Re]primed Irom JOuRNAL GF CGMPUTER AND SYSTEM SCIENCES Vol. 26, Ne. 3, June 1988
All Rights Reserved by Academic Press, New York and Lendon Printed in Belgium

Probabilistic Game Automata
ANNE CoNDON* AND RICHARD E. LADNER'

Department of Computer Science, University of Waskington,
Seattle, Washington 98195

Reccived September 30, 1987; revised June 25, 1987

We define a probabilistic game automaton, a general model of a two-person game. We show
how this mode! includes as special cases the games against nature of Papadimitriou {13], the
Arthur—Merlin games of Babai [}, and the interactive progf systems of Goldwasser, Micali,
and Rackoff [7]. We prove a number of results about another special case, games against
unknown nature, which is a gencralization of games against nature. In our notation, we let UP,
(L7C) denote the class of two-person games with wnbounded two-sided ervor where one player
plays randomly, with partial information (complete information). Hence, the designation UC
refers to games apainst known nature and UP refers to games against unknown nature. We
show that

- UC-TIME(¢(n}) < UP-TIME(t(n)) S UC-TIME(r3(n)).
ASPACE(s(n))= UC-SPACE(s(n)) il s{n)=(logn),
UC-SPACE(s(s)) < UP-SPACE(log(s(n))) if s{n) =),

where ASPACE(s(n)} is the class of languages accepted by s{rr) space bounded alternating
Turing machines. We assume that all the space and time bounds are deterministically con-
structible. All the inclusions above except one involve the simulation of one garee by another.
The exceplion is the result that JC-SPACE(s(n)) = ASPACE(s(n}), which is shown by reduc.
ing a certain game theoretic problem to linear programming. © 1988 Academic Press, Inc.

1. INTRODUCTION

Because games and game-like phenomena occur naturally in a computational
setting, it is natural to formulate many problems in computer science in terms of
games. For example, games like chess have been a challenge to researchers in
artificial intelligence who desire models of thinking that can be automated. Results
on the complexity of logical theories have been proved by using a game-like
formulation of logics [3]. More recently, researchers in distributed computing
and cryptography have desired models which reflect the competitive nature of
distributed and cryptographic protocols.

In order to understand their complexity, various models of computation have

* Supported by an IBM fellowship. Present address: Computer Sciences Department, University of
Wisconsin-Madison, 1210 West Dayton Street, Madison, WI 53714.

* Supported by National Science Foundation Grant DXCR-8402565, Some of the research for this
paper was done at the Mathematica!l Sciences Research Enstitute, Berkeley, California.

452
0022-0000/88 £3.00

Copyright © 1988 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROBABILISTIC GAME AUTOMATA 453

been developed which reflect the game-like properties of these problems. These
models include the alternating Turing machines of Chandra, Kozen, and
Stockmeyer [4], the private alternating Turing machines of Peterson and Reif
[14, 15], the games against nature of Papadimitriou [13], the Arthur-Merlin
games of Babai [1], and the interactive proof systems of Goldwasser, Micali, and
Rackoff [7].

In this paper, we unify and extend the work on these game-like models of com-
putation. We present a new computational model of two-person games, called a
probabilistic game automaton. The players share an input and have access to states
and worktapes. Both players move according to 2 set of rules, which are modeled as
Turing machine-like transition rules. A strategy of a player defines the moves the
player makes at any point in the game, There are three important features of games
that are included in the definition of probabilistic game automata:

* Randomness. Each player can shuffle a deck of cards, roll dice, or flip a coin.
+ Secrecy. Each player can keep information private from the other player.

+ Power. Each player can have a iimited amount of computational resources
in which to carry out its strategy.

Randomness is modeled in a way similar to the way it is modeled in the
probabilistic Turing machines of Gill [6], secrecy is modeled in a way similar to
the way it is modeled in the private alternating Turing machines of Peterson and
Reif [14], and power is modeled by standard time and space bounds and by
whether or not nondeterministic cheice is allowed. Thus, we can think of a game
automaton as a language acceptor where the input is accessible to both the players.

Our goal is to examine the game automaton model carefully to see what the
effect is of varying the parameters of randomness, secrecy, and power. It is our hope
that its study will give insight into the game-like models already in existence and
also shed some light on problems in distributed computing and cryptographic
protocols.

Background

The most well-known game-theoretic model of computation is probably the alter-
nating Turing machine [4], which models a two-person game of complete infor-
mation, that is, a game where each player can see all the moves of its opponent. If
one player, designated at the outset of the game, has a strategy which always wins,
then the input is accepted. The moves of the players model alternation between
existential and universal quantifiers. Reif [15] has extended the definition of alter-
nating Turing machines to two-person games of partial information, where a player
may not see all the moves of its opponent. Peterson and Reifl have considered a
estricted form of multi-person games [14]. A special class of games, called solitaire
games, where one player must play deterministically after its first move, has been
tdied by Ladner and Norman [12].
tous models of polynomial time bounded games with randomness have also
en siudied. For example, the games against nature of Papadimitriou [13] provide

454 CONDON AND LADNER

a natural way to formulate a branch of problems in optimization, ie., decision
problems under uncertainty. In such games, one player, simulating nature, plays
randomly and the other player picks a strategy which maximizes its probability of
winning against the random player. If this player can win with probability >1
against the random player, it is considered to have won the game. Recently, Babai
[1] defined Arthur—Merlin games to be a class of two-person games where Arthur
plays randomly. For any input, either Merlin has a strategy which wins with
probability >3 on that input, or every strategy wins with probability at most 1. An
input is accepted if Merlin has a strategy which wins with probability >3 on that
input. Babai showed that some computational problems in matrix groups such as
membership and order belong to the class of Arthur—Merlin games. The interactive
proof systems of Goldwasser, Micali, and Rackoff [7] are yet another example of
two-person games. These games are similar to Arthur-Merlin games in that one
player plays randomly; however, in contrast to Arthur, the random player in an
interactive proof system may make moves which cannot be seen by its opponent.
Thus interactive proof systems are games of partial information. Related research
on interactive proof systems has been on zero-knowledge proofs. Such games have
applications in cryptography. It should be pointed out that games against nature,
Arthur-Merlin games, and interactive proof systems are not two-person games in
the traditional game-theoretic sense, because the random player has no control over
its moves. However, in keeping with the standard notation in computational com-
plexity theory, these and similar models will be referred to as two-person games in
this paper.

The Model

In this paper we introduce a model of a two-person game called a prebabifistic
game automaton, which encompasses these different games into a single vniform
framework. The probabilistic game automaton is a model of a two-person game
more general than any of the two-person games described above. The two players
are named player 0 and player 1. Each player can keep information private from
the other player. Some moves taken by either player are coin-tossing, where the
player flips a coin to determine which next move to make. On other moves, the
player can choose which move to make from the possible next moves. A move of

‘player | made by choice, rather than by flipping a coin, is called an exisiential

move. Similarly, a move of player 0 made by choice is called a universal move. We
use these names to distinguish moves where a player has a choice from the coin-
tossing moves. The names are derived from the fact that an existential move models
an existential quantifier and a universal move models a universal quantifier. Thus a
game consists of a sequence of existential, universal, and coin-tossing moves, in any
order. ’

A strategy of a player determines which step a player chooses, based on all the
steps of the game automaton so far. To investigate the power of different types of
probabilistic game automata we define the automata as language acceptors. The
notion of acceptance of an input is defined in terms of strategies for player 1. A

PROBABILISTIC GAME AUTOMATA 455

strategy for player 1 is a winning strategy with bound & 0 if the probability that the
strategy leads to a win for player 1, no matter what strategy player O uses, is > 1+ ¢
and is a losing strategy with bound £ 0 if the probability that the strategy leads to
a win for player 1 is €1—¢& A probabilistic game automaton is bounded random if
there is an & > 0 such that for each input there is either a winning strategy for player
1 with bound ¢ or every strategy is a losing strategy with bound & A probabilistic
game automaton is unbounded random if for each input there is a winning strategy
for player ! with bound 0 or every strategy is a losing strategy with bound 0. The
language accepted by a bounded (unbounded) random game automaton is the set
of inputs for which player 1 has a winning strategy with bound ¢> 0 (s =0).

The probabilistic game automaton combines the three features of games men-
tioned in the introduction--randomness, secrecy, and power—in a natural way.
Some features of the model are important in certain applications and not in others.
For example, in the study of zero-knowledge proofs, [7], it is essential that both
players have private information and can toss coins. In this paper we are simply
interested in understanding the complexity of the model, that is, what languages are
accepted by the model. Thus we make some simplifying assumptions about:the
model which make the proofs of this paper simpler to present, without weakcmng
the results.

The first simphifying assumption we make is that player | has no private: mfor-
mation; that is, all moves of player I can be seen by player 0. Because adeeptance is
defined in terms of strategics for player [it turns out that player 1 losesing: ¢dvan-
tage by making all of its private information visible to player 0. The reason that this
is true will- become clearer when we describe the model. ¥ player 0 also. hds ne
private information then we say that player 0 displays complete information. If
player 0 has only private information, that is, player 0 reveals nothing to player 1,
then we say that player 0 displays zero information. In general, player O displays
partial information. The second simplifying assumption we make is that in & game
of complete information or partial information, all the coin-tossing moves are made

by player 0. Player 0 may be further restricted if it is not allowed to make universal”

moves but only coin-tossing moves,

We introduce a notation to specily the various types of probabilistic game
automata. The symbol V i$ used to denote that player 0 can make universal moves.
H M is an unbounded random game automaton, then the letter I/ is used to denote
that player 0 can make random moves; if M is 4 bounded random game automaton
then the letter B is used. Finally the letters Z, P, or C are used to denote that player
0:displays zero, partial, or compléte information, respectively. The following table
summarizes this notation.

Universal moves Random moves Degree of information

v U V4
B P
C

456 CONDON AND LADNER

To specify the restrictions on player 0, at most one symbol is taken from each of the
left two columns and exactly one from the third column. For example, UC refers to
unbounded game automata where player 0 displays complete information and is
not allowed universal moves. VC refers to game automata where there are no ran-
dom moves, player 0 can make universal moves and displays complete isformation;
more simply stated, VYC refers to alternating Turing machines.

Probabilistic game automata can be time bounded or space bounded. For exam-
ple, UC-TIME(#(n)) is the class of languages accepted by UC game automata that
run in time bounded by O(r(n)). Similarly, UP-SPACE(s(n)) is the class of
languages accepted by UP game automata that run in space bounded by O{s(n}).

New Results

It takes a considerable effort to give a precise definition of probabilistic game
automata, but this needs to be done to remove all ambiguity. We show that UC
game automata are equivalent to the games against nature of Papadimitriou {137,
BC game automata are equivalent to the Arthur—Merlin games of Babai [1], and
the BP game automata arc equivalent to the interactive proof systems of
Goldwasser, Micali, and Rackoff [7].

The main results of this paper concern the unbounded random game automata in
the classes JC and UP. Since U/C game automata can be thought of as games
against nature then we say that UP game automata are games against unknown
nature. The definition of games against unknown nature extends the definition of
games against nature, just as the definition of interactive proof systems extends the
definition of Arthur—Merlin games. We show that the class of languages accepted
by games against unknown nature which run in time #(n), where #(n) is time-con-
structible, is contained in the class of languages accepted by games aganst nature
which run in time £*(#). In our notation, for time constructible {n) = Q(log n),

UC-TIME(t{n)) € UP-TIME({t(n)) & UC-TIME(:}(n)).

Previously, Papadimitriou [13] showed that the class of languages recognized by
alternating Turing machines that run in time #(n#) is contained in the class of
languages recognized by games against nature that run in time #(xn). Yap [16] has
recently shown how a language in the class UC-TIME(f{n}) can be recognized by
an alternating Turing machine running in time ¢(n)log (n). (In fact, Yap’s
simulation proves the stronger result that YUC-TIME(s«(n)) = ATIME(t(n)
Iog 1(n})). The results of Yap and Papadimitrion show that for time constructible
Hn}=L{n),

UC-TIME(#(n)) = ATIME(#(n) log t{n)} = UC-TIME(#(n) log t(n}).
From all of these results, it folows that polynomial time bounded alternating

Turing machines, games against nature, and games against unknown nature all
accept the same class of languages. These results are shown by simulating a time

PROBABILISTIC GAME AUTOMATA 457

bounded game automaton in one class by a time bounded game automaton in

another class.
We also prove new results on space bounded game automata. We show that,

unlike time bounded games, if s{n)=£2(n) is space construtible then log s(n) space
bounded games against unknown nature are powerful enough to simulate s(n)
space bounded games against nature. Formally, for space constructible s(n) = Q2(»),
UC-SPACE(s(n)) = UP-SPACE(log s(n)).
{

We also prove that s{n) space bounded alternating Turing machines accept the
same class of languages as s{n) space bounded games against nature. This result is
the analog of Papadimitriou’s result for time bounded games against nature. Hence
for space constructible s{n)= Q(log n),

ASPACE(s{n))= UC-SPACE(s(n)).

This result is proved using a reduction from a game theoretic problem to linear
programming. The other inclusions are shown by simulating one game auiomaton
by another.

In Section 2 we give precise definitions of probabilistic game automata. We rcldte '

games such as Arthur—Merlin games, games against nature, and interactive proof
systems to the probabilistic game automaton meodel in Section 3. Sectigns:4-and 3
contain proofs of our results about unbounded random game ‘automata:Wwith’
and space bounds, respectively. Fmally. conclus;ons and opcn problcms'are prcscn-
ted in Section 6.

2. DEFINITIONS

We now describe informally a k-tape probabilistic gamie automaton, A, with two
players, player 0 and player 1. Exactly one player moves during a step of M. There
is a special bit called a rrn indicaror which has the value i when the next step of M
is made by player /. The states of M are triples from some set V' x P, x P, where ¥
is a set of visible substates and P, is a set of substates private to player i, for =0, I.
Each set V, P,, or P, contains a coin-tossing substate, denoted by ve, poc, or p ¢,
respectively. A state (v, py. p,) is called a coin-rossing state if v = vc or if the value of
the turn indicator is / and p, = p,c. Some subset of the states of M is called the set of
halting states, which itself is partitioned into accepting and rejecting states.

The & tapes of M are divided into three disjoint groups: the visible tapes and the
tapes private to player i, for i=0, 1. The input tape is one of the visible tapes. Each
player has a private head on each of its private tapes and all of the visibie tapes. The
private head on a visible tape allows the player to read, undetected by the other
player, what is written on the visible tape. In addition each player has a visible head
on each visible tape. M has an input alphabet and a worktape alphabet.

There is a transition function 5, for each player which defines the valid steps of

458 CONDON AND LADNER

player i of M. At any moment, player i has exactly two valid steps. A deterministic
step is modeled by letting the two steps be the same. The domain of the transition
function §; is the set of configurations visible to player i In a step, player i may
change the visible substate, player i's private substate, the contents of the tapes
under the visible heads and under the heads on the private tapes of player i Also
player i may shift these heads one tape cell to the right or left and may change the
turn indicator so that player | —i moves at the next step. Figure 1 shows a
probabilistic game automaton with one visible worktape and one private worktape
for each player.

We make a distinction between a step and a move. A step of M is what we have
Jjust described, namely an individual step by either player according to its transition
function. A move by player i is a sequence of steps which begins just after the turn
indicator is first set to / and ends when the turn indicator is set to 1~/ Hence, a
move by a player will consist of a number of steps of that player. In general one
player will not know how many steps the other player is taking during the other
player’s move. This enables a player to do a lot of work privately without the other
player knowing anything about how much work has been done.

In order to define a strategy for player 1 and what it means for a probabilistic
game automaton to accept an input x, we need the following definitions.

Configurations and Histories

A configuration of M on input x is a tuple €, whose components are the current
state of M, the turn indicator, the current positions of the heads on the tapes of M
and the tape contents. We define visible(C, i} to be a tuple whose components are
the part of configuration C which is visible to player i This consists of the com-
ponents of C, less the contents of the private tapes of player 1 — i, the private head
positions of player 1 —4, and the substate of player 1 —i. Similarly let invisible(C, i}
be the part of configuration C which is not visible to player /. Finally, visible(C) is
the part of configuration C which is visible to both players, Associated with the
transition functions &, is a step relation, —, which maps configurations to con-
figurations in the usual way for a Turing machine.

player 0’s player 1's
private heads rivate heads
i
l substates | turn indicator |substates
T private to private to 5
player 0's tape player 0 | visible player 1 player 1’s tape

substates

FiG. 1. A probabilistic game automaton with ore visible tape and one privaie tape for each player.

PROBABILISTIC GAME AUTOMATA 459

Let pilayer(C) be the value of the turn indicator of configuration C, state(C) be
the state of C, and init(M, x) be the initial configuration of M on input x. The con-
figurations are partitioned into a few different types; if state(C) is coin-tossing,
accepting, or rejecting we say C is coin-tossing (), accepting (a), or rejecting (r),
respectively. Otherwise if player(C)=0 we say C is universal (V) and if
player{C)=1 we say C is existential (3).

A history H for M on input x is a sequence CyC, -+ C, such that C,— C;, | for
O0gj<n—1 and C,=init(M, x). Intuitively, a history describes a sequence of steps
of M on x where for /> 0, component C; describes the configuration of M after the
Jjth step. We define last{H} to be C,. Let visible(H, i} be the part of the history
visible to player i. Formally, if H is a configuration, visible(H, i) is already defined.
Otherwise let D be a history where H itself is a history. Then

isible(FID, i) visible(H, i), if visible(last(), i) = visible(D, i),
VISiDie =

i "= visible(H, i) visible(D, i), otherwise. :
Finally, let visible(A) be the part of the history H visible to both players A, hlqtory
H is called a full history if state(last{ H)) is halting.

Strategies and Computation Trees

Since player 1 does not have access to the private tapes and: substai
player 1’s steps can only depend on what player | has seen ‘so:farinsthi
make this precise we define a straregy of player | of M on input:x-tobe:
mapping histories visible to player 1 into configurations visiblesto: playe !
property that if H is a history satisfying player(last(H)}=1 and: slatc(!ast(H)) is
not a coin-tossing state then HC is a history, where:€ is-a configuration:such: that
o(visible(H, 1)) = visible(C, |} and “invisible(C, 1/} =invisible{last{H),;1 };::On: the
other hand, a strategy of player O may depend-onthe history of the game;iincluding
the private states and tapes of player 1. The reason for this is that we:-aré inferested
in seeing how good a strategy of player: 115 -against any possibie sequence of moves
of player 0. We define a strategy of player 0 to be a function r mapping histories
intc configurations -with the property that if H is a history satisfying
player(!ast(H}) 0 state(last(H}) is"Not a coin-tossing state and t(H) = C then HC
is a history, . %

For every strategy @ of player 1 of M on x. we define a computation tree T', to be
a (possibly infinite) labeled binary tree with the following properties:

1. Each node # of the tree is labeled with a configuration /() and the root of
the tree has label init(M, x). For a node #, if X{x) is a universal, existential, coin-
tossing, accepting, or rejecting configuration we say » is a universal, existential,
coin-tossing, accepting, or rejecting node, respectively.

2. Any universal or coin-tossing node 5 has two children ¢, and 6, such that
fn)—1(6,) and /() — 1(8,).

460 CONDON AND LADNER

3. Any existential node # has exactly one child & and #{n) — /(8). Also, if H is
a sequence of configurations labeling the nodes of T, from the root to n then
visible((#), 1) = a(visible(H, 1)).

4. I g is accepting or rejecting then # is a leaf.

The sequence of configurations labeling nodes of any path from the root of the
computation tree is a history. Each computation tree T, has a value which is a
measure of how good strategy o is. For a tree T, define the level, level(n), of a node
to be the distance of that node from the root. The root is at level 0. We refer to
the root of T, as root(T,). For each k we define value(r, k) for each node in the
tree as follows: if level(n) = & then value(y, k) = 0. Otherwise,

value(y, k)
0, if i1 1s rejecting,
L if is accepting,

= { i[value(f,, k) + value(d,, k)1, ifn is cointossing with children @,, ,,
minf value(8,, k), value(8,,4) 1, if » is universal with children 8,, 8,,
value(@, k), if i is existential with child 6.

It 15 not difficult to see that for all nodes 4 and all &:
value(y, k)< value(n, k+ F) < 1.

So we define
value(y) = lim value(y, k).
k=

The value of computation tree T, is denoted by v, and is equal to value(root(7,}).

It should be clear that if a2 computation tree has no coin-tossing nodes but
consists just of universal and existential nodes, the value of the tree is either
0 or 1. When a computation tree has no universal or existential nodes but just
coin-tossing nodes it models a computation where only coin-tossing moves are
made, and the value of the tree equals the probability of reaching an accepting leaf
of the tree. N

Language Acceptance

A strategy ¢ is a bounded winning sirategy for player 1 on input x with bound
g0, if the value of computation tree T, of M on x, denoted by v,, is >1+s
Similarly a strategy ¢ is a bounded losing sirategy for player 1 on input x with
bound £ 0, if v, <1—& A probabilistic game automaton M is a bounded random
game automaton if there is ¢ > ((depending only on M) with the property that, for
any input x, either player I has a bounded winning strategy with bound ¢ or every
strategy of player 1 is a bounded losing strategy with bound & Let M be a bounded

PROBABILISTIC GAME AUTOMATA 461

random game automaton and let >0 be any real number satisfying the definition
above. Then the language accepted by M is L{M}= {x: M has a bounded winning
strategy for player 1 on input x with bound ¢}.

An unbounded winning (or losing) strategy is defined as for a bounded winning
{or losing) strategy except ¢ =0. A probabilistic game automaton M is an unboun-
ded random game automaton if it is a probabilistic game automaton with the
property that, for any input x, either player 1 has an unbounded winning strategy
or every strategy of player 1 is an unbounded losing strategy. Let M be an unboun-
ded random game automaton. Then the language accepted by M is LiM)={x: M
has an unbounded winning strategy for player 1 on input x}. Clearly, any language
accepted by a bounded random game automaton is also accepted by an unbounded
random game automaton. :

Time and Space Bounds

In this paper we consider worst case-time and space bounds. A computation tree is
t time bounded if the longest path from the root to a leaf is bounded by t. A com-
putation tree is 5 space bounded if each configuration in the tree uses <s work tape
cells. Clearly a time bounded computation tree must be finite, but a space bounded
computation tree could possibly be infinite.

A game automaten is 1(r) time bounded {sin) space bounded) if every strategy for
player 1 on each input of length » yields a computation tree which is ¢(n) time
bounded (s(n) space bounded). Because we are only considering time and space
bounds that are constructible we could have, without loss of generality, placed our
time and space bounds only on winning strategies.

A function f(n) is time {space) constructible if there is a deterministic Turing
machine which on each input of length » runs in exactly 1(n) time (visits exactly
s(n) tape cells) and halts.

Degree of Information

Player 0 may display varying degrees of informarion to player 1. If player 0 never
changes its visible substate, never reads or writes on the visible tapes, and never
moves its visible heads, we say player 0 displays zero information. In such a game,
the only action of player O which is visible to player 1 is that player 0 changes the
turn indicator. If player 0 never changes its private substatc and never reads or
writes on its private tapes, we say player O displays complete information. In general
player 0 displays partial information, A game where player 0 displays complete
or zero information is a special case of a game where player 0 displays partial
information.

The purpose of this paper is to study what languages are accepted by various
types of probabilistic game automata. The notion of acceptance really only depends
on the existence (or nonexistence) of good strategies for player 1 against any action
of player 0. Since a strategy of player 0 can depend on the complete configuration
of the game, including the part of the configuration which is private to player 1, we
may as well assume that player | has no private information.

462 CONDON AND LADNER

When player 0 displays partial or complete information, we can assume that the
game automaton has the property that player 1 makes no coin-tossing steps (that
is, steps when the turn indicator is 1 and the current state is a coin-tossing state).
All the coin-tossing steps for both players can be made by player 0. Henceforth, we
will assume that our game automata with complete or partial information are such
that player | has no private information and does not make coin-tossing steps.

Markov strategies form a special subset of the set of strategies of player 1. Ina
Markov strategy, player Us steps depend only on the current state of the game and
not on the whole history of the game played so far. Thus we can think of a Markov
strategy for player 1 on input x as a function ¢ mapping configurations visible to
player 1 to configurations visible to player 1. More precisely, we say o is a Markov
strategy if for any histories H, and H,, if last{visible(H , 1)) =last{visible(H;, 1}},
then o(visible{H |, 1}} = a(visible(H,, 1)). It is a standard result from game theory
that in a game automaton of complete information, if player [has a bounded
(unbounded) winning strategy then player 1 has a bounded (unbounded) winning
Markov strategy {15]. Intuitively, this is so because at any step of 2 game of com-
plete information, the complete configuration of the game is visible to player 1, and
hence the best move of player 1 can be determined from the configuration. In con-
trast, at a step of a game of partial information the configuration of the game which
is visible to player 1 does not include the private tapes and states of player 0. There
may be many possible complete configurations of the game consistent with the con-
figuration visible to player 1. In order for player 1 to determine its next step it must
know the probability distribution of the complete configurations at the beginning of
the step. The history of the game determines that probability distribution. Thus,
player 1's best strategy may depend on the history, not just the current visible
configuration.

Notation

Within this general model there are many different types of game automata,
where player 1 is existential and player 0 is restricted in some way. To describe the
restrictions on player 0, we use the following notation. The symbol ¥ is used to
denote that player O can make universal moves. If M is an unbounded random
game automaton, then the letter U is used to denote that player 0 can make coin-
tossing moves; if M is a bounded random game automaton then the letter B is used.
Finally the letters Z, P, or C are used to denote that player O displays zero, partial
or complete information, respectively. To specify the resirictions on player 0, V is
either chosen or not, at most of one of I/ or B is chosen, and exactly one of Z, P, or
C is chosen. For example:

1. A VBP automaton is a probabilistic game automaton where player 0
makes universal and coin-tossing moves and displays partial information. On
inputs accepted by the automaton, player 1 is required to have a bounded winning
strategy, and on inputs not accepted by the automaton, every strategy of player 1
must be a bounded losing strategy.

PROBABILISTIC GAME AUTOMATA 463

2. A VZ-automaton is a game automaton where player 0 can make universal
moves-but does not make coin-tossing moves. Player 0 displays zero information.
On:any-input accepted by the automaton, player 1 has a strategy which wins
agamst every strategy of player 0.

. The suffices ~-TIME(¢(n)}, -SPACE(s(n))} are used to restrict time, space. For any
type of game automata G, G-TIME(t(n)) is the class of languages accepted by
game automata of type G which are O(t(n)) time bounded. Similarly,
G-8PACE(s(n)) denotes the class of languages accepted by game automata of type
G which are O(s(n)} space bounded.

3. SpeciAL Cases oF PROBARILISTIC (GAMES

Many interesting special cases of probabilistic game automata have already been
studied. Some of these can easily be formulated in our general model; for example,
the two-person games of incomplete information of Reif [15] and the solitaire
games of Ladner and Norman [12]. Another example is Papadimitriou’s games
against natyre, A game against nature is a polynomial time game of complete infor-
mation between two players, one of which is existential and. the other of which ran-
dom, representing nature. There is an input to the game, just as for a probabilistic
game automaton, and an input is accepted if the existential player has a strategy
which wins against the random player with probability’ >4. There is no difficulty
extending the definition of games against nature to arbitrary time bounds. Hence a
game against nature is a probabilistic game automaton with complete information
where player O takes no universal steps.

GAMES-AGAINST-NATURE(1(n}) = UC-TIME(¢{n)).

Similar 1o games against nature are the Arthur-Merlin games of Babai [1]. The
difference is that the acceptance condition of Arthur-Merlin games on input x
fequires that the probability of acceptance be bounded away from } by some con-
stant £¢>0. If AM-TIME(#(n)) is the class languages acccplcd by Arthur—Merlm
games running in time Ofr(n}), then

AM-=TIME(s(n)) = BC-TIME(1(n)}).

Finally we show how the inreractive proof systems (IPS) of Goldwasser, Micali,
and Rackoff [7] fif into our model. In that paper an IPS is defined in terms of a
pair of Turing machines; here, for consistency with our other definitions, we define
an IPS equivalently as a probabilistic pame with partial information. An IPS
consists of two players, the prover, and the verifier. The verifier tosses coins and
displays portial information. The players exchange information {called the text of
the computation) using the visible tapes. An interactive proof system is denoted
by (P, V), where P and V represent the prover and the verifier, respectively. The

464 CONDON AND LADNER

verifier of an interactive proof system corresponds to player 0 of a probabilistic
game automaton where player O takes no universal steps and the prover
corresponds to player 1. However, there are three important differences between
interactive proof systems and probabilistic game automata:

» the prover of an interactive proof system cannot make existential moves
whereas player 1 of a probabilistic game automaton can;

« the time used by the verifier, and not the prover, is counted as the time
used by an interactive proof system, whereas in a probabilistic game automaton,
both the times used by the players 0 and 1 are counted;

« the definition of language acceptance is different for interactive proof
systems and probabilistic game automata. Since in an interactive proof system the
prover makes no existeniial moves, it cannot have a strategy. A language L is
accepted by interactive proof system (P, V') with bound £>0 if

I. forevery xe L, (P,) halts in an accepting state with probability >i+¢
and

2. for every x4 L, and any other interactive proof system (P*, V), (P*, V)
halts in an accepting state with probability <i—e.

Let IPS-TIME(¢{#n}) denote the class of languages accepted by interactive proof
systems with time bound ¢(n). We give a brief argument that

IPS-TIME(t(r)) = BP-TIME(¢(n)).

First, suppose L is a language in the class IPS-TIME(z(r)) and let (P, ¥) be a 1(n)
time bounded interactive proof system which accepts L. We define a t(»n) time
bounded game automaton M in the class BP which accepts L. The verifier V is
simulated by player of M and the prover P is simulated by player 1. The problem
with this is that player 1 cannot perform all the computations of the prover since
this may take time more than #(n). However, note that on a run of the interactive
proof, at most (n) symbols written on the visible tapes by the prover P are read by
the verifier V. The idea is that player I simulates the prover by existentially writing
on the visible tapes the symbols which are read by the verifier. Because it does this
existentially, it does not have to do the computations of the prover which would
lead to the same symbols being written on the tape. It can do this in O(#{n)) time.
Since the computation of player 0 is identical to that of the verifier, the probability
that A accepts x when player 1's strategy is to simulate prover P equals the
probability that (¥, ¥} accepts x. Hence any input accepted by (P, V) is accepted
by M. Also if x is not accepted by (£, V) then for all provers P*, the probability
that (P*, V) halts in an accepting state on x is at most {— & Thus no matter what
strategy player | uses, that is, no matter what P* it simulates, M halts in an
accepting state with probability at most 4 — ¢ and so x is rejected by M. This shows
that M and (P, V) accept the same language.

Conversely suppose L is a language accepted by a #(n) time bounded game

PROBABILISTIC GAME AUTOMATA 465

automaton M. with bound ¢ in the class BP. We describe an interactive proof (2, V)
which aceepts L and runs in time ¢(#). On any input x, player 0 of M is simulated
by-the verifier V. Player 1 is simulated by the prover. However, the prover cannot
make existential moves. Thus to determine which step to take at any time when
player 1 would take an existential step, the prover must examine all strategies of
player 1 from that step to the end of the game and determine which strategy is best.
It can do this by constructing the computation tree for each strategy; the com-
putation tree with greatest value yields the best strategy. It can do this since it has
no time limit and the computation trees can be constructed in a straightforward
way in time exponential in #(rn). The verifier can simulate the steps of player 0, since
player 0 uses polynomial time and makes no universal moves. As well as simulating
the moves of player 0, the verifier checks after each step of the prover that the
prover is properiy following player 1’s transition function. If the verifier notices that
the prover deviates from the transition function of player 1, then the verifier
immediately haits in a rejecting state.

If xelL, the prover simulates a strategy of player 1 which has value >1+4¢
and hence the verifier halts in an accepting state with probability > 1+ & However
if x¢ L, no prover P* exists for which (P*, V} accepts x with probability >1— & To
see this, note that the prover P* can either simulate a strategy of player 1, using
the transition function of player {, or it can deviate from the transition function
of player 1. If the prover P* simulates a strategy of player 1, an accepting state is
reached with probability <{— ¢ since every strategy of player [of M is a bounded
losing strategy. The prover P* cannot increase the probability of reaching an
accepting state by deviating from the transition function of player 1, since the
verifier checks that P* is properly following player 1's transition function. Hence x
is not accepted by (FP*, V), for any prover P*.

The verifier ' runs in time O{7(n)) since player 0 does; hence the time bound of
(P, ¥) is @(+{n)). Thus interactive proof systems and bounded random games with
the same time bounds are equivalent.

4. THE CoMPLEXITY OF TiME BOUNDED GAME AUTOMATA

There is a close relationship between the complexity of time bounded game
automata and alternating Turing machines, Papadimitriou [§3], who considered
the complexity of unbounded random games, showed that the set of languages
accepted by polynomially time bounded games against nature is the same as the set
of languages accepted by alternating Turing machines which run in time
polynomial in n. Equivalently, UC-TIME(poly(n}}= ATIME(poly(x)), where by
poly(n} we mean any polynomial function of ». Yap [16] generalized this result to
show that for time constructible t(n)=Q(xn), VUC-TIME(/{(r))= ATIME(s{n)
log 1{n)). The complexity of bounded random game automata with partial infor-
mation which run in polynomial time, that is, the class BP-TIME(poly(n}) was

466 CONDON AND LADNER

studied by Sipser and Goldwasser [8], who showed that BP-TIME(poly(n}} <
BC-TIME(poly(r)).

In this section we consider unbounded random game automata with partial
information. Our main result, Theorem 2, proves that the class of languages accep-
ted by unbounded random game automata with complete information which run in
polynomial time is the same as the class of languages accepted by unbounded ran-
dom game automata with partig/ information running in polynomial time. The
proof technique is different than that used by Sipser and Goldwasser for the boun-
ded random case. We use the following lemmma in our proof. In this and all the
following proofs we distinguish between the players of distinct automata M and AL’
by denoting them by player { and player ¢ respectively for i=0, 1.

LEMMA 1. Let t(n) be time constructible. Any t(n) time bounded probabilistic
game automaton M in the class UP can be simulated by a game automaton M’ in the
class UP which accepts the same language as M, is O(£3(n)) time bounded and has the
Jollowing properties.

1. The players of M' alternate moves at every step.
2. Al full histories of M’ are of the same length.

Proof. We can assume (see Section 2) that player 1 has no private tapes, heads,
or states. The first attempt in describing the simulation of M by M, which is not
correct, is as folows. M’ simulates M step by step. Suppose at step & of some
history of M, player / moves and does not change the turn indicator. Then when M’
simulates this step, player i’ simulates the step of player 7 but changes the turn
indicator and enters a special visible state. From this state, player {1 —i} may only
take 2 null step, changing the turn indicator and the visible state so that player
can simulate step &k + 1 of A at the next step of M.

The problem with this simulation is that there may exist distinct histories A, H,
of M such that visible(H,} = visible(H), but if H| and H} are the histories of M’
which simulate A, H,, respectively, then visible(H} # visible(H5). Hence a strategy
of player 1’ may map £, and H} onto distinct configurations, thus increasing the
probability that A’ halts in an accepting state on input x. To show how such
histories H, and H, can exist, we define a hidden sequence of steps of M to be a
sequence i, .., j, £ < j of steps of player 0 which has the following properties:

= the visible part of the configurations of M at steps i, .., j are the same,

= if M does not hait at step j, the visible part of the configuration at step j is
different from that of step j+ 1, and

» if i>0, the visible part of the configuration at step i—1 is different irom
that at step i.
Let H, and H, be histories representing distinct hidden sequences of different
lengths such that visible(H,)=visible(H,). Then visible(H))=H)# Hy=
visible(H3), since A} and A} have different lengths.

PROBABILISTIC GAME AUTOMATA 467

Tor over js'problem, player 0’ must pad all hidden sequences of player 0 to
length:y -.durmg the simulation by taking null steps at which it does not change
i ble‘configuration. Then since player 1’ cannot distinguish the null steps from

iitated steps, all histories of M’ which have the same visible part are
fatiniuishable to player I'. The padding procedure may square the running time
BIEM so that it rups in time O(#%(n)).
“ The automaton M" just constructed satisfies property 1 of the lemma. To ensure
that M’ satisfies property 2, that is, all histories are of the same length, M’ counts
the length of the history it is simulating. If M’ -is about to enter a halting state
befote ¢2(n) steps, where ¢ is an appropriately chosen constant, M’ takes null steps
until cr¥(n) steps have passed and then enters the halting state. |

THEOREM 2. If t{n) is time consiructible then
UC-TIME(1{n)) € UP-TIME(1(n}) € UC-TIME(£*(n)).

Proof. The containment UC-TIME(r(n)} < UP-TIME(:(#)) is immediate, since
a game automaton with complete information is trivially a game automaton with
partial information. Thus we need to show UP-TIME(t(n)}<= UC-TIME{*{n)).
The proof is similar to a proof by Reif [15] on games without randomness. From
the previous lemma we know that any game automaton in the class UP which is
O(t(n)) time bounded can be simulated by a game automaton M in the class UP
for which every full history has length exactly ¢r*(n), for some constant ¢, and the
players alternate turns at every step. Without loss of generality, assume that player
0 of M takes the odd numbered steps and player | takes the even numbered steps.
We construct a game automaton M’ in the class UC which simulates M and is
O{r¥n)) time bounded.

Fix an input x and let m=cr3(jx]). Before we can describe A, we show how a
sequence of m numbers, each of conslant lengih, can represent a visible history of
M. Given the visible configuration of Af on x at time &, there is a constant number,
o (assumed to be a power of 2}, of pessible visible configurations of M at time
k+ 1. This is because in changing the visible configuration in one step, a player of
M cap only change the visible state, the visible tape head positions, and the
contents of a constant number of tape cells. The « possible visible configurations
can be ordered in a straightforward way so that any number =, 1 €« <aq, uniguely
determines the ath possible next visible configuration from any given visible
configuration.

Let 8§={a,---x,|a€{l,.,a}, 1<i<m} Each string a,---2,,€§ represents a
sequence of v151b1e confi guratlons VC,VC, --- VC,,, where VC, is the initial visible
configuration of M and ¥C, is the =th posstble visible configuration from VC,_,.
For l<j<m we say x,---o, represents a visible history if there is a history
CoCy-+-C,; of M such that v151ble(C) VC,0<i<j A string «, ---2; is vafid if it
represents 2 visible history. The empty string is valid by definition. A strmg [PREERY.
is J-invatid if for some even j, 1<j=m, o % . 18 valid but «,---%; is not

468 CONDON AND LADNER

Similarly a string o, - - -a.,,, is #-invalid if for some odd j, I <j<m, a;---a;_, 15 valid
but =, --- o, is not. The set § can be partitioned into valid, 3-invalid, and #-invalid
strings. ’

We now describe the simulation of M on x by M'. The simulation is done in two
stages. In the first stage, the players of M’ write down on a worktape a sequence
&, ---a, from the set §. If 4 is the worktape alphabet of M, then the worktape
alphabet of M' is du{l,.,a}. The players write alternate numbers in the
sequence. Player 0 randomly writes down the numbers «, where / is odd, since
these numbers represent configurations reached from cointossing configurations.
Similarly player 1’ writes down a; where 7 15 even. After m turns, a sequence o - - o,
is written on the worktape, where for odd i, o, is written randomly by player 0, and
for even i, o, is written existentially by player 1'. Each o, is of constant length, and
so the sequence can be written in time O(m). Let ¥ C,---VC,, be the visible
sequence of configurations represented by o, ---«,,

The idea of the second stage is that player 0’ tries to simulate a complete history
CoC,---C,, of M, such that visible{C,)= ¥C,, 0<i<m. Cleariy this is only
possible if «, ---a,, is valid. Player 1" does not move in the second stage. Player 0
starts in the initial configuration of M. Suppose player 0’ has simulated a history
Cy---C;_, such that for 0<i<j—1, visible(C,}=VC, Then player 0 has
simulated the first j— 1 steps of a history of M and is in configuration C; ;. I jis
even, player 0" checks that a, ---«; is valid, given that &, ---a;_, is. It can do this in
constant time. If o; is not valid then the string «, ---a,, is 3-invalid and player 0’
halts in a rejecting state. Otherwise player (' changes the visible part of con-
figuration C,., to obfain a new configuration C; such that visible(C;)=VC,, the
visible configuration represented by «,.

If j is odd, player 0’ simulates a coin-tossing step of M from configuration C,..,.

Thus player 0’ simulates a step of player 0 of M. Let C, be the configuration of M’
after this step. Player 0 checks if visible{C;)= V'C,. If not, player 0 halis, accepting
with probability L Otherwise player ' continues to the pext step of the simulation.
If j=m then player ¢ halts, and enters an accepting state if and only if state(C,,) is
an accepting state.
- This completes the description of M. Note that the strategy of player 1’ is
completely determined in the first stage. Moreover, since player 1’ does not see the
part of the history which is private to player 0, its strategy cannot depend on this
information.

It is not hard to see that the running time of the automaton M’ described above
is O(3(n)) since this is the running time of M. It remains to show that M and M’
accept the same language. Fix an input x. The proof that A" accepts x if and only if
M does is organized as follows. We first define what it means for a strategy ¢’ of
player 1° on input x to simulate a strategy o of player 1. A strategy which satisfies
this definition is called a simulating strategy. We show that if player 1’ uses a
simulating strategy then no string written by the players in the first stage of the
simulation is 3-invalid. We use this characterization of a simulating strategy to
show that if player !’ has an unbounded winning strategy. it has one which

* PROBABILISTIC GAME AUTOMATA 469

of player 1. We then consider the strategies ¢’ of M’ such that
j rategy ¢ of player 1 and show that ¢’ is an unbounded winning
o only if o is. Thus M" accepts x if and only if M does.

sider strategies ¢’ of player 1° as mappings from strings o, - -- &, , where j
¢ say strategy ¢ of player 1" simulates strategy ¢ of player 1 if

O"(ﬁ;-"1j_|)::(J'¢>U_(VCD"' VCJLI)= VC

for any even j and any valid prefix 2, ---%; of a string of § which represents visible
configurations VCy--- VC,.

If o' simulates some strategy o, we say ¢ is a simwlating strategy. If ¢’ is a
simulating strategy then when a valid string =, --- 2, | is written in the first stage
where j is even, player 1’ writes »; on the tape where x,---%; is also valid. If
oy ---o; s #-invalid, it does not matter what x, player 1" writes.

Let .S, be the subset of strings of $ of the form s =z, --- %, which can be written
in the first stage of some execution of M’ on x when player 1° uses strategy o',

Cram 3. A strategy o is o simulating strategy if and only i’ S, has no 3-invalid
SIFings.

Proof. First suppose ¢’ simulates strategy o and suppose s=g,---a,, i§ an
3-invalid string in S,.. We show that this leads to a contradiction. Let VC,--- VC,,
be the sequence of visible configurations represented by x,-..4,,. Then for some
even j, VCqy---¥C,_, is a visible history of M and V(.- VC‘J is not. However,
since o' simulates ¢, it must be that o(¥Cy.-- VC,)= V(,, contradicting the fact
that ¥'Cy,--- F'C, is not a visible history of M. To prove the other direction, suppose
that S, has no J-invalid strings. We wish to show that ¢ is a simulating strategy.
Let ¢y be an arbitrary strategy of player 1 of M. We claim o' simulates the strategy
o defined as foilows on visible history VG, .- ¥C, | where j is even.

VC il VC,--- ¥C;is a visible history
represented by a prefix of a string in S,

PV Cy e VT), otherwise.

i

o(VCq---VC,_\)=

First we show that ¢ is-a well-defined strategy. It-is clearly well defined on visible
histories which are not represented by a prefix of a string in §,, hence we need only
consider the case-when VCo--- ¥C,_, is represented by a prefix of a string of 5.
Suppose s, and s, are two distinct strings of §,. such that the first j— | numbers of
each represent VCq-.- VC,_, where j is even. Then the jth numbers of s, and s, are
the same. This is because the strategy ¢’ can only depend on the first j — 1 numbers
oy, .y o When writing the jth number x,. Thus VC, is unique and hence ¢’ is well
defined. It follows immediately from the definition of a simulating strategy that ¢’
simulates . |

|
1

470 CONDON AND LADNER

CLaM 4. For any strategy of player V' on x, there is always a simulating strategy
which is at least as good.

Preaf. Suppose ¢ is not a simulating strategy of player 1. We define a
simulating strategy ¢’ such that S, contains all the strings of S,. which are not
F-invalid. To see that such a strategy exists, let ¥’ be an arbitrary simulating
strategy of player 1. We define o’ as a function of strings a, ---o;_,, where j is
even, as follows:

%, if o, -+ - is not I-invalid
ooy -0y)= and is the prefix of a strmg inS,

Wiloy ---a;_y), otherwise,

We need to show that ¢’ is a simulating strategy and that o,=v,.. It is
straightforward from the definition of &' to see that S, has no E-invalid strings;
hence by Claim 3 ¢’ is a simulating strategy. Next we show that », . For any
strategy ', if player 1’ uses strategy ¥ then each sequence s€ S, can be written in
the first stage of M* with equal probability. This is because all sequences s are of
equal length and exactly [w/27 of the o are coin-tossing steps. Hence the
probability that A" accepts x when player 1’ uses strategy f’ is

1
Vg = A Y. Prob{ M’ accepts x if 5 is written in the first stage].

f#lse Sg
In particular, this formula holds if §=¢”". The fact that v,. < v, follows from the
following two observations. First, |S,.| =1S,-| = al ™27, since for any given strategy
of player 1', there are a' ™21 possible strings written in the first stage. Second, from
the definition of ¢, S, contains all strings of S,. which are not I-invalid. Thus

Z Prob[M’ accepts x if 5 is written in the first stage |

sE S

- 1
TS,

- |Srr'|

€5,
= 1
= S.

] u'l

=g,

Y. Prob[M' accepts x if 5 is written in the first stage]

s€ 5y

as required.

By Claim 4, we need only consider strategies of M* on x which simulate strategies
of M. Let o’ be a strategy of M’ which simulates ¢. To complete the proof, we
derive an expression for the value of p,. in terms of v, .

PROBABILISTIC GAME AUTOMATA 471

CLamM 5. Jf o' simulates @ then

““From this it follows immediately that M’ accepts x if and only il M does, since
v, > % if and only if v, >4, and thus ¢’ is an unbounded winning strategy if and only
if ¢ is. It remains to prove Claim 5.

Proof of Claim 5. Since M satisfies the properties of Lemma 1, the paths in the
computation tree T, are of equal length and are followed with equal probability.
The sequence of labels of each path of T, is a history of M. The paths of T, can be
partitioned -into equivalence classes, where {wo paths are in the same equivalence
class if the visible history labeling each of them is equal. Each string s written in the
first stage of M’ defines a visible history of M. For any string se §,., let p, be the
fraction of paths of T, which are in the equivalence class corresponding to the
visible history represented by s. Let g, be the fraction of paths in this equivalence
class which are accepting. Then the probability of reaching an accepting leaf,
following a path from the root of T, is t, =3 .5 7.4.-

Let m be the depth of T,. Each path of length m starting at the root of T,
corresponds to a string se S,.. Each valid path represents a visible history of M. If 5
is valid or #-invalid we say the corresponding path is valid or #-invalid, respec-
tively. (Since o is a simulating strategy, we can assume that S, has no F-invalid
_paths). There is a one-to-one correspondence between the valid paths of T, and the
equivalence classes of paths of T_. 1f a path of T, corresponds to string s, the sub-
tree T, rooted at its mth node has one path for each path in the equivalence class
corresponding to string 5. Altogether. a fraction p, of the paths of T, correspond to
paths in the equivalence class. Of the other paths of the subtree. the probability of
reaching an accepting leaf is .

In Fig. 2 there is an example of two computation trees T, and T_.. The paths of
length m from the root of T, labeled with “¢” are accepting and with *»” are rejec-
ting. Two equivalence classes of paths of T, are shown, which correspond to valid
‘paths of T,.. The fraction of leaves marked with *(respectively ») which are
accepting is g, ({respectively ¢,). The path tabeled 5, is #-invalid, hence the
probability of reaching an accepting leaf from the root of T, is 3.

From this it follows that p.g,+ (1 —p,}1 is the probability of reaching an
accepting leaf from the root of the subtree T,. Thus

! AR 1
P A {lp = o~ | =
=5 L (p,q&(p,)z) ‘Sa“(ba 2)+2,

se 8y

since ¥ .p. =1 and v, =Y p,q.. This completes the proof of Claim 5. |

472 CONDON AND LADNER

valid pat R-invalid path

length m paths with same

visible history

aa a T arr &TaT ..

FiG. 2. Computation trees T, and T,

5, THe COMPLEXITY OF SPACE BOUNDED GAME AUTOMATA

The results of this section describe unbounded random space bounded game
automata with complete and partial information. We first consider s(n) space boun-
ded games against nature, that is, the class of s{n) space bounded game automata in
the class UC. The main result is that for s(n) = Q(log n},

UC-SPACE(s(n)} = ASPACE(s(n)).

This result 1s the space bounded analog of Papadimitriou’s result for time boun-
ded games against natvre that UC-TIME(poly{n)} = ATIME{poly(n)). The proof
uses a characterization of space bounded game automata in terms of graphs which .
are examples of Markov decision processes (see Howard [9]). We start by deserib-
ing a mapping from space bounded game automata to graphs. We later show how
these graphs relate to general Markov decision processes and prove the main result.

In the final section we consider s(n) space bounded game automata with parrial
information, that is, game automata where player 0 uses private states or tapes. We
show that such game automata seem to be more powerful than space bounded
game automata with complete information since for s(n) = 2(n),

UC-SPACE(s(n)) = UP-SPACE(log s(n}}.

It js an open problem whether these two classes are equal.

i
L
I

PROBABILISTIC GAME AUTOMATA 473

Graph Representation of Game Automata in VUC-SPACE(s(n))

We have seen in Section 2 that any game automaton M on input x can be
represented by a tree of all possible computations. If M has space bound s{n) with
s(n}=Q(log n}, the corresponding tree may have an infinite number of nodes on
some inputs, although the number of distinct configurations labeling nodes of the
tree is bounded by &, for some constant 4. The graph representation of an s(»)
space bounded game automaton with complete information which we are about to
describe has the advantage of having a finite number, at most ¢, of nodes.

Let M be an s(n) space bounded game automaton with complete information.
Without loss of generality assume that M has a unique accepting and a unique
rejecting configuration. We associate with M on input x of length » a directed
graph G, having at most 4™ nodes, for some constant 4, where each node is
labeled by a distinct configuration of M. Let {[, .., N} be the nodes of G. There is
an edge from node ¢ to node j in the graph if there is a transition from the con-
figuration labeling node 7 to the configuration labeling node j in M. The nodes
labeled by accepting or rejecting configurations are called hafting nodes. Each other
node of the graph is either coin-tossing, existential, or universal, depending on the
configuration which labels it. AH nodes except halting nodes have exactly two out-
going edges; for technical reasons we assume that each halting node i has exactly
one reflexive edge (4,). We call the node labeled by the initial configuration the
start node,

Consider a subgraph of & obtained by removing one of the two edges from each
existential node and each universal node of G. The set of remaining outgoing edges
from the existential (universal) nodes of the subgraph is called an existential policy
a (universal policy 1) of G. We denote the subgraph as G, .. There is a one-to-one
correspondence between the Markov strategies of player | (player 0) of M on input
x and the existential {universal) policies of G: hence we use the same symbols to
refer to each of them. For each node i of G, ., let v, {i} denote the value of node i,
where ¢, (i) is the unique value satisfying the following conditions. If there is no
path from 7 to a halting node then v, (7) = 0. Otherwise,

I if / is labeled with the accepting configuration,
0, if / is labeled with the rejecting configuration,
o, Y+, [(K)), if i is a cointossing node

Uy)= . . S s
1) with outgoing edges (i, /), (i, k),
va (/) if { is an existential or a universal node

with outgoing edge (i, j).

We show that the values of a graph &, . are well defined. The values of nodes in
G, . with no path to a halting node are well defined, as are the values of the halting
nodes. Let nodes 1, ..., & be the nodes with a path to a halting node and let nodes
N—1 and N be the halting nodes labeled with the rejecting and accepting con-
figurations, respectively. We use the theory of Markov processes to show that the

474 CONDON AND LADNER

values of nodes 1---& are well defined. G, . is a Markov process with transition
probabilities p;, 1 <, j < N, defined as follows: p; =4 if { is a coin-tossing node with
outgoing edge (i, /); py=1if 7 is an existential or universal node with outgoing edge
(/) and p, =0 otherwise. Also pyy=px 1y =1, ppv=0ifiENandpy_;=01if
J#EN—1 Let the kxk matrix @=[p;], 1<ij<k, be the one-step transition
matrix of nodes | -- -k of the Markov process G, .. A property of @ that we will use
is that lim, . ., 0"=0. This follows from standard Markov Process theory, based
on the fact that the nodes |, .., k are transient since all have a path to a halting
node.

Substituting 0 for v, /), k+1<i<N—1, and 1 for ¢, .(N) in the equations
defining v, (1),., v, .(k}, we have that '

v, . =0v, . +h,

where b is a constant vector and v, .= (v, (1), .., v, (k))T. Furthermore, note that
each element of b is a linear combination of v, (k+1), .., v, (N} where all coef-
ficients are nonnegative, Thus (f— Q) v, .=b. There is a unique vector v, . if and
only if (f— @) has a nonzero determinant. The following proof that I— Q has a
nonzero determinant is from Kemeny and Snecil [10]. From the basic rules of
algebra,
(I-OYI+Q@+ - + Q")=1—0"

Since lim,_, . Q"=0, the limit as n— w0 of the right-hand side is / which has
determinant . Hence the determinant of the limit as # — oo of the left-hand side is
also 1. The determinant of the product of two matrices is the product of the deter-
minants; therefore the determinant of I — Q must be nonzero, as required.

The value v, (i} of each node of the graph G, . has a natural interpretation in
the context of game automaton M. Suppose M is in the ‘configuration which labels
node i. Suppose player 1 of M uses the strategy corresponding to existential policy
& and that player 0 of M uses the strategy corresponding to universal policy t in
subsequent moves of the game. Then v, (i) is the probability that M reaches an
accepting state on input x.

Consider the case when M is a space bounded game automaton in the class UC.
Then the graph ¢ on input x has no universal nodes and so G has no universal
policies. In this case, if o Is an existential policy of G, we denote by G, the subgraph
G where the edges from the existential nodes are from policy ¢ and we denote the
value of node i of G, by v,(i). Suppose M is in the configuration which labels node
i. Suppose player 1 of M uses the strategy corresponding to existential policy ¢ in
subsequent moves of the game. Then v,{i} is the probability that M reaches an
accepting state on input x. The value of T, is v, =&, (start node of G,). Since there
are a finite number of policies of G, x is accepted by M if and only if max,{e, (star:
node of G,}} >4,

PROBABILISTIC GAME AUTOMATA 475

lecision Processes

ut that the graphs associated with space bounded game automata with
“information can be interpreted as special cases of Markov decision
ses [9]. A thorough treatment of finite state Markov decision processes is
by Howard in [9]; our definition here is less general than that considered by
ward. A Markov decision process % consists of a set of states {1,..., N}, where
dach state { has a finite set of choices E,. Each choice p,e E; is a vector (P, v, Pivh
where 3, p. = 1. State 1 is called the srarr state, state N1 is the O-sink state and
state N is the 1-sink state. We assume that for all p,_ e E,_,,py_,;=0 for
i# N1 Similarly, for all p,e E,, pv,=0for i N.

We define a policy P of % to be a matrix P=[p;] 1 i< N, where for ail §, row i
of P is a choice of E,. The states {1,.., N} together with policy P constitute a
Markov process, where p; is the probability of going from state / to state j in one
step.

For a policy P, let values of the states of %, denoted by {vq(i), i=1,.., N}, be the
unique values satisfying the following. If the probability of reaching a sink state
from state i is 0, then ¢ p(7) = 0. Otherwise

0, ifi==N—1,
) . ifi=N,
vpli)=

N

Z pitalj) otherwise.

j=1

Cramm 6. The values voli) of 4 are well defined and can be evaluated in time
polynomial in N.

Proof. The proof that the values are well defined is exactly like the proof that
the values of the subgraph G, . are well defined. It is clearly true for values (i)
when the probability of reaching a sink state from state 7 is 0, since then v (i) =0,
Also the values of the sink states N—1 and N can easily be seen to be well defined.
Let states 1, ..., & be the states from which the probability of reaching a sink state is
greater than zero. Let vo=(vp(l), .., t0k)}". Then just as in Section 5, we can
write v, as v, = 0v, +b, where b is a constant vector and @ is the one-step trans-
ition matrix on states I, .., k of ¥ with respect to P The values v,{i) can be com-
puted in polynomial time by solving the equation v, = Ov,+ b using any standard
method, for example, Cramer’s rule [2].]

If M is an s(»#} space bounded game automaton in the class UC, the graph G
associated with A on input x corresponds to a special kind of Markov decision
process. The nodes of & are the states of the Markov decision process. We let ¢
denote the Markov decision process corresponding to graph G. The start state of ¢
is the start node of G and the 0- and 1-sink states are the rejecting and accepting
nodes, respectively. If 7 is an existential node of G then state i of % has two choices,

P T e e

476 CONDON AND LADNER

each of the form p,=(0, .., 0, 1,0, ., 0), where the jth entry of p, is 11f (i, j) is an
outgoing edge of node / and all other entries of p; are 0. If { is a cointossing node of
G, state { of 4 has one choice of the form p,= (0, .., 0, 4,0, .., 0,3}, 0, ..., 0) where the
Jth and kth entries of p, are 1if (4, j), (i, k) are the outgoing edges of node i and all
other entries of p; are 0. Each existential policy a of G corresponds to a policy P of
the Markov decision process in a natural way. The definitions of the values of the
nodes of graph G with respect to. policy o are consistent with the definitions of the
values of the states of the Markov decision process % with respect to policy P

Space Bounded Game Automata with Complete Information

We can now describe how we will prove the first of our main results on.space
bounded game automata, that UC-SPACE(s(n)) S |, 5 o DTIME(2°™). Let L be a
language in the class UC-SPACE(s(n)) and let M be an s(n) space bounded game
automaten in the class U/C which recognizes L. Let G be the graph representation
of M on input x and let % be the Markov decision process corresponding to graph
G. We have already seen at the end of Section 5 that x is accepted by M if and only
if

1
max {v,(start node of G)} > o

where the maximum is taken over all policies o of graph G. Equivalently, x is
accepted by M if and only il

1
max {vp(start state of %)} >~§,
r

where the maximum here is taken over all policies P of %. This is because of the
correspondence between policies of graph & and the policies of the Markov
decision process %. We say a policy P of & is optimal if v, (start state of ¥} 2 v,
(start state of %) for all policies P” of 4. Thus the value of the start state of %, with
respect to an optimal policy, is greater than 4 if and only if M accepts x. To prove
the theorem, we show how the values of the states of ¥, with respect to an optimal
policy can be computed in time polynomial in the number of states of 4. The proof
can be broken down into two major steps. First we show that the values {0opeli),
I <i< N} of the states of ¥ with respect to some optimal policy are the minimal
solution to the following equations:

SN
max y poo(f), fl1<igN-2,
1

P.eE;]-=
“ai=q, ifi=N—1, M
1, ii= N '

PROBABILISTIC GAME AUTOMATA 477

The values {v,,(i}} are a minimal solution to Eqs. (1) in the sense that if {v(i}} is
any other solution to (1) then v, (i) < v(i), 1 /< N. The breakdown of this step is
as follows. In Lemma 7 we show that the values of the states of %, with respect to
some policy, satisfy Egs. (1). Theorem & is a technical theorem, from which we
derive in Corollary 9 that any policy whose values satisfy Egs. (1) must be optimal.
Corollary 10, which is another corollary of Theorem 8, shows that the values of the
states .of %, with respect to an optimal policy which satisfy Eqgs. (1), must be a
minimal solution to Eqs. (1), completing the first major step of the proof. The
second major step is to show that the minimal solution of Eqs. (1) can be found in
time polynomial in &, the number of states of % This is shown in Theorem 11.
Theorem 12 combines the results of all of these lemmas to get the final result.

Lemma 7. There is a policy P'™' of G such that the values {04, (i}, 1<i< N}
of the states of & with respect to P™*' satisfy the Eqs. (I).

Proof. We give an algorithm for constructing P*™**". This algorithm, called the
policy iteration algorithm, is due to Howard [9]. Unfortunately the algorithm may
run in time exponential in the number of states of %. The algorithm proceeds in
iterations. There is a current policy for each iteration and the current policy for the
initial iteration is chosen arbitrarily. At each iteration the algorithm modifies the
currentt policy in a special way to obtain a new policy which becomes the current
policy of the next iteration. The algorithm stops when the current policy satisfies
Egs. (1).

Let P be an arbitrary policy of %.

repeat
Pe P
compute ve(i) for 1 <IN,
i v (i) satisfies Eqgs. (1) for each / then
halt and output FP;

else
let ¢ be such that v,,(i)<ma2_(2p” vl f);
PEE]

let pi={pjr, ... Pix) & E; be such that 3 pivp(7) =¥ pyvplj) =vp(i);
let P'=[p};] be such that the ith row of P’ is p; and for K #4, pi.=p,,.
endrepeat

In Claim 6, we showed that the v.(i) can be computed in time polynomial in ¥
at each iteration. From this it is straightforward to show that each iteration can be
completed in time polynomial in N. Clearly if the algorithm halts, it outputs a
policy whose values satisfy Egs. (1). Hence we need only show that the algorithm
always halts. To do this we prove the following fact: If P’ is the policy obtained

478 CONDON AND LADNER

from policy P on some iteration of the algorithm then for all &, vp(k) 2 vp(k) and
L vplk)> 3, velk)

Let 4, =vplk}—vp(k). Then 4, =3 plwp(j) 3, pyvp(j) Adding and sub-
tracting 3 pi; vp(/) we obtain

de=2 piyverlJ) = Z Pevel)+ Z pive(f) — L pvef)}

Let 0, =% pivp(f}— 2 pyyva(j). Note that §,>0, by the choice of P, and for
k+#1i, 6, =0. Then

4,=Y piyd;+68,.
J

Let A=(4,, ., 4,7 and 6=(5,, .., d,)". Then 4= P'4+4& which implies that
A=(I—-P)"18. I—P is invertible since P’ is a stochastic matrx; in fact
(I~ P}y '=(P)+{PY+ ---(P).. Hence all entries in the vector (I—P')" '8
are nonnegative. Thus for each &, 4, =v,(k}—vp{k) is nonncgative. Morcover,
tp{f) ~ vp{f) > 0. This is because

vpl[i}fup(i')zdi:Zp;—Aj+ d,>0,
J
since §,>0 and pj; and 4,20 for 1<j<N. Thus 3 vp{k)> 3, vp(k), completing
the proof of the fact.

It is now straightforward to show that the algorithm halts. Since the sum of the
values of the current policy at each iteration is strictly greater than that of previous
iterations, the current policy is never the same on two different iterations. There are
at most 2% policies so the algorithm must eventually halt and the number of
iterations is bounded by the number of policies. Since each iteration takes time
polynomial in N, the algorithm runs in worst case time 2%V, |

THEOREM 8. If {v,,(i})} are the values of the states of § with respect to an
arbitrary policy P then for any nonnegative solwion {v(i)} of Egs. (1),
Vapl) (i), for 1 <IN,

Proof. By relabeling states if necessary, assume that the probability of reaching
a sink state from states {k+ L, .., N—2} is 0 and the probability of reaching a sink
state from states {1, .., k} is >0 in % with respect to the policy P**®'. By definition
of the values of a policy, v,,(k+1)= - =0, (N—1)}=0, v,,(N)=1 and so
(i) zv.()ifie{hk+1, ., N}

It remains to show that v, (i) <o(i), 1Si<k Let o= (tan(l), o Boplk}T.
We have already seen that v,,=0v,, +b, where O is the one-step transition
matrix on states 1,.., &k of % with respect to P™® and b is a constant vector.
Furthermore (/—) has nonzero determinant; hence v, =(/—) 'b. Each

PROBABILISTIC GAME AUTOMATA 479

element of b is a linear combination of v,k + 1),.... v4,(¥)} with nonnegative
coefficients. Let the ith component of the vector b be b;=a, . v,lk + 1)+ - +
iy Larn(V).] ,

Similarly if v=(v(1), .., v(k))7, since the u({) satisfy Eqs. (1) then v2= Qv +b'.
Herc b’ is a constant vector with component b;=a, , v{k+ 1)+ --- +a,0(N).
Since the coefficients a; are nonnegative and v(i) 2v,{i) for k+1<i<N, it
follows that b’ =b. Hence vz Ov+b and so v (I~ 0)~'b=v,,,. This proves that
bon(D) S 0{f), 1<<i<k, and we are done. ||

As an immediate corollary of Theorem 8 we have:

CoROLLARY 9. [f the values {vp(i}} of ¥ with respect to some policy P satisfy

Egs. (1), then P is an optimal policy.

Proaf. From Theorem 8, if v,,,(/) are the values of an arbitrary policy of ¢,
vp(y€v,{i) for all i In particular, for the start state, vy (start state of
@)y < vp(start state of ¥); hence P must be an optimal policy. |

CoroLLaRY 10. Jf PP is an oprimal policy for which the values {v.,(i)} are a
solution to Egs. (1) then {v,,(i)} are minimal nonnegative solutions to Egs. (1), That
is, if {v(i)} are any other nonnegative solutions 1o the equations then v, (i) < v(i), for
I <i<N.

Progf, The proof is immediate from Theorem 8. Since the values {v,,(7}} are
the values of 4 with respect to some policy and the values {45(/)} are nonnegative
solutions to Egs. (1), it must be that ¢ () €e(i), 1 <ig N |

THEOREM 11. The minimal nonnegative solution to Egs. (1), that is,
max 3y p,e(j), fI<isN-2,
[LE T ’
U(f)z 0‘ i = N 1,
L. if i=N

can be found in time polvnomial in N.

Proof. We show that the minimal solution to these equations is the same as the
solution to the following linear programming problem: minimize ¥ | v({), subject
to the constraints i

N .
viyz } pyelJ) forall (py, - pi)€E,1SiSN=2,
=1
and

o()20, I<isN—1, w(N)=L

&
:
K
£
&
5
:
kS
i

1
&
H

i

480 CONDON AND LADNER

Let {o(i), 1 << N} be any solution to the linear programming problcm.-N_‘
that a solution exists by Lemma 7. Then from the constraints of the linear progra
ming problem it is immediate that

N
u(i);mazr(Y pyo(jh o(N—1)=0,0(N) = L
PiEE [T

We argue that the p(J) satisfy Eqs. (1) by contradiction. There are three cases to
consider: (i) v(k)>max,, ., T¥ | pyo(f), for some k<N 1; (il) o(N— 1) > 0; and
(iii) v(N) > 1. In each case we construct a vector v’ = (¥'(1), ..., v'(N}) such that v
salisfies the constraints of the linear programming problem and U <T o),
contradicting the fact that values {u(i), 1< < N} are minimal solutions to the
linear programming problem. In the first case let V(i) =w(i) for i#k and let
v'{k)=max, .. ¥ | p.o(j). In the second case let v'(N— 1)=0 and v'({)=v{i)
for i N — 1. Similarly, for the third case, where o(N}=1, let v'(N)=1, &' (i) = v(i)
for i N. In ail cases {v'(/)} satisfies the constraints of the linear programming
problem since for [<igN-2, 2T e 2TY pyv' () for all
(Pas - Piv}€ E; and also o(N —1)=20, 9(N) > 1. Also, since for some i, () < v(i),

L)< XX | ofi), which proves the contradiction. Hence an optimal solution
to the linear programming problem must satisfy Eqs. (1), and so the minimal
solution to Egs. (1) must be the optimal solution to the linear programming
problem, Khachian [11] has shown that the linear programming problem is com-
putable in time polynomial in the length of the input, which is O(N) in this case,
Hence the minimal solution to Egs. (1) can be found in time polynomial in N. |

We can finally prove the main theorem of this section.

THEOREM 12. If s(n}= Q(log n) is constructible then

UC-SPACE(s(n)) < |) DTIME(2%™),

cz0

Proof. Let M be an s(n) space bounded game automaton in the class UC, We
describe a 29%U") time bounded deterministic Turing machine M’ which recognizes
the same language as M. On input x, the game automaton M’ comsiructs the
Markov decision process ¢ which corresponds to the graph representing M. This
can be done in time polynomial in &, where 4" is the number of distinct con-
figurations of M. Let N =& From Lemma 7 and Corollary 10, the values of the
states of % with respect to some optimal policy satisfy the equations
oliy=max,.. 2" | p,o(j). 1<i<N—2, o(N—1)=0, and (N)=1, and are in
fact the minimal solution to these equations. M’ finds the minimal solution to these
equations in time polynomial in @), using the method of Theorem 11. M’ accepts
if and only if the value of the stars state of % is >4. Hence the total running time is
20600 ag required. ||

PROBABILISTIC GAME AUTOMATA 431

THEOREM. 13. [If s(n)=Q(log n) is space constructible,
ASPACE(s(n)) < UC-SPACE(s(n)).

Progf. The proof is similar to the proof of Gill [6] that NP PP. If M is an
s{n) space bounded alternating Turing machine we can assume that the longest
history of M is of length 2, for some constant 4 On input x of length », player
0’ of the simulating game automaton M’ tosses an unbiased coin with two out-
comes, 0 or 1 at the first siep. If the outcome is 0, M" simulates A, player [’
simulating the existential steps of A and player ¢ simulating the universal steps of
M, taking coin-tossing steps instead of universal steps. If a | is tossed initially then
player O’ tosses 2™ 4+ 1 coins and M’ accepts x if and only if the outcome of every
coin toss is 1.

If x is accepted by M then x is accepted by M* with probability 1+ 1/2 >4
Otherwise the probability that M’ accepts x is at most L — [/22" 4+ 1/22""+1 <}
and so x is not in the language accepted by M". Tt is straightforward to sec that M’
uses space O(s(n)). 1

dsind 5. g

THeoreM 14, For s(n)=Q(log n), UC-SPACE(s(n}) = ASPACE(s(n)).

Proof. This follows immediately from Theorems 12 and 13. |l

Space Bounded Game Automata with Partial Informarion

The techniques used in the above proofs do not extend to space bounded game
automata with partial information. Thus no complete characterization of the classes
UP-SPACE(s(r)) and YU/P-SPACE(s(n)) is known. The following theorem shows
that space bounded game automata with partial information are likely to be much
more powerful than space bounded game automata with complete information.

THEOREM 15. [If s(n}=Q(n) is constructible, UC-SPACE(s(n)) &
UP-SPACE(log s(r)).

Proof. Reif [15] proved a similar result for game automata without random-
ness; he showed that YC-SPACE(s(n)) € VP-SPACE(log s(#)). The simulation in
the proof we present here is similar to Reif's, though the proof is more complicated
here. Let M be an (i) space bounded game avtomaton in the class {/C. In order to
prove our result, we assume that M is a one-tape automaton and that the players
alternate moves, starting with player 0. We describe a log s(n) space bounded game
automaton M’ in the class UP which simulates M.

Intuitively the simulation works as follows. Fix some input x. Player 1" of M’
existentially simulates a history of M on x by listing each symbol of the history in
sequence. If player 1’ lists a halting configuration at some step, M* halts in an
accepting state if and only if the configuration is accepting. Player 0" checks that the
sequence of symbols listed by player 1’ constitutes a valid history of M and halts in
a rejecting state if the history is not valid. Since player 0" is bounded by O(log n)

482 CONDON AND LADNER

space, it cannot check the complete history listed by player 1'. The key idea is that
player O randomfy and privately decides whether to check one symbol of the
history. After each step where player 1’ has listed a symbol of the history, player ¢/
checks the symbol with probability 3. Once player 0’ has checked a symbol, the
computation halts. With probability } player 0’ does not check the symbol and
player 1’ lists the next symbol of the history. Since player 1’ does not know when
player 0’ is checking the listing, it is forced to output a valid history.

We now describe in more detail how player !’ lists a history of M. A history can
be represented as a string mga, m, --- a,m;, ..., where each m; is a configuration and
my is the initial configuration. Each a,& {1, 2} and m,_ |, = m, for i >0, that is, the
ajth possible next configuration from m,_, is m,, according to the transition func-
tion of M. Each configuration m; is represented as a string ¢, -+~ ¢4 §Cp -+~ Cyqy >
where g is a state of M, ¢, ---¢,,,, represents the contents of the worktape and the
tape head is positioned on the kth tape cell. Each ¢; is either an input symbol, a
worktape symbol or a special blank symbol. The length of each m, is s(n) + 1. The
initial configuration m, is represented as the string gy x &', where g, is the
initial state. In this case the string ¢, --- ¢, represents the input, for n<i<s(n) ¢; is
the blank symbol & and k= 1.

Let the visible substates of A" contain the worktape and input alphabets of M,
the blank symbol and the set {1,2}. In one step, player 1‘ lists a symbol in the
string mga, m ---by entering the visible substate which corresponds to the symbol.
Thus, player 1’ does not use any space at all. In order to list the symbol a,& {1, 2}
when m;_, is a coin-tossing configuration, player 1’ changes the value of the turn
indicator and player 0 takes a cointossing step. Thus g; is chosen randomly and
uniformly if i is odd and is chosen existentially if / is even. As a result, player 1’ lists
a;as a 1 or 2 with equal prebability.

Next we show how player 0’ checks that the string listed by player 1" is a valid
history of M. The string listed by player 1’ is valid if it satisfies the following
conditions:

* mg is the initial configuration of M and each m, has Iength s(n)+ 1,
+ ifm,_, is a coin-tossing configuration then a, is chosen randomly by player

0" and if m; | is an existential configuration then @, is chosen by player 1/, where

ae{l, 2},
* m;_ —»%m, for i>0, that is, m, is the ath possible configuration reachable

from m;_, according to the transition function.

To check the first condition, player 0’ verifies that m, is of the form g,x b7 ==,
To check that g; is chosen correctly for some i, player (' needs to verify that
a;€{1,2} and that a, is determined as a result of a coin-tossing step of player ¢ if
the turn indicator of configuration m; _ | is 0. If player 0" ever finds that either of the
first two conditions is not satisfied, it halts in a rejecting state. To check the last
condition, player 0" would need to write down on a tape configuration m, | while
configuration m, is being listed by player I’, in order to check that there is a valid

B e e s e e e s ey

PROBABILISTIC GAME AUTOMATA 483

transition from m,_, to m, Thus player 0’ cannot check the last condition since

each ; is of length s(n}+ 1 and player {' can use space only O{log s(r)). However, '

player 0’ can check one symbol of a configuration as follows. Suppose that player 0
decides to check the kth symbeol of m;, i > 0. Then player 0’ stores on a private tape
the four symbols numbered &k —1, k, &+ 1, k + 2 of configuration m,_,, together
with & and ¢,. Using this information and the transition function of M, player 0’
can verify that the kth symbol of m, is valid. Player 0" uses O(log s(r)) space to
store k and constant space to store @, and the four symbols. The definition of a valid
spmbol follows naturally from the definition of a valid string given by the three
conditions above. Player 0’ can check if any symbol of the string listed by player 1
is valid, using only O(log s(n)} space.

Player O’ privately and randomly decides to check one symbol of the history
listed by player 1’ (excluding the initial configuration} in the following way. Sup-
pose player 1 lists a symbol, say symbol k¥ — 1 of configuration m, _, and player 0’
has not already chosen a symbol to check. Then with probability 3 player 0° decides
to check symbel & of configuration m; and with probability } it decides not to check
this symbol. In the case that player 0’ decides to check, it records k, the symbol just
listed by player I’ and the next three symbols player 1’ lists. When player 1’ lists a;
player 0" also records its value. Then at a later time when player I’ lists the ith
symbol of m;, player 0" actually checks that the symbol is valid. If the symbol is
valid, player 0’ halts in an accepting state with probability { and a rejecting state
with probability . Otherwise the symbol is invalid and player 0" halts in a rejecting
state. If player 0’ does not decide to check the symbol (which happens with
probability), player 1’ lists the next symbeol and player 0 repeats the same process
to decide whether to start checking. It is crucial to the proof that player 1’ does not
know whether player 0’ has decided to check a symbol or not.

We sunumarize this description of M” in the algorithm of Fig. 3. In the algorithm,
the boolean variable checking is true if and only if player 0’ has decided to check a

symbol of some configuration i, {for i > 1. The variable & records which symbol of .

the current configuration is being iisted by player 1°. The variable initial is true only
when the first configuration is being listed by player 1'. It is used by player 0’ so
that it can check that the initial configuration is correctly listed by player 1". The
variable oddeonfiguration is true when the configuration listed by player 1" is an odd
numbered configuration. This is used by player ¢ so it can randomly choose a; for
configurations where it is player O's turn. The variable checkcount is used to keep
track of which symbols listed by player 1" need to be recorded by player 0, and
also when the symbol to be checked is actually listed. Since it has value at most
s{n)+ 1, it can be implemented in space O(log s(n)). The variable symbol denotes
the symbol most recently listed by player 1"

Before getting to the proof that M’ accepts the same language as M and that M’
is an unbounded random automaton, we introduce some notation. Fix an arbitrary
input x. Let ¢’ be any strategy of player 1" on x. I the string listed by player 1" on
strategy &' on any sequence of coin tosses of player 0 is valid, we say ¢’ is a valid
strategy. Otherwise ¢’ i8 an invalid strategy. Each valid strategy o' of player 1

484 CONDON AND LADNER

begin
/* initialization */
oddconfiguration :== false; checking := false;
k := 0; initial := true;
repeat
Player @': visibly do the following:
k:=k 41 (mod s(n) + 2);
if k= s(n)+1 then
oddeonfiguration = not{eddconfiguration);
if oddconfiguratior then with probability % g =1, else a; ;= 2;

Player 1": existentially list the next symbol of the history being simulated;
Player 0% Privately do the following:

/* check initial configuration */
if initial then

ifk=1 then if symbol is not the initial state, halt and reject;
ifl<k<mn+1l then if symbol is not the (k — 1)st input bit, halt ard reject;
if n+ 1< k< s(r)+1 then if symbol is not the blank symbol, halt and reject;
ilk=s(n)+1 then initial ;= false;

if (5 = s(n) + 1) and (oddeonfiguration} then
check that symbel equals a;; if not, halt and reject;

if (k= s(n) + 1) and (not oddeonfiguration) then
check that symbol € {1,2}; if not, halt and reject;

/* decide whether to start checking */
if not checking then
with probability % checking := true; checkcount := 0;

if checking then

checkecount := checkeount +1;

H ckeckcount € {1,...,4} then record symbof;

Hk=3s(n)+1 then record symbol ai;

if checkcount = s{r)+1 then check symbol is valid;

if not valid then halt and reject
else halt, accepting with probability }
until the last symbol of the history is listed;
if the state of the last configuration listed is accepting then halt and accept
else halt and reject

end

FiG. 3 Algorithm executed by the players of M in the simulation of M.

PROBABILISTIC GAME AUTOMATA 485

corresponds to a strategy of player 1 in a natural way which we now describe. Let
H be a history of M ending in an existential configuration and let mga,m, - a;m,
represent history H, where i is odd. Then if player 1" on strategy o' lists &,, #;.,
after listing mgpa ---am;, define o(H)=C;,, where C,,, is the configuration
represented by m; . We say ¢’ simulates the strategy o derived in this way from ¢’

Just as we distinguish between two types of steps of player 1, we also distinguish
between two types of steps of player 0°. At each turn, if player 0’ has not.already
decided to check a symbol during the current simulation, player 0’ takes either of
two actions. With probability 2 it checks that a symbol to be listed later by player 1’
is valid. Alternatively, with probability it does not decide to check. We call a
history of M" where player 0" checks a symbol a checking history. A history of M’
where player " does not check a symbol is called a nonchecking history. Each path
of a computation tree T, is labeled by a history. If the history is a checking history,
then the corresponding path in the computation tree is called a checking path;
otherwise the path is called a nonchecking path. Each nonchecking path of T, is a
simulation of some history of M; there is 2 one-to-one correspondence between the
nonchecking paths of 7. and the paths of T,.

We need to show that player 1’ has a unbounded winning strategy on input x if
and only if player | does, and that if all strategies of player | are unbounded losing
strategies, then so also are all strategies of player 1. The bulk of the proof is

divided into the following two claims.

LEMMA 16. Let M and M’ be defined as above and let o' be a sirategy of M' on x
which simulates strategy ¢ of M. Then v, >1 if and only if v, >% That is, the
probability that M’ halts in an accepring state on x when plaver |’ uses strategy o
is > L if and only if the probability that M accepts x when player | uses strategy o
s>

LemMa 17, Let M and M be defined as above and let o” he an invalid strategy of
M on x. Then there is a valid strategy of M’ such that v, <v,.

Before proving these claims, we show how they can be combined to prove the
theoren. Suppose M accepts x. Then some strategy ¢ of M on x is an unbounded
winning strategy, hence v, > 1 From Claim 16, ¢, > §, where ¢’ is the strategy of M’
which simulates ¢. Hence o is an unbounded winning strategy and so M’ accepts x.
The other case to consider is when Af rejects x. Then for all strategies o of M,
v, <L From Claim 16 it follows that all valid strategies ¢" of player 1’ must be
unbounded losing strategies. Furthermore by Claim 17, all invalid strategies of M’
must also be unbounded losing strategics and so x is rejected by M". Hence M" is
an unbounded random automaton and M’ accepts the same language as M. We

now turn to the proofs of the claims.

Proof of Claim 16. Assume that o” of 3" is a valid strategy and that it simulates
strategy o of M. Note that »_. is the value of the computation tree T,.. Recall that
we partitioned the paths of T into two types: checking paths and nonchecking

486 CONDON AND LADNER

paths, The probability of reaching an accepting state given that a checking path of
T, is followed is 3. This is because player 0' halts in an accepting state with
probability 4 whenever it checks a symbol. The probability of reaching an accepting
state given that a nonchecking path.-of T, is followed is v,. This is because of the
one-to-one correspondence between the nonchecking paths of T, and the paths
of T,.

Let pueq be the probability that player O’ checks a symbol listed by player 1',
that is, poeq is the probability of following a checking path of T_.. Then v, is

i
Vg = Poheck '5+ (1 _pcheck) Tlg-

This is greater than 1 if and only if v, > 1, as required. This completes the proof of
Claim 16. |

Proof of Claim 17. This claim states that given an invalid strategy o', there is
some valid strategy which is at least as good. Intuitively this is true because there is
a stiff penalty for player 1’ when it lists an invalid symbol; if player 0’ checks that
symbol, the game automaton halts in a rejecting state. This intuition suggests that
by redefining ¢’ so that player 1” always lists valid symbols instead of invalid
symbols, we get a strategy which has value at least as great as the value of o'

We first show how to construct a strategy ¢, which is valid and is the same as ¢
on valid historics. Later we argue that the strategy i has value at least as great as
v, Without loss of generality we only consider invalid strategies of player I' which
satisfy the first two conditions of a valid strategy. On any history of the game
automaton where player 1’ does not satisfy the first two conditions, the game
automaton always halts in a rejecting state, since player 0 always checks that these
conditions are satisfied. Thus let ¢’ be a strategy of player 1’ which does not satisfy
the third condition. '

Let ¢ be any valid strategy of M'. Let ¥5# be the set of valid visible histories VH
such that in the transition from VH to ¢’(VH), player 1’ lists an invalid symbol. We
obtain a new strategy by defining ¥ to be the same as ¢ on visible histories which
have a prefix in #3#. We let be the same as ¢’ on all other histories. Formally,

W (visible(#, 1))
_ [g(visible(H, 1'}), if some VH e ¥3¢ is a prefix of visible(H, 1),
" la'(visible(F, 1')), otherwise.

It is casy to sec that v is well defined and is valid. It remains to prove that
vy 2 v, We first derive an expression for 5, — v, in terms of the visible histories in
YH#. For VHe¥3, let prob[VH] be the probability of following a path of T,
which is labeled by a history with visible prefix VH. Then prob[VH] is also the

PROBABILISTIC GAME AUTOMATA 487

ollowing a path of T, which is labeled by a history with visible
is is because the computation trees T, and 7, are identical on paths
beled by valid visible histories, and each VH is a valid visibie history.
t{o’, VH] denote the conditional probability of reaching an accepting leaf
ven that a path is followed which is labeled by a history with visible prefix
imilarly define accept[yr, ¥/]. We claim that

v,—v,= 3 prob[VH]{accept[y, VH] —accept[s’, VH]).

VHe YW

To see this, first note that the strategies and ¢' differ only on visible histories
which have prefix VH for some VHe ¥ . From the definitions of accept[o’, VH]
and accept[y, VH], it folows that accept[ys, VH] —accept[a’, VH] is the dif-
ference in the probability that an accepting leaf is reached in computation tree T,
and the probability that an accepting leaf is reached in computation tree T,., when
following a path of each tree which is labeled by a history with visible prefix VH.
Third, the probabilities prob[¥H] and prob[VH'] are independent for distinct
VH, VH ev3. Hence by adding the terms prob{ VHaccept[d, VH]—
acoept{c’, VH]) for all VHe¥3#, the total difference between », and v, is
obtained.

We now show that accept[\}, VH] — accept[s’, VH] >0 for any visible history
VH e ¥3#. Fix some VH ¢ ¥ . Suppose the symbol listed by player 1’ in the trans-
ition from VH to ¢'(VH) is the kth symbol of m; for some k and i If VH has
occurred, player 0 cannot have decided to check any symbol listed before the kth
symbol of m,. This is because as soon as player 0° checks a symbol, it halts, and
player ' lists no further symbols. Since player 0" has not already decided to check a
symbol, the probability that player 0" checks the kth symbol of m;, is 2. If player 0/
checks this symbol, it halts in a rejecting state when player 1° uses strategy o
because player 1 lists an invalid symbol in the transition from VH to ¢'(VH). This
proves that accept[o’, FH] < L

In 3 similar way, we prove that { <acceptiy, VH]. If player 1" uses strategy i, it
lists a valid symbol in the transition from V& to (¥ H). With probability 2 player
0" checks that the symbol is valid and if it is, it halts in an accepting state with
probability 4. This means that the probability M halts in an accepting state is
=3-4>§ and so §{<accept[y, VH]. We have now shown that for any VHe ¥,
accept[e’, VH] < f<accept[y, VH]. Since prob{VH]z0 for all VHe ¥, it
follows that

vy—ty= ¥ prob[VH](accept[y, FH]—accept[o’, VH]) 2 0.

o
VHeY ¥

This completes the proof that v, > 2., and so the claim is proved. |

488 . CONDON AND LADNER
6. CONCLUSION

The probabilistic game automaton provides a uniform framework for the study of
game-like phenomena in a computational setting. We have given a precise descrip-
tion of the probabilistic game automaton, and have shown how it includes as
special cases Arthur—Merlin games [1], interactive proof systems [7], and other
game classes studied in the computer science literature [12, 13, 15]. We have
proved resuits for special classes of games, mainly the unbounded random game
automata which model games against nature and games against unknown nature.
In particular, we have shown that the class of languages accepted by polynomial
time bounded games against nature is the same as the class of languages accepted
by polynomial time bounded games against unknown nature. However, the class of
languages accepted polynomial space bounded games against nature is contained in
the class of languages accepted by logarithmic space bounded games against
unknown nature.

Some new results on bounded random game automata have been proved and
appear in [5]. In that paper, the class of languages accepted by space bounded
Arthur-Merlin games for space constructible s(n), that is, the class
BC-SPACE(s(n)), is shown to be equal to ASPACE(s(n)). This result, together
with Theorem 14 of this paper, implies that Arthur-Merlin games and games
against nature with the same space bounds are equivalent. Recall that the difference
between these models is that Arthur-Merlin games have error probability bounded
away from ; whereas games against nature do not. This is the first example known
to us of a probabilistic complexity class which is invariant under the definition of
error probability. Theorem 15 of this paper is extended in [$] to show that interac-
tive proof systems with space bound log s(z) can simulate Arthur—Merlin games
with space bound s(n}, where s(n) = Q(n) is any space-constructible function. Thus

BC-SPACE(s(n)) = BP-SPACE(log s(n)).

There still remain many open problems on the complexity of game automata.
First, we would like to find an improvement in our simulation of Theorem 2, where
we eliminate partial information from unbounded random game automata. Is there
a way to simulate an unbounded random game automaton with partial information
by one with complete information, without squaring the running time?

Another problem which has not been resolved is whether

UC-SPACE(s(n)) = UP-SPACE(log s(n)).

In Theorem 15 we showed that /C-SPACE(s(n)) € UP-SPACE(log s(n)) but we
have not proved the other direction. We would also like to extend the result of
Theorem 10 to show that YUC-SPACE(s(n)) = ASPACE(s(n)). We can show that
YUC-SPACE(s(n)) =\, o NTIME(2*"™), but we conjecturc that these classes
are not” equal. An interesting question posed by Babai [1] is whether
BC-TIME(poly(n)) = 3.f, where poly(n) is any polynomial function of nand 37 is

PROBABILISTIC GAME AUTOMATA 489

the class of polynomial time bounded alternating Turing machines with & alter-
nations, starting with the existential player. Finally we have not looked at game
automata with partial information, where player 0 makes both random and univer-
sal moves. Can the results of this paper be extended to such game automata?

ACKNOWLEDGMENTS

We would like to thank Richard Anderson and Nimrod Megiddo for some useful discussions concern-
ing the proof of Theorem 12. We would also like to thank the anonymous referees for their careful
reading of this paper; their comments have greatly improved the presentalion.

REFERENCES

1. 1. Bamai, Trading group theory for randomness, in “Proceedings. 17th ACM Symp. Theery of
Computing, May 1985 pp. 421429,

2. R. W. BaLL anp R. A. BEaUMONT, “Introduction 10 Modern Algebra and Matrix Theory,”
Reinhart, New York, 1936,

3. L. BerMaN, The complexity of logical theories, Theorer. Comput. Sci. 11 (1980}, 71-77.

4, A, K. CHanDRA, B, C. K0ZEN, anD L. J. STOCKMEYER. Alternation. J. Assoc. Comput. Mach, No. 1
(1981}, [14-133.

5. A. Conpon, “Space Bounded Probabilistic Games.” Technical report, Number 87-01-04, University
of Washington, Seattle, 1987. X

6. J. Grui, The computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (1977),
675-695.

7. 5. GoLDWASSER, S. MicaLl, anp C. RACKOFF, The knowledge complexity of interactive protocels, &
“Proceedings, {7th ACM Symp. Theory of Computing. May 1985." pp. 291-304.

8. 5. GOLDWASSER AND M. Sipser. Private coins versus public coins in interactive proof systems, in

i “Praceedings, 18th ACM Symp. Theory of Computing, May 1986," pp. 59-68.

9. Howagro, “Dynamic Programming and Markov Processes.”™ MIT Press, Cambridge, MA, 1980,

: 0. 1. G. Kemeny anp F L. SneLc. “Finite Markov Chains.” Van Nostrand, Princeton, NI, 1960.

H. L. G. KHACHIYAN. A polynomial algorithm in linear programming, Sovier Math Dokl. 20 {1979),
191-194.

£2. R. E. Lapner anp J. K. Normax, Solitaire autemata. J. Comput, System Sci. 30, No. 1 {1985),

116-129.

3. C. H, PapapMiTRIOU. Games against nature. in “Proceedings. 24th IEEE Symp. Found., of Comput.
Sci., 19837 pp. 46-450.

14. G. L. PerzrsoN anp). H. REiF, Multiple person alternation. in “Proceedings, 20th [EEE Symp.
Found. of Comput. Sci.. 1979." pp. 348-363.

15. J. H. Reww, The complexity of two-player games of incomplete information, J. Comput. System Sci.
29, No. 2 {1984), 274-301.

16. C. YaP, Valuation machines, manuscript from MNew York University.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

