(n2). In each recursive call of the second algorithm, flow t̂ constructed in that iteration is
routed through equivalence classes Em, . . . , E1 by first directing it through a permutation of (the
operators in) Em, then a permutation of Em−1, and so forth, as described in Lemma 3.8. An
exponential number of routings are possible, in general, because flow might be routed along any of
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algorithm SolveMaxThroughput2(p1, . . . , pn, r1, . . . , rn)
input: n selectivities p1, . . . , pn; n rate limits r1 ≤ . . . ≤ rn

output: compact representation of solution to max-throughput problem
for the given input parameters

1. // form the equivalence classes Em, . . . , E1;
E1 = {O1};
m = 1; //m is number of equivalence classes
R1 = r1;

for (k = 2; k ≤ n; k++)
if (rk 6= rk−1){

m++;
Em = {Ok};
Rm = rk;

}
else { //(rk == rk−1)

Em = Em

⋃

{Ok};
}

2. //calculate t̂ using the following steps
for (i = 1; i ≤ m; i++) { //for each equivalence class Ei

c(i) = highest index of an operator in Ei;
b(i) = lowest index of an operator in Ei;

ξ(i) = pnpn−1 . . . pc(i)+1

1−
Qc(i)

j=b(i)
pj

|Ei|−
Pc(i)

j=b(i)
pj

;

}

t̂1 = r1
ξ(1) ;

t̂2 = mini∈[2...m]

(

Ri−Ri−1

ξ(i)−ξ(i−1)

)

;

t̂ = min(t̂1, t̂2);

3. // calculate the residual capacity for each operator Ok

for (k = 1; k ≤ n; k++){
j = index of the equivalence class Ej containing operator Ok;

r̂k = rk − ξ(j)t̂;
}

4. K = ({Em, . . . , E1}, t̂);
if (r̂1 == 0) //residual capacity of equivalence class E1 is 0

return K
else {

K ′ = SolveMaxThroughput2(p1, . . . , pn, r̂1, r̂2, . . . , r̂n);
Return K ◦K ′ (i.e. the concatenation of K and K ′)

}

Algorithm 2: Pseudocode of second algorithm for the max-throughput problem.
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the
∏m

i=1 |Ei| routes produced by choosing one of the |Ei| cyclic permutations used to route flow
through each Ei.

However, it is not necessary to allow each of these possible routings; we show how to route the t̂
flow from a given iteration among O(n) permutations instead. The crucial observation is as follows.
For each operator Oi, let ti be the amount of the t̂ flow arriving at operator Oi under the current
routing of the t̂ flow. Then any alternative routing of the t̂ flow that also results in ti flow arriving
at each operator Oi can be substituted for the original routing: the original routing of the t̂ flow
is part of a solution to the max-throughput problem that has the saturated-suffix property, and
substituting the alternative routing of the t̂ flow preserves this property and thus is still optimal.

For each equivalence class Ei, let mi = |Ei| and let πi,1, . . . , πi,mi
be the mi cyclic permutations

used to route flow through operators in Ei. For j in {1, . . . ,mi}, let qi,j ∈ [0, 1] be such that the
fraction of the t̂ flow sent through Ei along permutation πi,j is qi,j t̂. Note that

∑mi

j=1 qi,j = 1. Let

si,0 = 0, and let si,j =
∑j

k=1 qi,k for each j in {1, . . . ,mi}. Each permutation πi,j has associated
with it an interval Ii,j = [si,j−1, si,j ]; the intervals Ii,j form a partition of the interval [0, 1] where
the length si,j − si,j−1 of Ii,j is equal to qi,j. Let S =

⋃m
i=1{si,j|1 ≤ j ≤ mi}. Let s0 = 0, s1, . . . , sr

be the elements of S in sorted order, and let Ik be the interval [sk−1, sk] for 1 ≤ k ≤ r. Then for
each i where 1 ≤ i ≤ m, interval Ik is a subinterval of Ii,j for some j; let ρi,k be the permutation of
Ei associated with the Ii,j containing Ik. For each k, 1 ≤ k ≤ r, we route (sk − sk−1)t̂ flow along
the route which sends it first through Em via the permutation ρm,k, then through Em−1 via the
permutation ρm−1,k, and so forth.

Figure 3 gives a simple example. The equivalence class E2 contains two operators, O5 and O4,
and so the two cyclic permutations π2,1 = (5, 4) and π2,2 = (4, 5) are used to route flow through
the operators. These routes are depicted as O5 → O4 and O4 → O5 in the figure. Since the
selectivities of O5 and O4 are equal, the fraction of flow sent along each of the routes O5 → O4

and O4 → O5 should be 1/2; that is q2,1 = q1,2 = 1/2. In the figure, this is indicated by the
dashed line which separates the two cyclic permutations, and which lies half way between the line
marked 0 and the line marked 1. Similarly, the cyclic permutations used to route flow through
operators in E1 are depicted as O3 → O2 → O1, O2 → O1 → O3, and O1 → O3 → O2. Each should
route one third of the flow though E2, as depicted by the two equi-spaced dashed lines between 0
and 1, which separate the three cyclic permutations. The flow through E2 followed by E1 can be
routed according to the fractions given in the solution on the right side of Figure 3; this routing
ensures that the correct fraction, namely one half, of the flow through E2 is routed through the
two cyclic permutations of the operators in E2, and similarly one third of the flow through E1 is
routed through the three cyclic permutations of operators given for E1.

It is easy to verify that, for every 1 ≤ i ≤ m and 1 ≤ j ≤ |Ei|, this new allocation of the t̂ flow
results in the same amount of flow being sent through Ei along permutation πi,j as was sent in the
original routing. Thus the new allocation also results in the same amount of flow being sent to each
operator as in the original routing. Moreover, the total number of permutations (of all the operators)
used in the new routing is the number of intervals Ik, which is (

∑m
i=1 |Ei| − 1) + 1 = n−m + 1.

Since there are at most n recursive iterations of the algorithm, and the number m of equivalence
classes decreases in each, using the alternative routing in each iteration results in a solution that
routes flow along at most n(n− 1)/2 < n2 distinct permutations.
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O5 O4 O3 O2 O1

E2 E1

p1 = c p2 = c p3 = c p4 = c p5 = c

Permutation

O5 →O4 →O3 →O2 →O1      1/3

O5 →O4 →O2 →O1 →O3     1/6

O4 →O5 →O2 →O1 →O3     1/6

O4 →O5 →O1 →O3 →O2     1/3

Flow0

1

O5 →O4 

O4 →O5

O3 →O2 →O1        

O2 →O1 →O3       

O1 →O3 →O2        

Solution

Figure 3: With two equivalence classes E2 and E1, with 2 and 3 operators respectively, at most

four permutations are sufficient to establish the required flow, instead of six.

3.6 Comparison of the routes used by the two algorithms for the max-throughput
problem

The first and second max-throughput algorithms can output qualitatively different solutions to
the same problem instance. For example, consider a max-throughput instance in which we have
n operators, each with the same rate limit r = 1, and the same selectivity p = 1/2. The second
algorithm will output a solution with flow routed along n cyclic shifts of a single permutation.
The first algorithm will not output a solution with this property. It is easy to show that in each
recursive call, the first algorithm will merge the first two operators together (which switches their
order in future permutations). Thus, for example, if the initial permutation is (4, 3, 2, 1), the other
permutations will be (3, 4, 2, 1), (2, 3, 4, 1), and (1, 2, 3, 4).

3.7 Comparison of naive vs. optimal strategies for the max-throughput problem

We now consider the naive solution for the max-throughput problem, which sends all flow through
the operators in decreasing order of their rate limits, and compare it to the optimal solution.

Lemma 3.9 Consider an instance of the max-throughput problem. Let FNaive be the throughput
achieved by routing all flow through the operators in decreasing order of their rate limits. Let F ∗

be the throughput achieved by the optimal routing. Then

F ∗

FNaive
≤ n.

Proof. The linear program for the max-throughput problem has only n constraints, and so
there is an optimal solution to the max-throughput problem which sends tuples along at most n
distinct routes. One of these routes, say π, must account for at least 1

n
th of the total throughput,

F . Thus, if Fπ is the throughput that would be achieved if all tuples were sent along route π, then
Fπ ≥ F ∗/n. Moreover, Fπ must be at most the throughput of the Naive strategy, since it is the
optimal strategy when flow can be sent along a single ordering. Thus FNaive ≥ Fπ ≥ F ∗/n. 2

We show now that the factor of n in the above lemma cannot be improved. Consider first a
version of the max-throughput problem in which selectivities are allowed to be equal to 0 (rather
than strictly greater than 0). If the selectivity of every operator is equal to 0, and the rate limits of
the processors are equal to some value r, then using the same route for each tuple yields throughput
of r, while allowing different routes for the tuples enables a throughput of nr, that is, n times larger.
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As we have defined the max-throughput problem, selectivites cannot equal 0; however by making
the selectivity of each operator be arbitrarily close to 0, we can obtain a factor that is arbitrarily
close to n.

4 The game theoretic multiplicative regret (GTMR) problem and

variants

We begin by giving a formal definition of this problem. An instance of the GTMR problem is a
list of positive real costs c1, . . . , cn. Let h(π, i) = cπ(1) + cπ(2) + . . . + cπ(m) where m = π−1(i).
Let φ(n) denote the set of all permutations of {1, . . . , n}. The GTMR problem is given by the
minimax formulation below. The fπ denote the probability of choosing to route the tuple through
the operators according to the ordering specified by permutation π.

Game theoretic multiplicative regret:
Given c1, . . . , cn > 0, minimize

max
i∈{1,...,n}

∑

π∈φ(n)

fπh(π, i)/ci

subject to the constraints
∑

π∈φ(n)

fπ = 1

fπ ≥ 0 for all π ∈ φ(n)

For example, consider an instance of the GTMR problem with c1 = c2 = c3. The intuitive
strategy of choosing a random routing (uniformly) is optimal. An alternative optimal strategy is
to choose the orderings 1,2,3; 2,3,1; and 3,1,2 with equal probability.

A contrasting example is when the costs are c1 = 2, c2 = 2, and c3 = 8. If the adversary
selects O1 or O2 to eliminate the tuple, then routing the tuple to O3 first is bad – it results in an
expected multiplicative regret of at least 5 (= (8 + 2)/2). In fact, it can be shown that the only
optimal strategy for the routing player is to choose one of the orderings 1,2,3 and 2,1,3, each with
probability 1/2, yielding expected multiplicative regret of 3/2. Note that both these orderings have
3 in the last position. Finally, suppose c1 = c2 = 2 and c3 = 7. In this case, one optimal strategy is
to choose from the permutations 1,2,3; 1,3,2; and 2,1,3, with probabilities 23/57, 2/57, and 32/57,
respectively.

4.1 Algorithm to calculate an optimal routing for the GTMR problem

We relate the max-throughput problem and the GTMR problem by studying an (artificial) problem
that we call the cumulative cost limit problem. The solution to this problem has many similarities
to the solution to the max-throughput problem.

In the cumulative cost limit problem, we again have n operators O1, O2, . . . , On with costs, and
we need to decide how many tuples per unit time to route along each permutation. However, in this
problem there is also a cost limit di associated with each operator Oi. Tuples cannot be eliminated
by operators, and the processing of each tuple is deterministic. Costs are cumulative, so that when
a tuple arrives at an operator Oi, the amount that must be paid for Oi to process it is ci plus the
sum of all costs cj associated with operators Oj that have already processed that tuple. Operators
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have no limit on the number of tuples they can process per unit time. Instead, they are limited by
their cumulative cost limit di, which is an upper bound on the total amount that can be paid for
using that operator per unit time. The problem is to route the tuples so as to maximize the rate
of tuples that can be processed, subject to the cumulative cost limits.

Formally, the cumulative cost limit problem is given by the linear program below, where φ(n)
denotes the set of permutations of {1, . . . , n} as before, and h(π, i) =

∑m
j=1 cπ(j), where m = π−1(i).

Cumulative cost limit LP: Given c1, . . . , cn > 0 and d1, . . . , dn > 0, maximize

F =
∑

π∈φ(n)

fπ

subject to the constraints

∑

π∈φ(n)

fπh(π, i) ≤ di for all i ∈ {1, . . . , n}

fπ ≥ 0 for π ∈ φ(n)

Our max-throughput algorithms were based on the fact that any feasible solution satisfying the
saturated suffix property is optimal. In the next lemma, we prove that an analogous saturated-prefix
property guarantees optimality for the cummulative cost limit problem.

Lemma 4.1 If a feasible solution to the cumulative cost limit LP has the property that for some
non-empty subset Q ⊆ {1, . . . , n}, (1) the cumulative cost limit constraint for operator Oi is tight
iff i ∈ Q and (2) for any flow variable fπ, fπ > 0 implies that in permutation π, the elements of
Q precede the elements of Q̄, then the feasible solution is optimal and the value of the objective
function under the feasible solution is

∑

i∈Q cidi

(
∑

i∈Q c2
i ) + (

∑

i,j∈Q,i<j cicj)
(19)

Proof. Consider a feasible solution satisfying the conditions of the lemma. It specifies the rate
at which tuples should be sent along each permutation. Let CQ =

∑

j∈Q cj . For each i ∈ Q, the
cumulative cost limit constraint for Oi is tight, i.e.

∑

π∈φ(n) fπh(π, i) = di. Multiplying both sides
of this constraint by ci

CQ
and summing over all i ∈ Q, we get that

∑

i∈Q

∑

π∈φ(n)

fπh(π, i)
ci

CQ
=

∑

i∈Q

dici

CQ
. (20)

Exchanging the order of the summations on the left hand side of the equation shows it is equal to

∑

π∈φ(n)

fπ

∑

i∈Q

h(π, i)
ci

CQ
. (21)

Let φ′(n) denote the permutations of φ(n) in which the elements of Q precede the elements
of Q̄. By assumption, fπ = 0 for all π 6∈ φ′(n). Let π ∈ φ′(n). Consider

∑

i∈Q h(π, i) ci

CQ
. The
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quantity h(π, i) is equal to ci plus the sum of the cj such that j precedes i in π. For any j, k ∈ Q
such that j 6= k, either j precedes k in π and cj is an element of the sum h(π, k), or k precedes
j in π, and ck is an element of the sum h(π, j). It follows that

∑

i∈Q h(π, i) ci

CQ
= UQ/CQ, where

UQ = (
∑

i∈Q c2
i ) + (

∑

i,j∈Q,i<j cicj). Hence
∑

π∈φ(n) fπUQ/CQ =
∑

i∈Q
dici

CQ
. It immediately follows

that F =
∑

π∈φ(n) fπ =
P

i∈Q dici

UQ
.

We now show that the value of F cannot be larger than this value, for any feasible solution
to the cumulative cost limit LP. Consider a modified version of the cumulative cost limit LP in
which we eliminate all cost limit constraints for selection operators Oj such that j 6∈ Q. Consider
an optimal solution to this modified problem which assigns values f ′

π to each of the variables fπ.
Let F ′ =

∑

π∈φ(n) f ′
π be the value of the objective function. Clearly F ′ is an upper bound on the

maximum possible value of the objective function for the original cumulative cost limit LP. Let
φ′(n) be as defined above. Because selection operators Oj such that j 6∈ Q have no cost limit
constraints, and because each operator can only increase the cumulative amount of cost that will
be passed on to subsequent operators, we may assume without loss of generality that if f ′

π > 0,
then π ∈ φ′(n). If we take the cost limit constraints for Oi where i ∈ Q, multiply both sides of each
by ci

CQ
, and add the resulting inequalities, we get that

∑

i∈Q

∑

π∈φ(n) f ′
πh(π, i) ci

CQ
≤

∑

i∈Q
dici

CQ
. The

same argument as above shows that F ′ ≤
P

i∈q dici

UQ
. 2

The approach we used in our first max-throughput algorithm does not, however, seem to work
here. In that algorithm, we merge two operators Oi+1 and Oi when ri+1 = ripi, and send all
subsequent flow so it goes to Oi+1 immediately after going to Oi. In this way, we guarantee that
both Oi and Oi+1 will become saturated at the same time in the future (if they do, in fact, become
saturated); the guarantee is based on the fact that the total amount of future flow into Oi+1 will
be exactly pi times the total amount of future flow into Oi. However, in the cummulative cost limit
problem it isn’t clear how to ensure simultaneous saturation by placing Oi+1 permanently in front
of Oi, because the amount of future flow into (i.e. cost incurred by) Oi+1 is not a fixed amount
times the amount of future flow into Oi.

However, the approach used in our second max-throughput algorithm works quite directly for
the cummulative cost limit problem, because we can prove the following “load balancing” lemma.
It specifies a way to route t tuples per unit time so as to ensure that each operator has the same
cumulative cost per unit time.

Lemma 4.2 Let ρ1 be the permutation 1, . . . , n and for j ∈ [2 . . . n], let ρj be permutation j, j +
1, . . . , n, 1, 2, . . . , j−1, that is, the permutation obtained by performing j−1 left cyclic shifts on ρ1.
Let t > 0. Suppose we send a total of t tuples per unit time through the operators, using the routing
which sets fρi

to t ci
Pn

j=1 cj
for all i ∈ {1, . . . , n}, and sets fπ = 0 for all other π ∈ φ(n). Then the

amount that must be paid for every operator per unit time is
(

Pn
j=1 c2j)+(

P

1≤i<j≤n cicj)
Pn

j=1 cj
t.

Proof. Let i ∈ {1, . . . , n}. The quantity
∑

π∈φ(n) fπh(π, i) is equal to

t
∑n

j=1
cj

Pn
k=1 ck

h(ρj , i), where h(ρj , i) is equal to ci plus the sum of the ck such that k precedes i

in ρj. Expanding the term h(ρj , i) and multiplying out, each permutation ρj contributes to the
expression the term (c2

j/
∑n

j=1 cj)t and terms (cjck/
∑n

j=1 cj)t for all k such that k precedes i in
ρj . Consider any j, k ∈ {1, . . . , n} such that j < k and j, k 6= i. If j < i < k, then j precedes
i in ρk but k does not precede i in ρj. If, on the other hand, i < j or i > k, then k precedes i
in ρj, but j does not precede i in ρk. It follows that the sum of the terms of the expression is
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t
(

Pn
j=1 c2j)+(

P

1≤i<j≤n cicj)
Pn

j=1 cj
. 2

As in the max-throughput problem, we use this lemma to prove a technical lemma that gives a
method of routing tuples so that, given a partition Em, . . . , E1, we only send tuples along permu-
tations in which operators in Em are first, Em−1 are next, and so on, and such that the cumulative
cost per unit time for an operator to process the tuples within any given set in the partition is the
same for all operators.

With the technical lemma, we have the same building blocks that we had for the max-throughput
algorithm, and we can essentially run the same algorithm to solve the cumulative cost limit problem
(with the routing method for keeping costs equal, a different calculation for computing t̂, and with
the operators ordered in increasing cost limit order, rather than in decreasing rate limit order).
Lemma 4.1 proves that the solution computed by the algorithm is optimal.

We now describe how the algorithm for the cumulative cost limit problem can be used to
solve the GTMR problem. In standard routing problems with limits on the capacity of edges
(or nodes), congestion minimization and throughput maximization are closely related. Congestion
is the maximum, over all edges, of the relative load of an edge, the amount of flow through the
edge divided by the capacity of the edge. If there is a routing of k flow units that achieves 5%
congestion, then scaling the 5% congestion routing by a factor of 20 yields throughput of 20k
(with 100% congestion). Comparison of the GTMR LP to the cost limit LP reveals that the
GTMR problem is the congestion minimization problem corresponding to the cumulative cost
limit (max-throughput) problem, and flow achieving minimum (cost) congestion can be scaled to
achieve maximum throughput. In the next lemma, we formally reduce the GTMR problem to the
cumulative cost limit problem. In what follows, for any assignment A of values to the flow variables
fπ, π ∈ φ(n), let fπ(A) denote the value assigned to fπ by A.

Lemma 4.3 Let Imult be an instance of the GTMR problem with costs c1, . . . , cn > 0. Let Icost be
the instance of the cumulative cost limit problem with costs c1, c2, . . . , cn and cumulative cost limits
d1 = c1, d2 = c2, . . . , dn = cn. Let K be the optimal solution to Icost, and let F be the value of the
objective function achieved by K. Let L be the assignment to flow variables fπ such that for each
π ∈ φ(n), fπ(L) = fπ(K)/F . Then L is an optimal solution for Imult.

Proof. Since K is an optimal solution to Icost, F is the maximum value of the objective function
for Icost. We show that L is an optimal solution for Imult.

Since
∑

π∈φ(n) fπ(K) = F ,
∑

π∈φ(n) fπ(K)/F = 1. Hence L satisfies the constraints of the
GTMR problem. Since K maximizes the value of the objective function for the instance Icost of the
cumulative cost limit problem, there must be at least one i such that

∑

π∈φ(n) fπ(K)h(π, i) = ci

and hence
∑

π∈φ(n)(fπ(K)/F )h(π, i)/ci = 1
F

. Also, for every i,
∑

π∈φ(n)(fπ(K)/F )h(π, i)/ci ≤
1
F

.
Let H be the value of the objective function achieved by L for problem Imult. That is, H is the

maximum of
∑

π∈φ(n)(fπ(K)/F )h(π, i)/ci over all i. Thus H = 1
F

.
Suppose L is not an optimal solution to the instance Imult of the GTMR problem. Then there

exists some other solution L̃ that is optimal. Let H̃ be the value of the objective function achieved
by L̃. Thus H̃ < H.

Let K̃ be the assignment to the flow variables such that fπ(K̃) = Ffπ(L̃) for all π ∈ φ(n). The
value of the objective function for Icost achieved by K̃ is

∑

π∈φ(n) fπ(K̃) =
∑

π∈φ(n) Ffπ(L̃) = F

because
∑

π∈φ(n) fπ(L̃) = 1.
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Since H̃ < H, under solution L̃, for all i,

∑

π∈φ(n)

fπ(L̃)h(π, i)/ci ≤ H̃ < H =
1

F
,

and thus
∑

π∈φ(n) Ffπ(L̃)h(π, i) < ci.

Therefore,
∑

π∈φ(n) fπ(K̃)h(π, i) < ci. That is, K̃ is a feasible solution to Icost such that none

of the constraints are tight. It follows that there is a feasible solution M̃ to Icost such that the value
of the objective function under M̃ is greater than F . But this contradicts that F is the maximum
possible value of the objective function for Icost. 2

The above reduction, together with the algorithm for the cumulative cost limit problem, yield
an O(n2) algorithm for solving the GTMR problem. We note that, as in the case of the second
algorithm for the max-throughput problem, the algorithm for the GTMR problem can output a
solution using an exponential number of permutations, but can be modified to use O(n2) permu-
tations. We do not currently have an algorithm for the GTMR problem that outputs a sparse
solution, using n permutations.

4.2 Comparison of naive vs. optimal strategies for the GTMR problem

We now show that, for any set of costs, the naive strategy, which orders operators in increasing order
of their costs, achieves multiplicative regret that is within a factor 2 of the expected multiplicative
regret achieved by the optimal strategy.

Consider the GTMR problem, with costs 0 < c1 ≤ . . . ≤ cn. Let Naive be the deterministic
strategy for the routing player that orders the operators in increasing order of their costs. Let Opt
be the optimal strategy for the routing player that we obtain in Lemma 4.3. Let vGTMR(Naive) be
the expected multiplicative regret when the routing player uses strategy Naive and the adversary
uses the best (possibly randomized) strategy against Naive. Similarly, let vGTMR(Opt) be the
expected multiplicative regret when the routing player uses Opt and the adversary uses the best
(possibly randomized) strategy against Opt. Note that

vGTMR(Naive) = max
k

∑k
i=1 ci

ck
.

This is because
Pk

i=1 ci

ck
is the multiplicative regret when the routing player uses Naive and the

adversary chooses operator k to discard the tuple; thus the best strategy of the adversary against
Naive maximizes this value.

Also, it is the case that

vGTMR(Opt) = max
k

∑k
i=1 c2

i +
∑

1≤i<j≤k cicj
∑k

i=1 c2
i

. (22)

Briefly, this follows from two inequalities. To obtain the first, consider the strategy of the adversary

that chooses Oi (to be the operator which discards the tuple) with probability
c2i

Pk
i=1 c2i

if i ∈

{1, . . . , k} and with probability 0 otherwise. It can be shown that for any permutation π, if the
routing player routes the tuple (deterministically) according to π, the expected multiplicative regret
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is at least
Pk

i=1 c2i +
P

1≤i<j≤k cicj
Pk

i=1 c2i
against this strategy of the adversary. Hence,

max
k

∑k
i=1 c2

i +
∑

1≤i<j≤k cicj
∑k

i=1 c2
i

≤ vGTMR(Opt).

Second, Lemmas 4.1 and 4.3, together with the algorithm of Lemma 4.2, imply that for some k,

vGTMR(Opt) =

∑k
i=1 c2

i

(
∑k

i=1 c2
i ) + (

∑

1≤i<j≤k cicj)
.

Hence vGTMR(Opt) ≤ maxk

Pk
i=1 c2i

(
Pk

i=1 c2i )+(
P

1≤i<j≤k cicj)
. Combining both inequalities yields (22).

Lemma 4.4
vGTMR(Naive)

vGTMR(Opt)
≤ 2.

Proof. Let m = arg maxk

Pk
i=1 ci

ck
, that is, m is the value of k that maximizes the multiplicative

regret under the Naive strategy. Thus vGTMR(Naive) =
Pm

i=1 ci

cm
. Note that

vGTMR(Opt) = max
k

∑k
i=1 c2

i +
∑

1≤i<j≤k cicj
∑k

i=1 c2
i

≥

∑m
i=1 c2

i +
∑

1≤i<j≤m cicj
∑m

i=1 c2
i

=
(
∑m

i=1 ci)
2 +

∑m
i=1 c2

i

2
∑m

i=1 c2
i

.

Therefore,

vGTMR(Naive)

vGTMR(Opt)
≤

(∑m
i=1 ci

cm

)(

2
∑m

i=1 c2
i

(
∑m

i=1 ci)2 +
∑m

i=1 c2
i

)

≤

(∑m
i=1 ci

cm

)(

2cm

∑m
i=1 ci

(
∑m

i=1 ci)2

)

= 2.

2

4.3 Other game theoretic formulations

The game theoretic additive regret (GTAR) problem is analogous to the GTMR problem, except
that the goal is to minimize the difference between the cost paid and the cost that would have been
paid under the least cost routing. The minimax formulation of the GTAR problem is obtained
from the minimax formulation of the GTMR problem by replacing h(π, i)/ci by h(π, i) − ci.

The game theoretic total cost (GTTC) problem seeks to minimize the total cost paid, rather
than a regret function, and its minimax formulation is derived from the minimax formulation of
the GTMR problem by replacing h(π, i)/ci by h(π, i).

A simple linear time algorithm for the GTAR problem follows directly from the following lemma:
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Lemma 4.5 Let ρ1 be the permutation 1, . . . , n and let ρj be permutation j, j + 1, . . . , n, 1, 2,
. . . , j − 1 for j ∈ [2 . . . n]. That is, ρj is the permutation obtained by performing j − 1 left cyclic
shifts on ρ1. The assignment to the variables fπ which sets fρi

to ci−1
Pn

j=1 cj
for all i ∈ {1, . . . , n} and

sets fπ = 0 for all other π ∈ φ(n), is a solution to the GTAR problem.

Proof. Let

vGTAR(Opt) =

∑

0<i<j≤n cicj
∑n

j=1 cj
.

It can easily be verified that in the two-person game defined by the GTAR problem, if the routing
player chooses π according to the mixed strategy given in the statement of the lemma, the expected
additive regret incurred will be vGTAR(Opt), no matter which operator is chosen by the adversary
to eliminate the tuple. Thus vGTAR(Opt) is an upper bound on the optimal value of the objective
function of the GTAR problem. On the other hand, if for each i, the adversary chooses Oi as the
discarding operator with probability ci

Pn
j=1 cj

, then no matter what strategy the routing player uses,

the expected additive regret incurred will also be vGTAR(Opt), proving that vGTAR(Opt) is also a
lower bound on the optimal value of the objective function of the GTAR problem. It follows that
vGTAR(Opt) is equal to the optimal value of the objective function of the GTAR problem, and the
strategy given in the lemma is optimal for the routing player. 2

A very similar lemma and proof hold for the GTTC problem, leading to a linear time algorithm
for that problem also. The solution for GTTC assigns value ci

Pn
j=1 cj

to each fρi
.

We note that the GTTC and GTAR problems, like the GTMR problem, restrict the adversary
to choose exactly one operator to eliminate the tuple. As discussed earlier, under the multiplicative
regret measure used in the GTMR problem, this restriction doesn’t disadvantage the adversary.
Similarly, it does not disadvantage the adversary under the cost difference measure used in the
GTAR problem. However, with respect to the total cost measure used in the GTTC problem, the
restriction is a disadvantage, because the adversary would be better off making the tuple satisfy
all operators. When a tuple satisfies all operators, though, there is no filter ordering problem to
solve, because all orderings yield the same total cost. Therefore, to motivate the GTTC problem,
one can begin by assuming that at least one operator eliminates the tuple. Under that assumption,
using the total cost measure, the restriction that exactly one operator eliminates a tuple does not
disadvantage the adversary.
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