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Abstract. Knowledge of energy barriers between pairs of secondary
structures for a given DNA or RNA molecule is useful, both in un-
derstanding RNA function in biological settings and in design of pro-
grammed molecular systems. Current heuristics are not guaranteed to
find the exact energy barrier, raising the question whether the energy
barrier can be calculated efficiently. In this paper, we study the compu-
tational complexity of a simple formulation of the energy barrier problem,
in which each base pair contributes an energy of −1 and only base pairs
in the initial and final structures may be used on a folding pathway from
initial to final structure. We show that this problem is NP-complete.

1 Introduction.

We study the computational complexity of the energy barrier problem for nucleic
acids: what energy barrier must be overcome for a DNA or RNA molecule to
adopt a given final secondary structure, starting from a given initial secondary
structure? We first provide some motivation for studying the energy barrier
problem, then describe a simple formulation of the problem and summarize our
results.
Motivation. Methods for calculating energy barriers are useful, in both rational
design of programmed nucleic acid systems and in understanding the mechanisms
of RNA function in the cell. This is because, both in the design and biological
contexts, secondary structure and folding pathways are central to function. Many
designed nucleic acid systems rely critically on the premise that the constituent
molecules will follow certain folding pathways and avoid others [1–7]. Designs of
such systems typically ensure that the desired folding pathway has a low energy
barrier, compared with alternatives. While this property can be straightforward
to establish for simple molecular systems, a method for energy barrier calculation
would be useful when verifying that a system of large or even moderate scale
has the desired behaviour [8]. In the biological context, knowledge of energy
barriers between intermediate structures on the pathway from the open chain to
the folded configuration of biological molecules is useful in determining folding
efficiency and structure [9–12].
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Fig. 1: (a) An initial secondary structure (left) and a final secondary structure
(right) for a given RNA strand. (b) A corresponding arc diagram. The top of
the diagram denotes the base pairs in the initial structure while the bottom of
the diagram, shown with bold arcs, denotes the base pairs of the final structure.

Methods for simulation of DNA or RNA folding pathways often estimate
energy barriers between secondary structures, in order to calculate probabilities
of transitioning between structures which are included in maps of the energy
folding landscape [13–16]. Heuristics for energy barrier calculation are also used
to construct barrier trees, which are helpful in visualizing energy landscapes [17],
and to elucidate properties of disordered systems in statistical physics [18].

In light of its importance, it is natural to ask: what is the computational com-
plexity of the energy barrier problem for nucleic acid secondary structures? An
efficient algorithm for the problem might be a valuable replacement of currently-
used heuristics in the applications mentioned above. On the other hand, in-
tractability of the barrier problem would suggest that the answer to another
complex problem might be determined from observations of nucleic acid folding
pathways of a sequence constructed for the complex problem.

The Energy Barrier Problem. We formulate the problem as follows. A sec-
ondary structure T for an RNA molecule of length n is a set of base pairs i.j,
with 1 ≤ i < j ≤ n, such that (i) each base index i or j appears in at most
one base pair and (ii) the bases at indices i and j form a Watson-Crick (i.e.,
C-G, A-U, or A-T) base pair. Since we represent secondary structures using arc
diagrams, we use the word arc interchangeably with base pair (see Fig. 1). Our
main results pertain to pseudoknot-free secondary structures, that is, structures
with no crossing arcs — see Section 2 for definitions. We assume a very simple
energy model for secondary structures in which each arc contributes an energy
of −1. Thus, as is roughly consistent with more realistic energy models, the more
base pairs in a structure the lower its energy. We denote the energy of secondary
structure T by E(T ).

A folding pathway is a sequence of pseudoknot-free secondary structures for
a given molecule, each of which differs from its predecessor by the addition or
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Fig. 2: (a) A possible folding pathway is shown for an initial structure A tran-
sitioning through intermediate structures (B,C, . . .) until the final structure I
is reached. For a particular position in the pathway, the top of the arc diagram
denotes the current base pairs of the structure and the bottom of the arc dia-
gram denotes the base pairs still to be added to reach the final structure. Each
structure along the pathway differs from its neighbours by at most one arc. (b)
The corresponding energy plot. The barrier in this example is two.

removal of one arc (see Fig. 2). The energy barrier of a folding pathway from an
initial structure I to a final structure F is the largest energy difference between
any structure along the pathway with I. Note that there is always a folding
pathway from I to F , in which first all arcs of I are removed and then all arcs
of F are added. All secondary structures on such a pathway are pseudoknot free
since they are either subsets of I or of F , both of which are pseudoknot-free.
However, the energy barrier of this pathway is |I|. The question is whether there
is another pathway that avoids such a high energy barrier, by adding arcs of F
before all arcs of I are removed. The energy barrier problem is to determine
whether there is a folding pathway from a given initial structure I to a given
final structure F , whose energy barrier is at most k, for some given k.

The results presented here are a first step towards solving the energy barrier
problem. Our results pertain to restricted types of folding pathways, namely
direct folding pathways. Such pathways were introduced by Morgan and Higgs
[18]. A folding pathway from secondary structure I to F is direct if the only
arcs which are added are those from F − I and the only arcs which are re-
moved are those from I − F . Thus, there are exactly |I△F| (the size of the
symmetric difference of the two structures) steps along a direct folding pathway.
All of the designed nucleic acid folding pathway systems with which we are fa-
miliar are such that the desired folding pathway is direct [2–4, 7]. The energy
barrier problem for direct pseudoknot-free folding pathways (dpkf-eb problem)



is: given initial and final pseudoknot-free secondary structures I and F and an
integer k, is there a direct folding pathway from I to F which has energy barrier
at most k? In Section 3, we show that the dpkf-eb problem is NP-complete.
This, coupled with a previous result showing that repeat arcs — arcs added
and removed multiple times along the pathway — do not lower the energy bar-
rier in direct pathways [19], resolves the complexity of a more general problem.
Namely, that the energy barrier problem without pseudoknots and temporary
arcs is NP-complete.

The rest of the paper is organized as follows. We provide definitions of path-
ways, energy barrier, and other useful notation in Section 2. We prove our results
in Section 3. We conclude with a brief discussion of our result and open problems
in Section 4.

A preliminary version of this paper [20] appeared in the proceedings of the
15th International Meeting on DNA Computing and Molecular Programming.

2 Definitions

Fix initial and final pseudoknot-free secondary structures I and F . A direct
pseudoknot-free folding pathway from I to F is a sequence of pseudoknot-free
secondary structures I = T0, T1, . . . , Tr = F , where each Ti is obtained from
Ti−1 by either the addition of one arc from F − I or the removal of one arc
from I − F . We call each such addition or removal an arc operation and we
let +x and −x denote the addition and removal of the arc x, respectively. The
Ti’s are called intermediate structures. A folding pathway can thus be specified
by its corresponding sequence of arc operations; we call this a transformation
sequence. A direct pseudoknot-free transformation sequence specifies a folding
pathway which is both direct and pseudoknot-free.

The energy barrier of a folding pathway I = T0, T1, . . . , Tr = F is the max-
imum of E(Ti) − E(I), where the max is taken over all integers i in the range
1 ≤ i ≤ r. The energy difference of each intermediate configuration Ti is defined
as E(Ti)− E(I). If Π is the transformation sequence for this pathway, then the
energy barrier of transformation sequenceΠ, denoted as∆E(I,F , Π), is defined
to be the energy barrier of the corresponding folding pathway.

In our result, it is convenient to work with weighted arcs. To motivate why,
note that the union I ∪ F of two pseudoknot-free secondary structures may
be pseudoknotted, i.e., may have crossing arcs, even when both I and F are
pseudoknot-free. In a pseudoknotted structure, we use the term band to refer
to a set of nested arcs, each of which crosses the same set of arcs. In a folding
pathway from I to F which minimizes the energy barrier, we can assume without
loss of generality that when one arc in a band of I ∪ F is added, then all arcs
in the band are added consecutively. Similarly, we can assume without loss of
generality that when one arc in a band is removed, then all arcs in the band are
removed consecutively. Thus, it is natural to represent the set of arcs in a band
as one arc with a weight equal to the number of arcs in the band.



Hence we generalize the notion of secondary structure as follows. A weighted
arc I = (Ib, Ie)I

w

is specified by start and end indices Ib < Ie and a weight Iw.
We say that two weighted arcs I and J are crossing if either Ib ≤ Jb ≤ Ie ≤ Je,
or Jb ≤ Ib ≤ Je ≤ Ie. A configuration is a set of weighted arcs. Configuration
{Ii}

n
i=1 is pseudoknot-free if for all 1 ≤ i < j ≤ n, Ii and Ij are not crossing.

The energy of configuration I = {Ii}
n
i=1 is E(I) = −

∑n
i=1 I

w. The previous
definitions can easily be generalized to weighted arcs.

Finally, we define the main problem studied in this paper, namely the dpkf-
eb problem, and also the 3-partition problem which is used to show NP-
completeness of dpkf-eb.

dpkf-eb problem (Energy barrier problem for direct folding pathways with-
out pseudoknots). Given two pseudoknot-free configurations I = {Ii}

n
i=1 (ini-

tial) and F = {Fi}
m
i=1 (final), and integer k, is there a direct pseudoknot-free

transformation sequence S such that the energy barrier of S is at most k, i.e.,
∆E(I,F , S) ≤ k.

3-partition problem. Given 3n integers a1, . . . , a3n such that a1+ · · ·+a3n =
nA and A/4 < ai < A/2 for each i, the 3-partition problem asks: is there a
partition of the integers {1, . . . , 3n} into disjoint triples G1,G2, . . . ,Gn such that
the sum of aj , where j belongs to Gi is equal to A, i.e., c(Gi) =

∑

j∈Gi
aj = A

for each i = 1, . . . , n.

Theorem 1 (Garey, Johnson (1979) [21]). The 3-partition problem is
NP-complete even if A is polynomial in n.

Note that the 3-partition problem is in P if A is a constant.

3 Result

Theorem 2. The dpkf-eb problem, namely the energy barrier problem for
direct folding pathways without pseudoknots, is NP-complete.

Proof. It is straightforward to show that the dpkf-eb problem is in NP. Given
an instance (I,F , k), it is sufficient to non-deterministically guess a direct folding
pathway from I to F , and to verify that the energy barrier of this path is at
most k. Note that the length of any such pathway is at most |I|+ |F|.

To show that the dpkf-eb problem is NP-hard, we provide a reduction
from the 3-partition problem. We first provide a formal description of the
reduction, then provide some intuition as to why the reduction is correct, and
then prove correctness in detail.

Consider an instance of the 3-partition problem A/2 > a1 ≥ · · · ≥ a3n >

A/4 such that
∑3n

j=1 aj = nA and A is polynomial in n. We define an in-
stance (I,F , k) of the dpkf-eb problem as follows. The initial configuration
I contains weighted arcs {Āj,i; j = 1, . . . , 3n, i = 1, . . . , n} ∪ {Ãj,i; j =

1, . . . , 3n, i = 1, . . . , n} ∪ {T̃i; i = 1, . . . , n}. The final configuration F is
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Fig. 3: Organization of weighted arcs in the initial (top) and the final (bottom)
configurations.

{Aj,i; j = 1, . . . , 3n, i = 1, . . . , n} ∪ {Ti; i = 1, . . . , n}. The arcs are organized
as in Figure 3.

Formally, the arcs are organized as follows:

T b
1 < T̃ b

1 < Ãb
3n,1 < · · · < Ãb

1,1 < T e
1 < Āb

1,1,

T b
i < T̃ e

i−1 < T̃ b
i < Ãb

3n,i < · · · < Ãb
1,i < T e

i < Āb
1,i, ∀i = 2, . . . , n,

Āb
j,i < Ab

j,i < Āe
j,i < Ãe

j,i < Ae
j,i, ∀i = 1, . . . , n,

∀j = 1, . . . , 3n,

Ae
j,i < Āb

j+1,i, ∀i = 1, . . . , n,

∀j = 1, . . . , 3n− 1,

Ae
3n,i < T b

i+1, ∀i = 1, . . . , n− 1,

Ae
3n,n < T̃ e

n .

The weights of arcs are set up as follows. For all i = 1, . . . , n and j = 1, . . . , 3n:

Ãw
j,i = 4iaj ,

Āw
j,i = k − (j − 1)A− 4iaj ,

Aw
j,i = k − jA.

Also,

T̃w
1 = k − (7n− 4)A,

T̃w
i = k − (6n+ 8)nA− 4(n− 1)iA, ∀i = 2, . . . , n,

Tw
i = k − (6n+ 8)nA, ∀i = 1, . . . , n− 1,

Tw
n = k ,

where k > 4(5n2 + n+ 1)A is the energy barrier.



Before getting into the details of the proof, we next describe intuitively the
key properties of the construction. The weights are chosen to ensure that the
folding pathway with minimum energy barrier has the following properties. Here
we list only the arcs that are added and assume without loss of generality that
all arc removals happen only when needed.

1. Initially a (possibly empty) sequence of Aj,i’s are added to the folding path-
way. The added Aj,i’s define a potential solution G1,G2, . . . ,Gn to the 3-

partition problem in a natural way: Gi contains j if Aj,i is in this initial
sequence. As we will prove later, the weights ensure that the addition of each
Aj,i raises the energy difference. After 3n such additions, the energy differ-
ence is so high that no other Aj,i’s can be added. As a result, the weights
impose certain desirable constraints on the Gi’s which will help ensure that
they (or a slight perturbation of the Gi’s) form a valid solution.

2. Following the initially-added sequence of Aj,i’s, the Ti’s must be added in
increasing order of i (with no interspersed Aj,i’s). This is in part because of

the placement of the T̃i’s: adding T1 requires only the removal of T̃1, whereas
adding Ti, for i > 1, requires the costlier removal of both T̃i−1 and T̃i. Thus,
it becomes feasible to add Ti without exceeding the energy barrier only after
Ti−1 is added because, at that point, T̃i−1 has already been removed. In
addition after adding T1, the energy difference increases to the level that
none of the Aj,i’s can be added (and stays there until addition of Tn).

3. Moreover, the Ti’s can be added without exceeding the energy barrier only if
the Gi’s defined by the initial sequence of Aj,i’s actually is a valid solution.
That is, if the Gi’s are valid then for each i, at least three of the Aj,i’s are

in the initial sequence and so at least three of the Ãj,i’s (whose weights sum
to at least 4iA) were removed in the initial part of the pathway described in
1 above. This means that at most n− 3 of the Ãj,i’s remain to be removed

before Ti can be added. The total weight of the remaining Ãj,i’s is just
low enough to ensure that they can be added without exceeding the energy
barrier. In contrast, if the Gi’s are not valid then for some i the weight of the
Ãj,i’s which must be removed in order to add Ti causes the energy barrier k
to be exceeded.

We now prove that the dpkf-eb instance has a solution with energy barrier
at most k if and only if the 3-partition instance a1, . . . , a3n has a solution.

First, assume that the 3-partition instance has a solution G1, . . . ,Gn,
where Gi = {ji,1, ji,2, ji,3}. Let f(j) = i if j ∈ Gi, for every j = 1, . . . , 3n. We



will show that the transformation sequence

−Ā1,f(1),−Ã1,f(1),+A1,f(1), . . . ,−Ā3n,f(3n),−Ã3n,f(3n),+A3n,f(3n), (1)

−Ã1,1, . . . ,−Ã3n,1
︸ ︷︷ ︸

without −Ãj1,1,1,−Ãj1,2,1,−Ãj1,3,1

,−T̃1,+T1, . . . ,

−Ã1,n, . . . ,−Ã3n,n
︸ ︷︷ ︸

without −Ãjn,1,n,−Ãjn,2,n,−Ãjn,3,n

,−T̃n,+Tn, (2)

−Ā1,1,+A1,1,−Ā1,2,+A1,2, . . . ,−Ā3n,n,+A3n,n
︸ ︷︷ ︸

without indexes 1, f(1); 2, f(2); . . . ; 3n, f(3n)

(3)

is pseudoknot-free with energy barrier exactly k. For clarity, the − sign marks
the arcs from the initial configuration which are being removed and the + sign
marks the arcs from the final configuration which are being added. It is easy to
see that the sequence is pseudoknot-free, since

– each Aj,i is crossing only Ãj,i and Āj,i and is added only when these two
arcs are already removed; and

– each Ti is crossing the following arcs in the initial configuration: T̃i−1 (if
i > 2), T̃i and Ã1,i, . . . , Ã3n,i and they are all removed before Ti is added.

0

3nA

6n2A+ 8nA

k

. . .

. . .

. . .

(1)
︷ ︸︸ ︷

(2)
︷ ︸︸ ︷

(3)
︷ ︸︸ ︷

Fig. 4: Illustration of the sequence of energy difference changes on the folding
pathway described in lines (1), (2) and (3). Details are discussed in the text of
the paper.

Second, let us verify that the energy difference of each intermediate config-
uration is at most k. Figure 4 summarizes the sequence of energy differences
along the pathway given in lines (1), (2) and (3) above; we next provide the
details. First, in line (1), by induction, for each j = 1, . . . , 3n, before removing
−Āj,f(j),−Ãj,f(j) the energy difference is (j − 1)A and after removal it is k.



Then after adding +Aj,f(j) it decreases to jA. At the end of line (1), the energy
difference is 3nA. Next, we need to check that the sum of weights of arcs

−Ã1,1, . . . ,−Ã3n,1
︸ ︷︷ ︸

without −Ãj1,1,1,−Ãj1,2,1,−Ãj1,3,1

,−T̃1

is at most k − 3nA. The sum of weights of these arcs is exactly

3n∑

j=1

Ãw
j,1 −

3∑

ℓ=1

Ãw
j1,ℓ,1

+ T̃w
1 =

3n∑

j=1

4aj −

3∑

ℓ=1

4aj1,ℓ + k − 7nA+ 4A

= 4nA− 4A+ k − 7nA+ 4A = k − 3nA .

Thus, just before adding +T1, the energy difference is again exactly k. And after
adding +T1, it is 6n

2A+8nA. Similar calculations show that the energy difference
will alternate between k (after each removal subsequence) and 6n2A+8nA (after
each addition of +Ti) in line (2) with exception of the last addition, when the
energy difference is 0. In line (3), all remaining arcs from the initial configuration
(−Āj,i) are removed and all remaining arcs from the final configuration (+Aj,i)
are added. Note that each removal is possible since Āw

j,i < k and after processing

each pair −Āj,i,+Aj,i, energy difference only decreases since Āw
j,i − Aw

j,i = A −
4iaj < 0.

Now, assume that there is a pseudoknot-free transformation sequence S with
the energy barrier at most k. From S, we will construct a solution for the original
3-partition instance and show that it is a valid solution. We organize our proof
into three parts, in line with the three properties described in the intuition at
the start of the proof.

Consider the subsequence of S containing only additions, i.e., arcs from the
final configuration. Let S+ denote this subsequence. We assume without loss
of generality that all removals in S happen only when needed, i.e., the next
addition would not be possible without those removals. Hence, the subsequence
S+ determines the whole sequence S. By processing an arc +I in S+ we mean
removal of all arcs −J in S immediately preceding +I (that is, not preceding
any other +I ′ appearing in S+ before +I) and adding +I.

The first part of our proof considers the prefix of S+ just before the first Tℓ

is added. Let this prefix be:

+Aj1,i1 ,+Aj2,i2 , . . . ,+AjM ,iM (4)

where M is the number of +Aj,i’s added before +Tℓ. We use this prefix to define
a potential solution to the 3-partition problem:

Gi = {jℓ; iℓ = i},

for every i = 1, . . . , n.
Ultimately we will show that the Gi’s (or a slight perturbation of the Gi’s)

form a solution to the 3-partition problem. Towards this goal, our first two



lemmas below prove some useful properties of the Gi’s that can be inferred from
the weights of the arcs in the folding pathway prefix (4) and the corresponding
removed arcs. Let |Gi |j denote the number of elements in Gi with value at most
j. In order for the Gi’s to be a valid solution, |Gi |j should be exactly j for all
j, 1 ≤ j ≤ 3n. Moreover it should be the case that

∑n
i=1 c(Gi) = nA where

c(Gi) denotes the sum of aj for j ∈ Gi (see the definition of 3-partition). The
statements of the two lemmas below assert somewhat weaker properties of the
Gi’s.

Lemma 1. For every j = 1, . . . , 3n,
∑n

i=1 |Gi |j ≤ j. Consequently, M ≤ 3n.

Proof. Let +Tℓ be the first +Ti in S+. Consider an +Aj,i appearing before +Tℓ.

Recall that before adding +Aj,i, we need to remove both −Ãj,i and −Āj,i. Since,

Ãw
j,i + Āw

j,i = k − (j − 1)A, the energy difference has to be at most (j − 1)A for
+Aj,i to be added. Note that processing of each +Aj,i appearing in S+ before

+Tℓ will increase the energy difference by A, as it requires both −Ãj,i and −Āj,i

to be removed first and Āw
j,i+Ãw

j,i−Aw
j,i = k−(j−1)A−4iaj+4iaj−(k−jA) = A.

For instance, an +A1,i can only appear at the first position of the part of the
subsequence S+ before +Tℓ, since it requires the energy difference at least 0 and
after any +Aj,i is added, the energy difference increases to A. Thus, starting
from the second position, no +A1,i′ can be added before +Tℓ. Similarly, +Aj,i

can appear only in the first j positions of the subsequence of S+ before +Tℓ.
The lemma easily follows.

In the next lemma we we use double brackets to denote multisets: for example
{{1, 2, 2}} is the multiset with elements 1, 2, and 2 and {{1, 1, 2}} 6= {{1, 2, 2}}.

Lemma 2.
∑n

i=1 c(Gi) ≤ nA− (3n−M)A/4, where the equality happens only
if M = 3n and {{aj1 , . . . , ajM }} = {{a1, . . . , a3n}}.

Proof. Let b1 ≥ b2 ≥ · · · ≥ bM be the sorted elements of the multiset
{{aj1 , . . . , ajM }}. Note that

∑n
i=1 c(Gi) =

∑M
j=1 bj . We will show that bj ≤ aj

for every j = 1, . . . ,M . Suppose to the contrary that bj > aj for some j. Hence,
elements b1, . . . , bj belong to {{a1, . . . , aj−1}}, i.e., |{{aj1 , . . . , ajM }}|j−1 ≥ j, a
contradiction with Lemma 1. Hence, we have

n∑

i=1

c(Gi) =

M∑

j=1

bj ≤

M∑

j=1

aj = nA−

3n∑

j=M+1

aj ≤ nA− (3n−M)A/4 .

The equality happens only if M = 3n (since aj > A/4) and bj = aj , for every
j = 1, . . . , 3n.

We now turn to the second part of our proof: we show that, following the
initially-added sequence of +Aj,i’s, the Ti’s must be added in increasing order
of i. That is, the arcs +T1, . . . ,+Tn appear in the subsequence S+ consecutively
(with no +Aj,i in between) and in this order. The next lemma shows that the
first +Ti in the sequence S+ must be +T1 and the following lemma reasons
about the rest of the sequence of +Ti’s.



Lemma 3. The first +Ti in S+ is +T1.

Proof. Let +Tℓ be the first +Ti in S+. As argued in the proof of Lemma 1, after
each +Aj,i, the energy difference increases by A. Hence, before adding +Tℓ, the

energy difference is non-negative. Second, if ℓ > 1 then to add +Tℓ, both −T̃ℓ−1

and −T̃ℓ has to be removed. After their removal the energy difference would be
at least 2k − 2(6n + 8)nA − 4(n − 1)(2ℓ − 1)A > k, a contradiction. The last
inequality follows by k > 4(5n2 + n+ 1)A = 2(6n+ 8)nA− 4(n− 1)(2n− 1)A.

Hence, by the above lemma, the subsequence S+ has the following form

+Aj1,i1 ,+Aj2,i2 , . . . ,+AjM ,iM ,+T1

followed by the all remaining +Aj,i’s and +Ti’s. The following lemma gives more
detailed insight into order of arcs in S+.

In the remaining lemmas we adopt notation which was introduced by Gra-
ham, Knuth and Patashnik [22]:

[i > j] =

{
1, if i > j;
0, otherwise,

and [i = j] =

{
1, if i = j;
0, otherwise.

Lemma 4. All Ti’s appear in S+ in one sequence and in increasing order.

Proof. Assume to the contrary that subsequence +T1,+T2, . . . ,+Tp is followed
by an arc +I different from +Tp+1 in S+, where p < n. This arc could be either
+Aj,i or +Tℓ, where ℓ > p+1. We will show that both cases lead to contradiction
by lower bounding the energy difference of the intermediate configuration after
adding +Tp.

As argued in the proof of Lemma 1, processing of each +Ajm,im will con-
tribute A to the energy difference. Hence, before adding +T1, the energy differ-
ence is non-negative. We will lower bound contributions of processing
+T1, . . . ,+Tp to the energy difference. For every i = 1, . . . , p, to process +Ti, we

need to remove −T̃i and all −Ãj,i which were not yet removed. This will add to
the energy difference

T̃w
i +

∑

j /∈Ti

Ãw
j,i ≥ k − 3nA− [i > 1](6n+ 5)nA

− 4(n− 1)iA+ 4i
∑

j=1,...,3n

aj − 4|Gi |iA/2

> k − 3nA+ [i > 1](6n+ 5)nA− 2|Gi |nA ,

since only |Gi | arcs −Ãj,i have been removed before processing +Ti and each

Ãw
j,i = 4iaj < 2nA. Hence, the contribution of processing +T1 is at least

k − 3nA − 2|G1 |nA − Tw
1 = (6n + 5)nA − 2|G1 |nA, and the contribution of

processing +Ti, for i = 2, . . . , p, is at least −2|Gi |nA. Since
∑p

i=1 |Gi | ≤ M
and by Lemma 1, M ≤ 3n, the total contribution of adding T1, . . . , Tp is at least



6n2A+ 5nA− 6n · nA = 5nA. Hence, the energy difference of the intermediate
configuration before processing +I is at least 5nA.

Now, let us consider two cases depending on type of arc +I. First, assume
that +I is a +Tℓ, for some ℓ > p+ 1. Since +Tℓ−1 appears in S+ after +Tℓ, to
add +Tℓ, we need to remove both −T̃ℓ−1 and −T̃ℓ. Since the energy difference
before removing −T̃ℓ−1 and −T̃ℓ is positive (at least 5nA), the lemma follows by
the argument used in the proof of Lemma 3.

Second, assume that +I is an +Aj,i. Before adding +Aj,i, the arc −Āj,i needs
to be removed. Since Āw

j,i = k−(j−1)A−4iaj > k−(3n−1)A−2nA > k−5nA,

the energy difference after removing−Āj,i would be greater than 5nA+k−5nA =
k, a contradiction.

Hence, by the above lemmas, the subsequence S+ has the following form

+Aj1,i1 ,+Aj2,i2 , . . . ,+AjM ,iM ,+T1,+T2, . . . ,+Tn

followed by the all remaining +Aj,i’s.
Moving on to the last part of the proof: we show that the Gi’s defined by

the initial sequence of +Aj,i’s form a valid solution (or can be perturbed slightly
to form a valid solution) by arguing that only in this case can all of the Tℓ’s
be added without exceeding the energy barrier. Specifically, we will show that
M = 3n and {{aj1 , . . . , aj3n}} = {{a1, . . . , a3n}}. For this purpose, the next two
lemmas prove lower bounds on sums of the c(Gi)’s.

Lemma 5. For every ℓ = 1, . . . , n,
∑ℓ

i=1 i(c(Gi)−A) ≥ (M − 3n)A/4.

Proof. To process +Tℓ, −T̃ℓ and all remaining −Ã1,ℓ, . . . ,−Ã3n,ℓ need to be

removed, that is those −Ãj,ℓ’s for which j /∈ Gℓ. Hence, the total weight of arcs
which need to be removed is

T̃w
ℓ +

∑

j /∈Tℓ
Ãw

j,ℓ = k − 3nA− [ℓ > 1](6n+ 5)nA− 4(n− 1)ℓA+ 4ℓ(nA− c(Gℓ))

= k − 3nA− [ℓ > 1](6n+ 5)nA+ 4ℓ(A− c(Gℓ)) .

After removing these arcs, the energy difference will increase by this amount
and then decrease by Tw

ℓ = k−(6n+8)nA. Hence, the total change of the energy
difference for adding +Tℓ is [ℓ = 1](6n+ 5)nA+ 4ℓ(A− c(Gℓ)).

It is easy to see, by induction on ℓ, that the energy difference before removing
arc for +Tℓ isMA+[ℓ > 1](6n+5)nA+

∑ℓ−1
i=1 4i(A−c(Gi)), since after processing

subsequence +Aj1,i1 , . . . ,+AjM ,iM , the energy difference isMA. Since the energy
difference after removing arcs needed for adding +Tℓ must be at most k, we have

MA+ [ℓ > 1](6n+ 5)nA+

ℓ−1∑

i=1

4i(A− c(Gi))

+ k − 3nA− [l > 1](6n+ 5)nA+ 4ℓ(A− c(Gℓ)) ≤ k



which simplifies to

ℓ∑

i=1

i(c(Gi)−A) ≥ (M − 3n)A/4 .

Using the inequalities from Lemma 5, we will lower bound the sum of c(Gi)’s.

Lemma 6. We have
∑n

i=1 c(Gi) ≥ nA− (3n−M)A/4, where the equality hap-
pens only if c(G1) = A− (3n−M)A/4 and c(Gi) = A, for every i = 2, . . . , n.

Proof. We will multiply each inequality of Lemma 5 with the positive constant
1/ℓ− [n > l]/ℓ+ 1 and sum the inequalities:

n∑

ℓ=1

(1/ℓ− [n > l]/(ℓ+ 1))
ℓ∑

i=1

i(c(Gi)−A)

≥
n∑

ℓ=1

(1/ℓ− [n > l]/(ℓ+ 1)) (M − 3n)A/4 .

Changing the order of the sums on the left hand side and using the fact that
∑n

ℓ=i(1/ℓ− [n > ℓ]/(ℓ+ 1)) = 1/i we obtain:

n∑

i=1

(c(Gi)−A) =

n∑

i=1

i(c(Gi)−A)

n∑

ℓ=i

(1/ℓ− [n > ℓ]/(ℓ+ 1)) ≥ (M − 3n)A/4,

and the lemma easily follows. The equality in the resulting inequality happens
only if we have equality in all inequalities used in the summation. This would
imply that

ℓ∑

i=1

i(c(Gi)−A) = (M − 3n)A/4, (5)

for all ℓ = 1, . . . , n. For ℓ = 1, we have c(G1)−A = (M − 3n)A/4, i.e., c(G1) =
A− (3n−M)A/4. Subtracting Equation (5) for ℓ and Equation (5) for ℓ− 1, we
obtain ℓ(c(Gℓ)−A) = 0, i.e., c(Gℓ) = A.

By Lemmas 2 and 6, we have
∑n

i=1 c(Gi) = nA − (3n − M)A/4, i.e., we
have equality in both Lemma 2 and Lemma 6. Thus, by Lemma 2, we have that
M = 3n and {{aj1 , . . . , aj3n}} = {{a1, . . . , a3n}}.

Although this does not imply that G1, . . . ,Gn forms a decomposition of set
{1, 2, . . . , 3n}, for instance, if a1 = a2, the multiset {{j1, . . . , j3n}} could contain
zero 1’s and two 2’s, the sets G1, . . . ,Gn could be mapped to the decomposition
of {1, 2, . . . , 3n} just by a sequence of replacements i’s with j’s assuming aj =
aj+1 = · · · = ai. Furthermore, by Lemma 6, we have c(G1) = A−(3n−M)A/4 =
A and also c(Gi) = A for all i = 2, . . . , n. Hence, the sets G1, . . . ,Gn (possibly
modified as described above) are the solution to the 3-partition problem.



The reduction is polynomial as the sum of weights of all arcs (which is the
total number of arcs in the unweighted instance) is

n∑

i=1



T̃w
i + Tw

i +

3n∑

j=1

(Ãw
j,i + Āw

j,i +Aw
j,i)



 < n·2k+3n2·2k = O(n2k) = O(n4A) ,

and A is assumed to be polynomial in n.

Let us illustrate the construction of the proof with the following example.
Assume that we want to partition the set of integers {10, 9, 8, 7, 7, 7} into two
sets (n = 2). Figure 5 shows (a) the corresponding instance of the energy barrier
problem and two possible pathways: (b) a correct pathway and (c) an incorrect
pathway. The correct pathway selects two triples, T1 = {10, 7, 7} and T2 =
{9, 8, 7}, both of which sum to 24. By construction of the proof, the portion
of the folding pathway corresponding to the triple validation stage is able to
proceed within barrier k. However, in the incorrect pathway, where selection
does not result in two equal triples, the triple validation stage fails, forcing the
barrier above k.

Finally, we note that the problem remains NP-complete even if an arc can
be added or removed multiple times along a pathway. In [19] we showed that the
minimum energy barrier pathway in our model can be assumed to be repeat-free.

Theorem 3 ([19]). For any pseudoknot-free pathway π without temporary arcs
from structure A to structure B, there is a direct pathway from A to B with the
energy barrier at most that of π.

Hence, as a consequence of Theorems 2 and 3 we have the following corollary.

Corollary 1. The energy barrier problem for pathways without pseudoknots and
temporary arcs is NP-complete.

4 Conclusions

We have shown that the energy barrier problem for direct folding pathways is
NP-complete, via a reduction from the 3-partition problem. Thus, unless NP
= P, there is no polynomial-time algorithm for calculating the energy barrier
of direct folding pathways. This justifies the use of heuristics for estimating
energy barriers [17, 14, 18, 16]. An interesting open question is whether there is
an algorithm that is guaranteed to return the energy barrier and which works
well on practical instances of the problem (while not in the worst case).

Our proof can help shed insight on energy landscapes. Consider an instance
(I,F , k) of the dpkf-eb problem which is derived from a “yes” instance of 3-
partition according to our construction. There are exponentially many possible
prefixes (of the type shown in (4)) which could precede the addition of T1, all
of which do not exceed the energy barrier k. Of these, it may be that only
one defines a valid solution of Gi’s. Thus, if pathways are followed according



7778910 7778910triple1 triple2

(a)

10 9 8 7 7 7

triple−choosing
︷ ︸︸ ︷

triple−validating
︷ ︸︸ ︷

clean−up
︷ ︸︸ ︷

triple1 triple2 9 8 7 10 7 7

0

k

(b)

10 9 8 7 7 7

triple−choosing
︷ ︸︸ ︷

triple−validating
︷ ︸︸ ︷

clean−up
︷ ︸︸ ︷

triple1 triple2 7 10 9 8 7 7

0

k

(c)

Fig. 5: Illustration of the construction in the proof of Theorem 2: (a) The instance
created for the set of integers {10, 9, 8, 7, 7, 7}. (b) The energy function stays
within the k barrier if the partition sets are selected correctly (T1 = {10, 7, 7}
and T2 = {9, 8, 7}). (c) The energy function exceeds the barrier for an incorrect
selection of partition sets (T1 = {10, 9, 8, 7, 7} and T2 = {7}). The dashed lines
depict hypothetical progress of the pathway for some energy barrier larger than
k.



to a random process, it could take exponential time for the random process to
find the pathway with energy barrier k. This is because there are exponentially
many initial prefixes which could lead to such a pathway of which only one can
be extended to a pathway with barrier k.

We do not fully resolve the computational complexity of the general energy
barrier problem, in which the pathway need not be direct. Two challenges in
understanding the complexity of this problem which need to be considered are
repeat arcs and temporary arcs. In recent work [19], we have partially addressed
the question of repeat arcs and shown that they do not help to lower the energy
barrier of an otherwise direct pathway; one which does not contain temporary
arcs. The complexity of the problem when temporary arcs are permitted remains
open. Furthermore, it is possible that multiple additions and removals of arcs is
necessary when temporary arcs are permitted, in order to minimize the barrier,
and that the resulting pathway has length which is exponential in the length
of the molecule. Thus, the general energy barrier problem for pseudoknot-free
structures may be PSPACE-complete. It is also possible that repeat arcs do
not help minimize the barrier, even when temporary arcs are allowed in the
pathway, in which case the general problem would be in NP. And, it is possible
that permitting temporary arcs along the pathway makes the problem tractable,
and thus in P. We hope to resolve which of these possibilities is the case in future
work.
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19. Thachuk, C., Maňuch, J., Rafiey, A., Mathieson, L.A., Stacho, L., Condon, A.:
An algorithm for the energy barrier problem without pseudoknots and temporary
arcs. In: Proc. of Pacific Symposium on Biocomputing (PSB). (2010)

20. Maňuch, J., Thachuk, C., Stacho, L., Condon, A.: NP-completeness of the direct
energy barrier problem without pseudoknots. In: Proc. of DNA15. (2009)

21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

22. Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: a foundation for
computer science. Addison-Wesley, Reading, MA, USA (1989)


