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Abstract. Approximate Majority is a well-studied problem in the con-
text of chemical reaction networks (CRNs) and their close relatives, pop-
ulation protocols: Given a mixture of two types of species with an initial
gap between their counts, a CRN computation must reach consensus on
the majority species. Angluin, Aspnes, and Eisenstat proposed a simple
population protocol for Approximate Majority and proved correctness
and O(logn) time efficiency with high probability, given an initial gap
of size ω(

√
n logn) when the total molecular count in the mixture is n.

Motivated by their intriguing but complex proof, we provide simpler, and
more intuitive proofs of correctness and efficiency for two bi-molecular
CRNs for Approximate Majority, including that of Angluin et al. Key to
our approach is to show how the bi-molecular CRNs essentially emulate
a tri-molecular CRN with just two reactions and two species. Our results
improve on those of Angluin et al. in that they hold even with an initial
gap ofΩ(

√
n logn). Our analysis approach, which leverages the simplicity

of a tri-molecular CRN to ultimately reason about bi-molecular CRNs,
may be useful in analyzing other CRNs too.

Keywords: Approximate Majority, Chemical Reaction Networks, Pop-
ulation Protocols

1 Introduction

Stochastic chemical reaction networks (CRNs) and population protocols (PPs)
model the dynamics of interacting molecules in a well-mixed solution [1] or of
resource-limited agents that interact in distributed sensor networks [2]. CRNs
are also a popular molecular programming language for computing in a test tube
[3, 4]. A central problem in these contexts is Approximate Majority [2, 5]: in a
mixture of two types of species where the gap between the counts of the majority
and minority species is above some threshold, which species is in the majority?
Angluin et al. [6] proposed and analyzed a PP for Approximate Majority, noting
that “Unfortunately, while the protocol itself is simple, proving that it converges
quickly appears to be very difficult”. Here we provide a new, simpler analysis of
CRNs for Approximate Majority.



1.1 CRNs and Population Protocols

A CRN is specified as a finite set of chemical reactions, such as those in Figure
1. The underlying model describes how counts of molecular species evolve when
molecules interact in a well-mixed solution. Any change in the molecular com-
position of the system is attributable to a sequence of one or more interaction
events that trigger reactions from the specified set. The model is probabilistic
at two levels. First, which interaction occurs next, as well as the time between
interaction events, is stochastically determined, reflecting the dynamics of colli-
sions in a well-mixed solution [7]. Second, an interaction can trigger more than
one possible reaction, and rate constants associated with reactions determine
the relative likelihood of each outcome. For example, reactions (0’x) and (0’y)
of Figure 1(c) are equally likely reactions triggered by an interaction involving
one molecule of species X and one of species Y . Soloveichik et al. [8]’s method
for simulating CRNs with DNA strand displacement cascades can support such
probabilistic reactions.

Angluin et al. [2] introduced the closely related population protocol (PP)
model, in which agents interact in a pairwise fashion and may change state
upon interacting. Agents and states of a PP naturally correspond to molecules
and species of a CRN. A scheduler specifies the order in which agents interact,
e.g., by choosing two agents randomly and uniformly, somewhat analogous to
stochastic collision kinetics of a CRN. The models differ in other ways. For ex-
ample, PP interactions always involve two agents, and as such correspond to
bi-molecular interactions, while the CRN model allows for interactions of other
orders, including unimolecular and tri-molecular interactions. Unlike CRNs, PP
interactions may be asymmetric: one agent is the designated initiator and the
other is the responder, and their new states may depend not only on their cur-
rent states but also on their designation. Also, while CRN reaction outcomes
may be probabilistic, PP state transition function outcomes are deterministic.
Nevertheless, probabilistic transitions can be implemented in PPs by leveraging
both asymmetry and the randomness of interaction scheduling [6, 9].

X+Y
1/2→ X+B (0’x)

X+Y → B+B (0’) X+Y
1/2→ Y +B (0’y)

X+X+Y → X+X+X (1) X+B → X+X (1’) X+B → X+X (1’)
X+Y +Y → Y +Y +Y (2) Y +B → Y +Y (2’) Y +B → Y +Y (2’)

(a) Tri-molecular CRN. (b) Double-B CRN. (c) Single-B CRN.

Fig. 1. A tri-molecular and two bi-molecular chemical reaction networks (CRNs) for
Approximate Majority. Reactions (0’x) and (1’y) of Single-B have rate constant 1/2
while all other reactions have rate constant 1.



1.2 The Approximate Majority Problem

Consider a mixture with n molecules, some of species X and the rest of species
Y . Here and throughout, we denote the number of copies of X and Y during
a CRN computation by random variables x and y respectively. The Approxi-
mate Majority problem [6] is to reach consensus — a configuration in which all
molecules are X (x = n) or all are Y (y = n), from an initial configuration in
which x+ y = n and the gap |x− y| is above some threshold. If initially x > y,
the consensus should be X-majority (x = n), and if initially y > x the consensus
should be Y -majority. We focus on the case when initially x > y since the CRNs
that we analyze are symmetric with respect to X and Y .

Angluin et al. [10] proposed and analyzed the Single-B CRN of Figure 1(c).
Informally, reactions (0’x) and (0’y) are equally likely to produce B’s (blanks)
from X’s or Y ’s respectively, while reactions (1’) and (2’) recruit B’s to become
X’s and Y ’s respectively. (Angluin et al. described this as a population protocol,
using asymmetry, that provides 1/2 rates, and the randomness of the scheduler
to implement the random reactions (0’x) and (0’y).) When X is initially in the
majority (x > y initially), a productive reaction event (i.e., resulting in some
chemical changes) is more likely to be (1’) than (2’), with the bias towards (1’)
increasing as x gets larger. Angluin et al. showed correctness: if initially x− y =
ω(
√
n log n), then with high probability Single-B reaches X-majority consensus.

They also showed efficiency: with “high” probability 1− n−Ω(1), for any initial
gap value x−y, Single-B reaches consensus within O(n log n) interaction events.
They also proved correctness and efficiency in more general settings, such as in
the presence of o(

√
n) Byzantine agents.

Doerr et al.’s [11] “median rule”protocol for stabilizing consensus with two
choices in a distributed setting involves rules that are identical to the interac-
tions of our tri-molecular protocol of Figure 1(a). Their model differs somewhat
from that of CRNs in that interactions happen in rounds, in which each process
(molecule) initiates exactly one interaction with two other processes chosen uni-
formly at random. They provide a simple and elegant analysis of the protocol,
showing that it achieves consensus with high probability in their model within
O(log n) rounds. They note that the consensus value agrees with that of the
initial majority when the initial gap is ω(

√
n log n). Doerr et al. did not analyze

protocols in which interactions involve just two processes.

Several others have subsequently and independently studied the problem;
we’ll return to related work after describing our own contributions.

1.3 Our Contributions

We analyze three CRNs for Approximate Majority: a simple tri-molecular CRN
whose reactions involve just the two species X and Y that are present initially,
and two bi-molecular CRNs, which we call Double-B and Single-B, that use an
additional “blank” species B – see Figure 1. As noted earlier, the Single-B CRN
is the same as that of Angluin et al. The Double-B CRN is symmetric even in



the PP setting, and was among the earliest CRN algorithms constructed with
strand displacement chemistry, by Chen et al. [12].

Our primary motivation is to provide the simplest and most intuitive proofs
of correctness and efficiency that we can, with the hope that simple techniques
can be adapted to reason about CRNs for other problems. A bonus is that our
results apply with high probability when the initial gap is Ω(

√
n log n), and thus

are a factor of
√

log n stronger than Angluin et al.’s results in this situation. We
do not concern ourselves with smaller initial gaps, but note that even with no
initial gap we can still expect efficiency, since the expected number of interaction
events until a gap of

√
n log n is reached is O(n log n). This would be true even if

there were no bias in favour of reaction (1’) as x, the majority species, increases.
We suspect that the complexity of Angluin et al.’s proof stems from the case
when the initial gap is small (o(

√
n log n)), and the fact that they show efficiency

with high probability, rather than expected efficiency for such an initial setup.

First, in Section 3 we analyze the tri-molecular CRN of Figure 1(a). Intu-
itively, its reactions sample triples of molecules and amplify the majority species
by exploiting the facts that (i) every triple must have a majority of either X
or Y , and (ii) the ratio of the number of triples with two X-molecules and one
Y -molecule to the number of triples with two Y -molecules and one X-molecule,
is exactly the ratio of X-molecules to Y -molecules.

We analyze the CRN in three phases. In the first phase we model the evolution
of the gap x − y as a sequence of random walks with increasing bias of success
(i.e., increase in x − y). Similarly, in the second phase we model the evolution
of the count of y as a sequence of random walks with increasing bias of success
(decrease in y). We use a simple biased random walk analysis to show that these
walks make forward progress with high probability, thereby ensuring correctness.
To show efficiency of each random walk, we model it as a sequence of independent
trials, observe a natural lower bound on the probability of progress, and apply
Chernoff bounds. In the third and last phase we model the “end game” as y
decreases from Θ(log n) to 0, and apply the random walk analysis and Chernoff
bounds a final time to show correctness and efficiency, respectively.

Then in Section 4 we analyze the bi-molecular CRNs of Figure 1 by relat-
ing them to the tri-molecular CRN. For the Double-B CRN, we show that with
high probability, after a short initial start-up period and continuing almost until
consensus is reached, the number of B’s is at least proportional to y and is at
most n/2, in which case reaction events are reactions (1’) or (2’) with probability
Ω(1). Moreover, blanks are in a natural sense a proxy for X +Y (an interaction
between X and Y ), and so reactions (1’) and (2’) behave exactly like the cor-
responding reactions of our tri-molecular CRN. Essentially the same argument
applies to Single-B. We present empirical results in Section 5.

Our analysis of the tri-molecular protocol is quite similar to that of Doerr et
al.’s median rule algorithm, although the models of interaction are different. We
discuss the similarities in Section 6, as well as directions for future work.



1.4 Related Work

Perron et al. [13] analyze Single-B when x+y = n and y ≤ εn. They use a biased
random walk argument to show that Single-B reaches consensus on X-majority
with exponentially small error probability 1 − e−Θ(n). The results of Perron et
al. do not apply to smaller initial gaps. Mertzios et al. [14] showed somewhat
weaker results for Single-B when initially x − y ≥ εn (the main focus of their
paper is when interactions are governed by a more general interaction network).
Cruise and Ganesh [15] devise a family of protocols in network models where
agents (nodes) can poll other agents in order to update their state. Their family
of protocols provides a natural generalization of our tri-molecular CRN and their
analysis uses connections between random walks and electrical networks.

Yet other work on Approximate Majority pertains to settings with differ-
ent assumptions about the number of states per agent, the types of interaction
scheduling rules, and possibly adversarial behaviour [9, 16, 14, 11], or analyze
more general multi-valued consensus problems [10, 17, 18, 11].

2 Preliminaries

2.1 Chemical Reaction Networks

Let X = {X1, X2, . . . Xm} be a finite set of species. A solution configuration c =
(x1, x2, . . . , xm), where the xi’s are non-negative integers, specifies the number
of molecules of each species in the mixture. Molecules in close proximity are
assumed to interact. We denote an interaction that simultaneously involves si
copies of Xi, for 1 ≤ i ≤ m, by a vector s = (s1, s2, . . . , sm), and define the order
of the interaction to be s1 + s2 + . . .+ sm.

We model interacting molecules in a well-mixed solution, under fixed envi-
ronmental conditions such as temperature. The well-mixed assumption has two
important implications that allow us to draw on aspects of both CRN models
[1, 3, 19] and also PP models [2], aiming to serve as a bridge between the two.
The first, that all molecules are equally likely to reside in any location, supports
a stochastic model of chemical kinetics, in which the time between molecular
interactions of fixed order is a continuous random variable that depends only
on the number of molecules and the volume of the solution. The second, that
any fixed interaction is equally likely to involve any of the constituent molecules,
and is therefore sensitive to the counts of different species, supports a discrete,
essentially combinatorial, view of interactions reminiscent of, but more general
than, those in standard PP models. In the Appendix we compare our model with
that of Cook et al. [3].

In this paper we will only be interested in interactions of a single order (either
two or three). According to a stochastic model of chemical kinetics [1], at any
moment, the time until the next interaction of order o, what we refer to as an
interaction event, occurs is exponentially distributed with parameter

(
n
o

)
/vo−1,

where n denotes the total number of molecules and v denotes the total volume
of the solution. Accordingly, if n and v remain fixed, the expected time between



interaction events of order o is vo−1/
(
n
o

)
and the variance is (vo−1/

(
n
o

)
)2. It

follows that, if v = Θ(n), the time Tn for n interaction events has expected value
E[Tn] = Θ(no/

(
n
o

)
) = Θ(1) and variance Var[Tn] = Θ((no/

(
n
o

)
)2/n) = Θ(1/n).

By Chebyshev’s inequality, we have that:
P[|Tn − E[Tn]]| ≥ h

√
Var[Tn]] = P[|Tn − no/

(
n
o

)
| ≥ h(no/

(
n
o

)
)/
√
n] ≤ 1/h2.

By setting h =
√
n we see that the time for n interaction events is O(1) with

probability at least 1 − 1/n. Thus we are led to use the number of interaction
events, divided by n, as a proxy for time.

When the solution is in configuration c = (x1, x2, . . . , xm) where
∑
i xi = n,

the well-mixed property dictates that the probability that a given interaction
event of order o is the particular interaction s = (s1, s2, . . . , sm) is λ(c, s) =[∏m

i=1

(
xi
si

)]
/
(
n
o

)
.

Some interaction events lead to an immediate change in the configuration
of the solution, while others do not. The change (possibly null) arising from
an interaction can be described as a (possibly unproductive) reaction event.
Formally, a reaction r = (s, t) = ((s1, s2, . . . , sm), (t1, t2, . . . , tm)) is a pair of
non-negative integer vectors describing reactants and products, where, for pro-
ductive reactions, at least one i, si 6= ti. Reaction r is applicable in configuration
c = (x1, x2, . . . , xm) if si ≤ xi, for 1 ≤ i ≤ m. If reaction r occurs in configu-
ration c, the new configuration of the mixture is c′ = (x1 − s1 + t1, x2 − s2 +
t2, . . . , xm− sm + tm). In this case we say that the transition from configuration
c to configuration c′ is realized by reaction r and we write c→r c′. Each reaction
r has an associated rate constant 0 < kr ≤ 1, specifying the probability that the
reaction is consummated, given the interaction specified by the reactant vector
is satisfied, so the probability that reaction r = (s, t) occurs as the result of an
interaction event in a configuration c is just krλ(c, s).

A chemical reaction network (CRN) is a pair (X ,R), where X is a finite set
of species and R is a finite set of productive reactions, such that, for all reactant
vectors s, if R(s) is the subset of R with reactant vector s, then

∑
r∈R(s) kr ≤

1. To ensure that all interactions have a fully specified outcome, we take as
implicit in this formulation the existence, for every reactant vector s, including all
possible interactions of order o, of a non-productive reaction with rate constant
1−

∑
r∈R(s) kr.

2.2 CRN Computations

Next we describe how the mixture of molecules evolves when reactions of a CRN
(X ,R) occur. For the CRNs that we analyze, there is some order o such that
for every reaction (s, t) of R, s1 + s2 + . . . sm = t1 + t2 + . . . tm = o. Thus the
number n of molecules in the system does not change over time. We furthermore
assume that the volume v of the solution is fixed and proportional to n.

A random sequence of interaction events triggers a sequence of (not necessar-
ily productive) reaction events, reflected in a sequence of configurations that we
interpret as a computation. More formally, a computation of the CRN (X ,R),
with respect to an initial configuration c0, is a discrete Markov process whose



states are configurations. The probability of a transition, via a reaction event,
from configuration c to configuration c′ is just the sum of the probabilities of all
reactions r such that c→r c′.

2.3 Analysis Tools

We will use the following well-known property of random walks, Chernoff tail
bounds on functions of independent random variables, and Azuma’s inequality.

Lemma 1 (Asymmetric one-dimensional random walk [20](XIV.2)).
If we run an arbitrarily long sequence of independent trials, each with success
probability at least p, then the probability that the number of failures ever exceeds
the number of successes by b is at most ( 1−p

p )b.

Lemma 2 (Chernoff tail bounds [21]). If we run N independent trials, with
success probability p, then SN , the number of successes, has expected value µ =
Np and, for 0 < δ < 1,

(a) P[SN ≤ (1− δ)µ] ≤ exp(− δ
2µ
2 ), and

(b) P[SN ≥ (1 + δ)µ] ≤ exp(− δ
2µ
3 ).

Lemma 3 (Azuma’s inequality [22]). Let Q1, . . . , Qk be independent ran-
dom variables, with Qr taking values in a set Ar for each r. Suppose that the
(measurable) function f : ΠAr → R satisfies |f(x) − f(x′)| ≤ cr whenever the
vectors x and x′ differ only in the rth coordinate. Let Y be the random variable
f(Q1, . . . , Qk). Then , for any t > 0,

P[|Y − E[Y ]| ≥ t] ≤ 2 exp
(
− 2t2/

k∑
r=1

c2r

)
.

3 Approximate Majority Using Tri-molecular Reactions

In this section we analyse the behaviour of the tri-molecular CRN of Figure 1(a).
We prove the following:

Theorem 1. For any constant γ > 0, there exists a constant cγ such that,
provided the initial molecular count of X exceeds that of Y by at least cγ

√
n lg n,

a computation of the tri-molecular CRN reaches a consensus of X-majority, with
probability at least 1− n−γ , in at most cγn lg n interaction events.

Recall that we denote by x and y the random variables corresponding to the
molecular count of X and Y respectively. We note that the probability that an
interaction event triggers reaction (1) (respectively, reaction (2)) is just

(
x
2

)
y/
(
n
3

)
(respectively,

(
y
2

)
x/
(
n
3

)
). Hence, the probability that an interaction even triggers

one of these (a productive reaction event) is xy(x + y − 2)/(2
(
n
3

)
), and the

probability that such a reaction event is reaction (1) is (x − 1)/(x + y − 2) ≥
x/(x+ y), provided x ≥ y.

We divide the computation into a sequence of three, slightly overlapping and
possibly degenerate, phases, where cγ , dγ and eγ are constants depending on γ:



phase 1 cγ/2
√
n lg n < x− y ≤ n(dγ − 2)/dγ . It ends as soon as y ≤ n/dγ .

phase 2 eγ lg n < y < 2n/dγ . It ends as soon as y ≤ eγ lg n.
phase 3 0 ≤ y < 2eγ lg n. It ends as soon as y = 0.

Of course the assertion that a computation can be partitioned in such a way
that these phases occur in sequence holds only with sufficiently high probability.
To facilitate this argument, as well as the subsequent efficiency analysis, we
divide both phase 1 and phase 2 into Θ(lg n) stages, defined by integral values
of t and s, as follows:

– A typical stage in phase 1 starts with x ≥ y + 2t
√
n lg n and ends with

x ≥ y+ 2t+1
√
n lg n, where lg cγ ≤ t ≤ (lg n− lg lg n)/2 + lg((dγ − 2)/(2dγ)).

– A typical stage in phase 2 starts with y ≤ n/2s and ends with y ≤ n/2s+1,
where lg dγ ≤ s ≤ lg n− lg lg n− lg eγ − 1.

Our proof of correctness (the computation proceeds through the specified
phases as intended) and our timing analysis (how many interaction events does
it take to realize the required number of productive reaction events) exploit the
simple and familiar tools set out in the previous section, taking advantage of
bounds on the probability of reactions (1) and (2) that hold throughout a given
phase/stage:

(a) [Low probability of unintended phase/stage completion] The relative proba-
bility of reactions (1) and (2) is determined by the relative counts of X and
Y . This allows us to argue, using a biased random walk analysis (Lemma 1
above), that, with high probability, there is no back-sliding; when the com-
putation leaves a phase/stage it is always to a higher indexed phase/stage
(cf. Corollaries 1, 2 and 3, below).

(b) [High probability of intended phase/stage completion within a small number
of productive reaction events] Within a fixed phase/stage the computation
can be viewed as a sequence of independent trials (choice of reaction (1)
or (2)) with a fixed lower bound on the probability of success (choice of
reaction (1)). This allows us to establish, by a direct application of Chernoff’s
upper tail bound Lemma 2, an upper bound, for each phase/stage, on the
probability that the phase/stage completes within a specified number of
productive reaction events (cf. Corollaries 4, 5 and 6, below).

(c) [High probability that the productive reaction events occur within a small
number of molecular interactions] Within a fixed phase/stage the choice of
productive reaction events, among interaction events, can be viewed as a
sequence of independent trials with a fixed lower bound on the probabil-
ity of success (the interaction corresponds to a productive reaction event).
Thus our timing analysis (proof of efficiency) is another direct application
of Chernoff’s upper tail bound (Lemma 2) (cf. Corollary 7, below).

Lemma 4. At any point in the computation, if x − y = ∆ then the probability
that x − y ≤ ∆/2 at some subsequent point in the computation is less than

(1/e)∆
2/(2n+2∆).



Proof. Since x − y > ∆/2 up to the point when we first have x − y ≤ ∆/2, it
follows that x ≥ n/2 + ∆/4 and y ≤ n/2 − ∆/4. We can view the change in
x−y resulting from productive reaction events as a random walk, starting at ∆,
with success (an increase in x−y, following reaction (1)) probability p satisfying
p ≥ 1/2 +∆/(4n).

It follows from Lemma 1 that reaching a configuration where x − y ≤ ∆/2
(which entails an excess of ∆/2 failures to successes) is less than ( 1

1+∆/n )∆/2

which is at most (1/e)∆
2/(2n+2∆).

Corollary 1. In stage t of phase 1, x−y reduces to 2t−1
√
n lg n with probability

less than 1/n2
2t−2

.

Lemma 5. At any point in the computation, if y = n/k then the probability that
y > 2n/k at some subsequent point in the computation is less than (2/(k−2))n/k.

Proof. Since y ≤ 2n/k up to the point when we first have y > 2n/k, we can view
the change in y resulting from productive reaction events as a random walk,
starting at n/k, with success (a decrease in y, following reaction (1)) probability
p satisfying p ≥ 1− 2/k.

It follows from Lemma 1 that reaching a configuration where y > 2n/k (which
entails an excess of n/k failures to successes) is less than (2/(k − 2))n/k.

Corollary 2. In stage s of phase 2, y increases to n/2s−1 with probability less
than (2/(2s − 2))n/2

s

.

Corollary 3. In phase 3, y increases to 2eγ lg n with probability less than
(2eγ lg n/(n− 2eγ lg n))eγ lgn.

Lemma 6. At any point in the computation, if x−y = ∆ ≤ n/2 then, assuming
that x−y never reduces to ∆/2, the probability that x−y increases to 2∆ within

at most λn productive reaction events is at least 1− exp(− (λ−2)∆2

λ(2n+∆) ).

Proof. We view the choice of productive reaction as an independent trial with
success corresponding to reaction (1), and failure to reaction (2). We start with
x−y = ∆ and run until either x−y = ∆/2 or we have completed λn productive
reactions. By Lemma 2, the probability that we complete λn productive reactions
with fewer than λn/2+∆/2 successes, which is necessary under our assumptions

if we finish with x− y < 2∆, is at most exp(− (λ−2)∆2

λ(2n+∆) ).

Corollary 4. In stage t of phase 1, assuming that x− y never reduces to
2t−1
√
n lg n, the probability that x − y increases to 2t+1

√
n lg n within at most

λn productive reaction events is at least 1− exp(− (λ−2)22t lgn
3λ ).

Lemma 7. At any point in the computation, if y = n/k then, assuming that
y never increases to 2n/k, the probability that y decreases to n/k − r within
f(n) > 2r productive reaction events is at least 1− exp(−Θ(f(n)).



Proof. We view the choice of productive reaction as an independent trial with
success corresponding to reaction (1), and failure to reaction (2). We start with
y = n/k and run until either y = n/k− r or we have completed f(n) productive
reaction events. (We assume, by Lemma 5, that y < 2n/k, and so p > 1− 2/k,
throughout.)

By Lemma 2, the probability that we complete f(n) productive reactions with
fewer than (f(n) + r)/2 successes, which is necessary under our assumptions if
we finish with y > n

k−r , is at most

exp(−f(n)(k − 2)/2− (f(n) + r)/2]2

2f(n)(k − 2)/k
),

which is at most exp(−Θ(f(n)), when f(n) > 2r.

Corollary 5. In stage s of phase 2, assuming that y never increases to n/2s−1,
y decreases to n/2s+1, ending stage s, in at most λn/2s productive reaction
events, with probability at least 1− exp(−Θ(λn/2s)).

Corollary 6. In phase 3, assuming that y never increases to 2eγ lg n, y de-
creases to 0, ending phase 3 (and the entire computation), in at most λ lg n
productive reaction events, with probability at least 1− exp(−Θ(λ lg n)).

The following is an immediate consequence of Lemma 2:

Lemma 8. If during some sequence of m interaction events the total probability
of all productive reactions is at least p then the probability that the sequence gives
rise to fewer than mp/2 productive reaction events is no more than exp(−mp/8).

Corollary 7.
(i) The λn productive reaction events of each stage of phase 1 occur within
(8/3)dγλn interaction events, with probability at least 1− exp(−λn/4).
(ii) The λ(n/2s) productive reaction events of stage s of phase 2 occur within
(16/3)λn interaction events, with probability at least 1− exp(−λn/2s+2).
(iii) The λ lg n productive reaction events of phase 3 occur within (8/3)λn lg n
interaction events, with probability at least 1− exp(λ lg n/4).

Proof. It suffices to observe the following lower bounds on the probability that
an interaction event triggers reaction (1) in individual phases/stages:
(i) in phase 1, x > y ≥ n/dγ , so this probability is greater than 3/(4dγ);
(ii) in stage s of phase 2, x > n(1 − 2s−1) and y ≥ n/2s+1 ≥ (lg n)/2, so this
probability is at least 3/2s+3;
(iii) in phase 3, x ≥ n− lg n and y ≥ 1, so this probability is at least 3/(4n).

Finally, we prove Theorem 1 using the pieces proved until now.

Proof (of Theorem 1).
(i) [Correctness] It follows directly from Corollaries 1 and 4 (respectively, 2
and 5, 3 and 6) that phase 1 (respectively phase 2, phase 3) completes in the



intended fashion, within at most λn lg n (respectively, λn, λ lg n) productive
reaction events, with probability at least 1− exp(−Θ(cγ lg n)) (respectively, 1−
exp(−Θ(λn/dγ)), 1− exp(−Θ(λ lg n))).
(ii) [Efficiency] It is immediate from Corollary 7 that the required number of
productive reaction events in phases 1 2 and 3 occur within Θ(λn lg n) interaction
events, with probability at least 1− exp(−Θ(λ lg n)).

4 Approximate Majority Using Bi-molecular Reactions

Here we show correctness and efficiency of the Double-B and Single-B CRNs,
essentially by showing that both CRNs respect the more abstact tri-molecular
CRN of the previous section.

4.1 The Double-B CRN

In this section we analyse the behaviour of the Double-B CRN of Figure 1(b):

Theorem 2. For any constant γ > 0, there exists a constant cγ such that,
provided (i) the initial molecular count of X and Y together is at least n/2, and
(ii) the count of X exceeds that of Y by at least cγ

√
n lg n, a computation of

Double-B reaches a consensus of X-majority, with probability at least 1 − n−γ ,
in at most cγn lg n interaction events.

Comparing with Theorem 1, it becomes clear that the role of the molecule
B is simply to facilitate a bimolecular emulation of the tri-molecular CRN. The
sense in which Double-B can be seen as emulating the earlier tri-molecular CRN
is that we can analyse its behaviour using exactly the same three phases (and
the same sub-phase stages) that we used in our tri-molecular analysis.

Correctness of the emulation We measure progress throughout in terms
of the change in the molecular counts x̂, defined as x + b/2, and ŷ, defined as
y + b/2, noting that reaction (0’) leaves these counts unchanged and reactions
(1’) and (2’) change x̂ and ŷ at exactly half the rate that the corresponding
tri-molecular reactions (1) and (2) change x and y. In each phase, we note that
the relative probability of reaction (1’) to that of (2’), equals or exceeds the
relative probability of reaction (1) to that of (2) in the tri-molecular CRN, and
we argue that the total probability of reactions (1’) and (2’) is at least some
constant fraction of the total probability of reactions (1) and (2). This allows us
to conclude that Double-B reaches the same conclusion as the tri-molecular CRN,
using at most twice as many productive reaction events as the tri-molecular CRN
to complete each corresponding phase/stage.

Efficiency of the emulation We argue that the productive reaction events
needed to carry out the emulation of the tri-molecular CRN occur within a num-
ber of interaction events that is at most some constant multiple of the number



of interaction events needed to realize the required productive reaction events in
the tri-molecular CRN.

This argument is made most simply by setting out bounds on b, the molec-
ular count of molecule B that, with high probability, hold after the first Θ(n)
interaction events, and continue to hold thereafter.

Our bounds are summarized in Lemma 9 below. The proof, a straightforward
application of Chernoff bounds, is in the Appendix. In the interests of simplicity,
the bounds we provide here are not the tightest possible, but are sufficient for
us to conclude immediately that the probability of reactions (1’) and (2’) of
Double-B are each at most a constant factor smaller than those of reactions (1)
and (2) in the corresponding phases/stages of the tri-molecular CRN.

Lemma 9. Let I be any interval of n/64 interaction events of a computation of
Double-B. Let x0, xe, xmin and xmax, the initial, final, minimum and maximum
values of x in the interval I (similarly, for y and b). Then for any constant
γ > 0, there exists a constant fγ such that, if y0 ≥ fγ lg n, the following bounds
hold with probability at least 1− 1/nγ :

(a) [Upper bounds] If b0 ≤ 15n/32 then be ≤ 15n/32 and bmax ≤ n/2.
(b) [Lower bounds] Even if b0 = 0, be ≥ ye/265. Furthermore, if b0 ≥ y0/265

then bmin ≥ ymax/292.

The efficiency of Double-B follows similarly from the earlier analysis of the
tri-molecular CRN presented in Corollary 7. There we observed that it sufficed to
bound from below the probability of reaction (1). For the corresponding analysis
of Double-B, we observe that in all corresponding phases/stages the probability
of reaction (1’) is up to a constant factor the same as that of reaction (1). This
follows immediately from the upper bound (n/2) on b, which ensures that the
molecular count of X is at least n/4, and the lower bound (y/292) on b, which
ensures that the molecular count of B is at least a constant fraction of that of
Y . The constant eγ that is used in demarking the end of phase 2 and the start
of phase 3 will now depend on the constant fγ of Lemma 9, in order to ensure
that this lower bound on b holds throughout phase 2 with high probability.

4.2 The Single-B CRN

Here, we study the behaviour of Single-B, originally proposed by Angluin et
al. [10] and shown in Figure 1(c):

Theorem 3. For any constant γ > 0, there exists a constant cγ > γ such that,
provided (i) the initial molecular count of X and Y together is at least n/2, and
(ii) the count of X exceeds that of Y by at least cγ

√
n lg n, a computation of

the Single-B CRN reaches a consensus of X-majority, with probability at least
1− n−γ , in cγn log n interactions.

Comparing the Double-B and Single-B CRNs, we notice that the only difference
is that reaction (0’) is replaced by probabilistic reactions (0’x) and (0’y) which
are equally likely and thus on average, have no effect on x̂ and ŷ. An advantage of



Single-B is that B-majority consensus is never reached 1. The analysis of Single-
B proceeds in phases that are essentially the same as for Double-B, except for the
need to account for drift in the gap x̂− ŷ caused by fluctuations in the number
of (0’x) vs (0’y) reactions. For example, this drift may cause x̂− ŷ to initially dip
lower when Single-B executes than it does when Double-B executes. To address
this, we show in Lemma 10 that, despite the drift, the gap will remain at least
(cγ − γ)/2

√
n lg n with all but exponentially small probability, and accordingly

we change the definition of phase 1 to be:

phase 1 (cγ−γ)/2
√
n lg n < x̂− ŷ ≤ n(dγ−2)/dγ . It ends as soon as ŷ ≤ n/dγ .

Further minor adjustments, described in Appendix A.3, do not require any fur-
ther changes to the definitions of phases and stages.

Lemma 10. Starting from x̂ − ŷ ≥ cγ
√
n lg n, where cγ > γ, x̂ − ŷ reduces to

(cγ − γ)
√
n log n within n reaction events with probability less than 1/n(γ

2).

Proof. Starting from x̂ − ŷ ≥ cγ
√
n lg n, the probability that x̂ − ŷ increases is

at least as much as the probability that it decreases. As a worst case scenario,
we can view the changes in x̂ − ŷ as an unbiased random walk which starts at
cγ
√
n lg n. Let Q1, . . . , Qr denote independent random variables where 0 ≤ r ≤ n

taking values in set Ar = [1,−1]. The Qr satisfy the conditions of Azuma’s in-
equality (Lemma 3) with cr = 2, the expected change

√
n (assuming an unbiased

random walk), and function Y = f(Q1, . . . , Qn) = max1≤r≤n |
∑r
i=1Qi| which

gives us the maximum translation distance over n reaction events. Now, using
Azuma’s inequality, we can infer that P[|Y −

√
n| ≥ γ

√
n lg n] ≤ 1/nγ

2

. Thus
in our unbiased random walk the maximum distance from the origin is at most
γ
√
n lg n with high probability.

5 Empirical Results

Figure 2 illustrates the progress of computations of each of our CRNs in each
of the three phases, on a single run. In the first phase, the gap x − y (red
line) increases steadily. Once the gap is sufficiently high, phase 2 starts and the
count of y for the tri-molecular CRN, and ŷ for the bi-molecular CRNs, decrease
steadily. In the last phase, as the counts of y and ŷ are small, there is more
noise in the evolution of y and ŷ, but they do reach 0. Figure 3 compares time
(efficiency) and success rates (probability of correctness) of the three CRNs to
reach consensus, as a function of the log of the initial count n of molecules, or
the log of the volume. The plots show that time grows linearly with the log of the
molecular count, and the success rate is close to 1 for large n. A fit to the data
of that figure shows that the expected times of the tri-molecular, Double-B and
Single-B CRNs grow as 3.4 lnn, 2.4 lnn, and 4.0 lnn respectively. For n ≥ 100,
the tri-molecular CRN has at least 99% probability of correctness and the bi-
molecular CRNs have at least 97% percent probability of correctness. These
probabilities all tend to 1 as n gets larger.

1 We note that although the B-majority consensus is reachable in the Double-B CRN,
the probability of such an event is easily shown to be very small (i.e., nΩ(− lg(n))).



(a) (b) (c)

Fig. 2. The gap x − y (red line) and minority (count y for tri-molecular CRN and ŷ
for bi-molecular CRNs) (blue line), as a function of time, of sample runs of the (a)
tri-molecular, (b) Double-B, and (c) Single-B CRNs. The initial count is n = 106,
the initial gap x − y is 2

√
n lgn and parameters cγ , dγ and eγ are set to 2, 8, and 2

respectively. The vertical dotted lines demark transitions between phases 1, 2 and 3.
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Fig. 3. Comparison of the time (left) and success rate, i.e., probability of correctness
(right) of Single-B, Double-B and the tri-molecular CRN for Approximate Majority.
Each point in the plot is an average over 5,000 trials. The initial configuration has no
B’s and the imbalance between X’s and Y ’s is

√
n lnn. Plots show confidence intervals

at 99% confidence level.

6 Discussion

As noted earlier, Doerr et al. [11] analyse what they call the median rule con-
sensus protocol, which bears strong resemblance to our tri-molecular CRN for
approximate majority. The median rule protocol assumes rounds of n concurrent
interactions, with each of n participating processes initiating one interaction that
involves two additional processes chosen uniformly at random. The result of each
such round is very similar to what is accomplished in one time unit of the CRN
or PP models, in which a sequence of n random interactions occur. Accordingly
there are strong similarities between our analysis and theirs. For example, our
analysis is staged in a way that allows us to assume that interactions within
each stage are driven by essentially the same population sizes. Note however
that in our CRN model, unlike the Doerr et al. model, there may be molecules
that participate in no interaction within a given unit of time. This difference
becomes evident in our end game analysis, which requires Θ(n log n) time units
to ensure that, with high probability, the few remaining Y interact and thus are
converted to X’s. In contrast, the end game is completed in O(1) rounds with



high probability in the Doerr et al. model. More significant differences between
the Doerr et al. model versus the CRN and PP models arise when the initial gap
x−y is small, a case that we do not analyze and that appears to be significantly
harder to handle in the CRN model.

There are several ways in which we can extend our results. Angluin et al. [10]
analyze settings in which (i) some agents (molecules) have Byzantine, i.e., ad-
versarial, behaviour upon interactions with others, (ii) some molecules are “ac-
tivated” (become eligible for reaction) by epidemic spread of signal, and (iii)
there are three or more species present initially and the goal is to reach consen-
sus on the most populous species (multi-valued consensus). We believe that our
techniques can be generalized to these settings.

Other generalizations are motivated by practicalities of molecular systems.
When a CRN is “compiled” to a DNA strand displacement system, it may be that
the DNA strand displacement reaction rate constants closely approximate, but
are not exactly equal to, the CRN reaction rates. It could be helpful to describe
how the initial gap needed to guarantee correct and efficient computations for
Approximate Majority with high probability depends on the uncertainty in the
rate constants. Also, our techniques may be useful for proving correctness of
the Chen et al. strand displacement implementation of Double-B [12], which
involves so-called fuel species and waste products in addition to molecules that
represent the species of the CRN. Third, it could be useful to analyze variants
of the CRNs analyzed here, or other CRNs, in which some or all of the reactions
are reversible. For example, if the blank-producing reaction (0’) of Double-B
is made reversible, the modified CRN is still both correct and efficient, while
having the additional nice property that a stable state with neither X-consensus
nor Y -consensus cannot be reached, even with very low probability. On the other
hand, some caution needs to be applied when reversing reactions. For instance,
making reactions (0’x) and (0’y) of Single-B reversible can lead to a system that
fluctuates around a state with an equal number of Xs and Y s, and some ratio
of Bs. This would happen when the rate of reversed reactions (0’x) and (0’y) is
greater or equal to the rate of reactions (1’) and (2’). Again, we believe that our
analyses can easily generalize to these scenarios.

References

1. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.
Physical Chemistry, 81:2340–2361, 1977.

2. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–
253, 2006.

3. M. Cook, D. Soloveichik, E. Winfree, and J. Bruck. Programmability of chemical
reaction networks. Algorithmic Bioprocesses, pages 543–584, 2009.

4. D. Soloveichik, M. Cook, E. Winfree, and J. Bruck. Computation with finite
stochastic chemical reaction networks. Nat Comput, 7, 2008.

5. L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes approximate
majority. Nature Scientific Reports, 2, 2012.



6. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. In Dolev S. (eds) Distributed Computing (DISC), Lecture Notes in
Computer Science, volume 4167, pages 61–75. Springer, Berlin, Heidelberg, 2006.

7. L. Cardelli, M. Kwiatkowska, and L. Laurenti. Programming discrete distributions
with chemical reaction networks. In Rondelez Y., Woods D. (eds) DNA Computing
and Molecular Programming, Lecture Notes in Computer Science, volume 9818,
pages 35–51. Springer, Cham, 2016.

8. D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal substrate for chemical
kinetics. PNAS, 107(12):5393–5398, 2010.

9. D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R. L. Rivest. Time-space
trade-offs in population protocols. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 2560–2579, 2017.

10. D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, July 2008.

11. B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler. Stabilizing
consensus with the power of two choices. In Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages
149–158, New York, NY, USA, 2011. ACM.

12. Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and
G. Seelig. Programmable chemical controllers made from DNA. Nature Nanotech-
nology, 8(10):755, 2013.

13. E. Perron, D. Vasudevan, and M. Vojnovic. Using three states for binary consensus
on complete graphs. In Proceedings of the 28th IEEE Conference on Computer
Communications (INFOCOM), pages 2527–2535, 2009.

14. G. B. Mertzios, S. E. Nikoletseas, C. L. Raptopoulos, and P. G. Spirakis. Deter-
mining majority in networks with local interactions and very small local memory.
Distributed Computing, 30(1):1–16, 2017.

15. J. Cruise and A. Ganesh. Probabilistic consensus via polling and majority rules.
Queueing Systems, 78(2):99–120, 2014.

16. M. Draief and M. Vojnovic. Convergence speed of binary interval consensus. SIAM
Journal on Control and Optimization, 50(3):1087–1109, 2012.

17. L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and L. Trevisan. Stabilizing
consensus with many opinions. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 620–635, 2016.

18. L. Becchetti, A. Clementi, E. Natale, F. Pasquale, R. Silvestri, and L. Trevisan.
Simple dynamics for plurality consensus. Distributed Computing, pages 1–14, 2016.

19. N. van Kampen. Stochastic processes in physics and chemistry (revised edition),
1997.

20. W. Feller. An Introduction to Probability Theory and its Applications, volume 1.
Wiley, New York, 3rd edition, 1968.

21. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, pages 493–507,
1952.

22. C. McDiarmid. On the method of bounded differences. London Society Lecture
Note Series, 141:148–188, 1989.



A Appendix

In this appendix we 1) relate our CRN model to that of Cook et al. [3], 2) prove
our lower and upper bounds on the number of B molecules in the Double-B
CRN, and 3) prove the lemmas which make the analysis of Single-B parallel to
that of the tri-molecular CRN.

A.1 Relationship between our CRN model and that of Cook et al.

Other CRN models define reaction probabilities and computation time somewhat
differently than we do, but these differences can easily be reconciled. For example,
in the model of Cook et al. [3], if k′r is the rate constant associated with reaction
r = (s, t) of order o and the system is in configuration c = (x1, x2, . . . , xm), then
the propensity, or rate, of r is

ρr(c) = k′r[

m∏
i=1

(xi!/(xi − si)!)]/vo−1.

If ρtot(c) =
∑
r ρr(c) for all reactions r of order o, then the probability that

a reaction event is reaction r is ρr(c)/ρ
tot(c), and the expected time until a

reaction event occurs is 1/ρtot(c). (In this model, reaction rate constants can be
greater than 1, and may depend not only on the number of reactants of each
species, but also on other properties of a species such as its shape, capturing
the fact that the likelihood of different types of interactions may not all be the
same.)

If in our model we set kr = k′r
∏m
i=1 si! for each productive reaction, and nor-

malize by
∑
r kr if necessary to ensure that

∑
r∈R(s) kr ≤ 1 (adjusting the un-

derlying time unit accordingly), a straightforward calculation shows that, when
in a given configuration c, the probability that a reaction event is a given reac-
tion r is the same in our model and that of Cook et al. 2 See the example of

2 Here is the calculation for the probability conversion.

ρr(c) = k′r.[

m∏
i=1

(xi!/(xi − si)!)]/vo−1

= k′r.[

m∏
i=1

si!].[

m∏
i=1

(
xi
si

)
]/vo−1

= [

(
n

o

)
/vo−1]k′r[

m∏
i=1

si!].[

m∏
i=1

(
xi
si

)
]/

(
n

o

)

= [

(
n

o

)
/vo−1]kr[

m∏
i=1

(
xi
si

)
]/

(
n

o

)
,

where

kr = [k′r[
m∏
i=1

si!]. (1)



Figure 4. Also, the expected time until the next reaction event differs between
the models by a constant factor that is independent of c. Conversely, to convert
from our model to that of Cook et al., divide our rate constant kr by [

∏m
i=1 si!]

(and multiply all rate constants by the same constant factor in order to adjust
time units as needed).

X +X + Y →1 X +X +X (r1) X +X + Y →2/14 X +X +X (r1)

Y + Y + Y →2 X +X + Y (r2) Y + Y + Y →12/14 X +X + Y (r2)
(a) (b)

Fig. 4. (a) A CRN specified with respect to the Cook et al. model. The reaction rates
when the system is in configuration (3,3) are k′r1 = 18/v2 and k′r2 = 12/v2. The
reaction probabilities are ρr1(3, 3) = 3/5 and ρr2(3, 3) = 2/5. (b) The mapping of
the CRN of part (a) to our model by changing the rate constants (using Equation
1 of footnote 2) and normalizing by

∑
kr. The probability that a reaction event is

r1 is (18/14)/(30/14) = 18/30, and the probability of r2 is 12/30. Thus, reaction
probabilities are preserved exactly.

A.2 Bounds on b, the molecular count of B, in the Double-B CRN

Here we provide a proof of Lemma 9, omitted from Section 3. We note that
the probability that an interaction event in the interval I triggers reaction (0’)
(respectively, reaction (1’), reaction (2’)) is just xy/

(
n
2

)
(respectively, xb/

(
n
2

)
,

yb/
(
n
2

)
). In the following, we simplify calculations by replacing

(
n
2

)
with n2/2.

Upper bounds on b Note that reaction (0’) has probability at most
(n/2)(n/2)/(n2/2) = 1/2, so at most n/64 new B molecules are produced by
reaction (0’) over interval I, in expectation, and at most n/32 are produced,
with probability 1− exp(Θ(n)). Thus, bmax ≤ bmin + n/32.

Given this, we can clearly assume that bmin ≥ 14n/32, since otherwise bmax

(and, of course be) is less than 15n/32. Thus x + y ≤ 18n/32 throughout the
interval, and so reaction (0’) has probability at most (18n/64)2/(n2/2) which
is less than 1/6. Hence fewer than 2(n/64)/6 = n/192 new B molecules are
produced by reaction (0’) over interval I, in expectation, and fewer than n/175
are produced, with probability 1− exp(Θ(n)) (here we use a Chernoff upper tail

We can interpret the last of these expressions for ρr(c) as the product of three terms.
The first term, namely

(
n
o

)
/vo−1, corresponds to the (normalized) average rate of an

interaction of order o. The last term, namely [
∏m
i=1

(
xi
si

)
]/
(
n
o

)
, is the probability that

the rection of order o has exactly the reactants of r. The middle term kr depends on
the si’s, but could also model situations where different types of interactions have
different rates, e.g., if some molecular species are larger than others. Normalizing
the kr’s by

∑
kr yields rate constants for our model.



bound). Assuming b0 ≤ 15n/32, it follows that bmax < b0 +n/175 < n/2, and so
x+ y > n/2 throughout interval I.

It follows that the total probability of reactions (1’) and (2’) is at least
(n/2)(14n/32)/(n2/2) = 14/32 throughout interval I, which means that at least
(14/32)(n/64) > n/148 B molecules are consumed by these reactions, in expec-
tation, and at least n/160 are consumed, with probability 1 − exp(Θ(n)), over
the course of interval I (here we use a Chernoff lower tail bound). Thus, with
probability 1 − exp(Θ(n)), the net change in b is less than n/175 − n/160 < 0,
and so be < b0 ≤ 15n/32. We note that this upper bound holds with probability
1− exp(−Θ(n)), which is stronger than in the statement of the lemma.

Lower bounds on b Note that x − y is not changed by reaction (0’), and by
Lemma 4, it never reaches (x0−y0)/2 through reactions (1’) and (2’). Therefore,
bmax ≤ n/2, it follows that x+ y ≥ n/2 and hence x ≥ n/4. We will use this fact
throughout.

We first show that even if b0 = 0, be ≥ ye/292. Since bmax ≤ n/2 it follows
that reaction (2’) has probability at most ymaxbmax/(n

2/2) ≤ ymax/n. Thus
reaction (2’) increases y from its minimum value ymin by at most ymax/64, in
expectation, and by at most ymax/32, with high probability, over the course of
interval I. Here, the high probability follows from the fact that ymax ≥ y0 ≥
fγ lg n = Ω(log n), and application of a Chernoff tail bound. Thus, ye ≤ ymax ≤
ymin + ymax/32 and so

ymin ≥ (31/32)ymax = Ω(log n). (*)

Now suppose that
bmax > (1/16)ymin. (**)

Thus we also have that bmax = Ω(log n), by (*). Since x+ y ≤ n, reactions (1’)
and (2’) together have probability at most nbmax/(n

2/2), and so these reactions
reduce b from its maximum value bmax by at most bmax/32, in expectation, and
by at most bmax/16, with high probability, over the course of interval I. Here,
the high probability follows from the fact that bmax = Ω(log n), and application
of a Chernoff tail bound. Thus, with high probability,

be ≥ (15/16)bmax. (***)

Then,

be ≥ (15/16)bmax by (***)

> (15/16)(1/16)ymin by (**)

≥ (15/16)(1/16)(31/32)ymax by (*)

> ymax/18 ≥ ye/18.

On the other hand, suppose that

bmax ≤ (1/16)ymin. (****)



Since reaction (0’) has probability at least xminymin/(n
2/2) ≥ ymin/(2n), reac-

tion (0’) increases b by at least ymin/64, in expectation, and at least ymin/128,
with high probability, over the course of interval I. Since reactions (1’) and
(2’) together have probability at most nbmax/(n

2/2) ≤ n(ymin/16)/(n2/2) by
(****), we know that together they decrease b by at most ymin/512, in expec-
tation, and at most ymin/256, with high probability, over the course of interval
I. Here, the high probability follows from the fact that ymin = Ω(log n) by (*),
and application of a Chernoff tail bound. Thus the net change in b is at least
ymin/128− ymin/256, with high probability. Also,

ymin/128− ymin/256 = ymin/256

≥ (31/32)(1/256)ymax by (*)

> ymax/265.

So, be > ymax/265 ≥ ye/265, even if b0 = 0.
Finally, assume that b0 ≥ y0/265. Let b′max be the maximum value of b

between b0 and bmin in the course of interval I. By an argument similar to the
one used for equation (***), with high probability, we get

bmin ≥ (15/16)b′max ≥ (15/16)b0 (*****)

Therefore, we have

bmin ≥ (15/16)b0 by (*****)

≥ (15/16)y0/265

≥ (15/16)ymin/265

> (15/16)(31/32)ymax/265. by (*)

and so b > y/292 throughout interval I.

A.3 Adjustments required for the proof of Single-B

Here we describe additional adjustments to the proof of correctness and efficiency
of the tri-molecular CRN that are needed to account for changes to random
variables x̂ and ŷ due to reactions (0’x) and (0’y). Note that reactions (0’x)
and (1’) increase x̂ by 1/2 and decrease ŷ by 1/2, while reactions (0’y) and (2’)
decrease x̂ by 1/2 and increase ŷ by 1/2.

First, in the proof of the upper (n/2) and lower (y/292) bounds on b in
Lemma 9, we simply adjust the probabilities of a change in x̂ or ŷ to account
for reactions (0’x) and (0’y). (We remark that we are able to provide tighter
lower and upper bounds on b with respect to variable y , i.e., y

2α ≤ b ≤ 2αy,
where α ≥ 20, and b = Ω(log n), for the Single-B CRN - details omitted.) Then,
utilizing the lower bound on b, Lemma 11 shows that the ratio of total probability
of reactions (0’x) and (1’) to that of reactions (0’y) and (2’) is lower than the
ratio of the probability of reaction (1) to that of reaction (2) in the tri-molecular
CRN by at most a small constant. Therefore, the analysis of phase 1 of Single-B
parallels that of the tri-molecular CRN.



Lemma 11. At any point in the computations, assuming that x̂− ŷ ≥ ∆/2, the
probability that x̂− ŷ increases is at least 1/2 +Θ(∆/n).

Proof. Let p denote the probability of a success (x̂ − ŷ increases) and q denote
the probability of a failure (x̂− ŷ increases). So, given that x ≤ n, and y/292 < b,
we have that

1)
q

p
=

1/2xy + yb

1/2xy + xb
≤ 1− (x̂− ŷ)b

1/2xy + xb
≤ 1− (∆/2)b

x(1/2y + b)
≤ 1−Θ(∆/n),

2) q + p = 1.

It follows from equations 1 and 2 that p ≥ 1/2 +Θ(∆/4n).

Similarly, we can revise Lemmas 5 and 7 (and their related corollaries) to
make the analysis of phases 2 and 3 of Single-B also parallel to those of the
tri-molecular CRN–see Lemmas 12 and 13.

Lemma 12. At any point in the computation, if ŷ = n/k then the probability
that ŷ > 2n/k at some subsequent point in the computation is less than (1 −
Θ(1))n/k.

Proof. Let p denote the probability of a success (ŷ decreases) and q denote the
probability of a failure ( ŷ increases). So, assuming that x ≤ n, x̂− ŷ ≥ n−n/4k,
and y < 292b, we can compute the ratio q/p on a reaction event as follows.

q

p
=

1/2xy + yb

1/2xy + xb
≤ 1− (x̂− ŷ)b

1/2xy + xb
≤ 1− (n− 4n/k)b

n(1/2y + b)
≤ 1−Θ(1).

By Lemma 1, we conclude that reaching a configuration where y > 2n/k (which
entails an excess of n/k failures to successes) is less than (1−Θ(1))n/k.

Lemma 13. At any point in the computation, if ŷ = n/k then, assuming that
ŷ never increases to 2n/k, the probability that ŷ decreases to n/k − r within
f(n) > Θ(r) reaction events is at least 1− exp(−Θ(f(n)).

Proof. The proof is completely parallel to the proof of Lemma 7. We only need to
compute the probability of a success (ŷ decrease). By Lemma 12, q/p = 1−Θ(1).
So, considering p+ q = 1, it’s straightforward to obtain p ≥ 1

2 +Θ(1).

Finally, we employ Lemma 8 to complete the proof of efficiency. Using the
upper bound on b, which confirms that x ≥ n/4 and the lower bound on b, which
confirms b ≥ y/292, we can conclude that the total probability of reactions (0’x),
(0’y), (1’), and (2’) is at least some constant fraction of the total probability
of reactions (1) and (2) in tri-molecular CRN. Therefore, the total number of
interactions in Single-B is at most some constant multiple times the required
number of interactions in the tri-molecular CRN.


