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Abstract. We present an efficient algorithm for determining whether all
molecules in a combinatorial set of DNA or RNA strands are structure
free, and thus available for bonding to their Watson-Crick complements.
This work is motivated by the goal of testing whether strands used in
DNA computations or as molecular bar-codes are structure free, where
the strands are concatenations of short words. We also present an algo-
rithm for determining whether all words in S*, for some finite set S of
equi-length words, are structure-free.

1 Introduction

In search-and-prune DNA computations, many long, DNA strands are created
from a small number of short strands, called words. For example, Braich et al.
[1] use the words pairs
(TATTCTCACCCATAA, CTATTTATATCCACC), (ACACTATCAACATCA, ACACCTAACTAAACT),
(CCTTTACCTCAATAA, CTACCCTATTCTACT), (CTCCCAAATAACATT, ATCTTTAAATACCCC),

(AACTTCACCCCTATA, TCCATTTCTCCATAT), (TCATATCAACTCCAC, TTTCTTCCATCACAT)

to construct 2% strands, namely those obtainable by taking one of the words
from each pair, and concatenating these in pair order. (Since there are two
strands per pair and 6 pairs in total, the number of strands obtainable in this
way is 25.)

Word sets are carefully designed using computational or information-theoretic
methods, so that the resulting long strands behave well in the computation. One
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property of well-designed words is that the long strands formed from these words
do not form secondary structures. For example, the design of Braich et al. uses
a 3-letter alphabet, ensures that no sequence of length 8 appears more than
once in any strand, and more. The success of the design rests (in part) on the
hypothesis that words satisfying these design criteria form strands with no sec-
ondary structure. While this hypothesis seems plausible, to our knowledge there
is currently no rigorous argument that supports the hypothesis, either for the
design of Braich et al. or for any other word design currently employed in DNA
computing. For this reason, an efficient algorithm that can test whether a given
word set produces strands with no secondary structure would be valuable.

With this motivation, we consider the following problem, which we call the
structure freeness problem for combinatorial sets. We are given a list
of ¢t pre-designed pairs of words {w(i), w(i),1 < ¢ < t}. (Here the bar notation
is not intended to represent Watson-Crick complementation). All words have
the same length [, and are strings over {4, C,G,T'} representing DNA strands
with the start of the string corresponding to the 3’ end of the strand. Determine
whether all of the 2¢ strands in the set S denoted by the regular expression
(w(1) + @(1))(w(2) + @(2))... (w(t) + ©(t)) are structure free, that is, are pre-
dicted to have no secondary structure, according to the standard, pseudoknot-
free, thermodynamic models.

Zuker and Steigler [14] developed an efficient algorithm, based on dynamic
programming, for determining the optimal (lowest energy) secondary structure
of an RNA molecule. Their method can also be applied to DNA molecules, given
suitable thermodynamic parameters [13]). The running time of their algorithm
is O(n*) on a strand of length n, and an improved algorithm of Lyngso et al.
[10] runs in time O(n?). If the algorithm of Lyngso et al. were applied to each of
the words in S independently, the running time would be O(2!n?), where n =
is the length of the strands in S.

In Section 3 we describe an algorithm for the structure freeness problem for
combinatorial sets that runs in time O(n®). The algorithm is a simple gener-
alization of the algorithms of Zuker and Steigler and Lyngso et al. [14,10]. We
also present experimental results that compare the performance of our algorithm
with an exhaustive search approach to the structure freeness problem for com-
binatorial sets, and describe cases where we have found structures in previously
reported word designs.

Our algorithm easily generalizes to solve the following problem. Let S; be a
set of strands, all having the same length /;, for 1 < i < ¢, where the [; are not
restricted to be of the same length. Are all strands in the set S =51 X S3....5;
structure free? The running time of our algorithm for this extended problem is
O(max;|S;|*n®), where here n = I; + Iz + ... + I; is the length of strands in S.
The generalized algorithm can be used to verify structure freeness of strands in
the combinatorial sets of Faulhammer et al. [5], and others.

Our algorithm can also be used to verify that sets of molecular tags, or bar-

codes, such as those of Brenner et al. [3], are structure free. In this design, tags
are constructed from the set of 8 4mer words



{TTAC, AATC, TACT, ATCA, ACAT, TCTA, CTTT, CAAA}.

This set of words is constructed over a 3-letter alphabet (G’s omitted), each
word has exactly one “C”, and each word differs from the others in three of the
four bases. Call this set S. The tags constructed by Brenner et al. are all of the
88 strands in the set S®.

This example motivates the second problem studied in this paper. Suppose
that in the future, Brenner et al. need more tags, and use strands from the set S°
or S'0. Even if all strands in the set S® are structure free, it might be possible
that some strand in S° or S0 has structure. Ideally, one would like to know
that all words in S* are structure free. Here, S* is the set of strands obtained
by concatenating zero or more copies of strands in S together. Note that S*
contains an infinite number of strands if S is not empty. The set S* is often
called the Kleene closure of S.

Thus, we define the structure freeness problem for Kleene sets as
follows. Given a set S of words, are all words in S* structure free? In Section
4 we show that there is a constant m (depending on S) such that if some word
of §* has structure, then some word in S™ has structure. This reduces the
structure freeness problem for Kleene sets to the structure freeness problem for
combinatorial sets. However, our bound on m is exponential in the size of S
and the length of the words in S. Whether or not a better bound on m can be
obtained is an interesting open question.

Before getting to our algorithms in Sections 3 and 4, we provide background
on thermodynamic models for calculating the free energy of RNA and DNA sec-
ondary structures in Section 2, along with an overview of the secondary structure
prediction algorithm of Zuker and Steiglitz [14].

1.1 Related Work

Our algorithm for determining structure freeness of combinatorial sets was al-
ready developed by Cohen and Skiena [4], but applied to a different problem
in that work. They were interested in determining, among the RNA sequences
coding for a given protein P, which has the most stable secondary structure?
Other important related work concerns algorithms for predicting the sec-
ondary structure of a RNA or DNA strand. In contrast with the Zuker-Steigler
algorithm which is the basis for our work and returns the free energy of the most
stable structure accessible to a given strand, the partition function approach of
McCaskill [11] measures the propensity of a strand to fold in terms of the sum of
the Gibb’s factors (Z = exp(—AG/RT)) of all folded structures. The quantity
Z can be calculated in O(n?) time, using a dynamic programming algorithm.
An extension of the approach used in our paper to use the partition function of
McCaskill would provide more insight on the propensity of a strand to fold than
does the “all or nothing” approximation of our current algorithm. We believe
that the techniques described in our paper can be extended to the partition
function approach, and view this as an important next step for this work.



Other thermodynamic models for DNA and RNA structure folding, that
could be used as a basis for approaching the structure freeness problem for
combinatorial sets, have been proposed by Hartemink et al. [7] and by Rose et
al. [12]). In addition, Rose et al. [?] describe a thermodynamic model (based
on a statistical zipper model), for estimating folding propensity of a mixture of
DNA strands.

2 Background and Notation

Under the appropriate chemical conditions, an RNA or DNA strand may fold
upon itself by forming intramolecular bonds between pairs of its bases, as illus-
trated in Figure 1 below. In what follows, if s = 5185 ... s, is an RNA sequence
and 1 < i < j < n, then i.j denotes the base-pairing of s; with s;. A secondary
structure of s is a set of base pairs such that each base is paired at most once.
More precisely, for all i.j and i'.j' in the set, ¢ = ¢’ if and only if j = j'. A
pseudoknot in a secondary structure is a pair of base pairs 7.5,4'.7' in the struc-
ture with ¢ < ¢’ < j < j'. Throughout this work, we restrict our attention to
secondary structures that have no pseudoknots.

Hairpin loop

Multibranched loop

Stacked pairs

Internal loop
External base

Fig. 1. Secondary structure of an RNA strand. The thick black line indicates the
backbone and the thin lines indicate paired bases.

We can classify loops formed by the bonding of base pairs in a structure
according to the number of base pairs that they contain. A hairpin loop contains
exactly one base pair. An internal loop contains exactly two base pairs. A bulge is
an internal loop with one base from each of its two base pairs adjacent. A stacked
pair is a loop formed by two consecutive base pairs (4,j) and (1 + 1,57 — 1). A
multibranched loop is a loop that contains more than two base pairs. An external
base is a base not contained in any loop. One base pair in any given loop is closest
to the ends of RNA strand. This is known as the exterior or closing pair. All other
pairs are interior. More precisely, the exterior pair is the one that maximizes j—i
over all pairs 4.j in the loop.



Speaking qualitatively, bases that are bonded tend to stabilize the RNA,
where as unpaired bases form destabilizing loops. The so-called free energy of a
secondary structure, measures (in kcal/mole) the stability of a secondary struc-
ture at fixed temperature - the lower the free energy, the more stable the struc-
ture. The free energy of a folded RNA or DNA strand can be estimated as
the sum of the free energies of its component loops, if the secondary structure
contains no pseudoknots. Through thermodynamics experiments, it has been
possible to estimate the free energy of common types of loops (see for example
[13] for thermodynamic data for DNA).

2.1 Standard Free Energy Model and Notation

Computational methods for predicting the secondary structure of an RNA or
DNA molecule are based on models of the free energy of loops. The parameters
of these models are driven in part by current understanding of experimentally
determined free energies, and in part by what can be incorporated into an effi-
cient algorithm. The free energy of a loop depends on temperature; throughout
we assume that the temperature is fixed. We next summarize the notation used
to refer to the free energy of loops, along with some standard assumptions that
are incorporated into loop free energy models. We refer to a model that satisfies
all of our assumptions as a standard free energy model.

— eS;s(4, 7). This function gives the free energy of a stacked pair that consists of
i.j and (i+1).(j—1). eSs(, j) depends on the bases involved in the stack. We
use the notation e-Stack(a, b, c,d), where a,b,¢,d € {A,C,G,T}, to denote
the free energy of a stacked pair involving ab (with the 3’ end at a) and cd
(with the 3’ end at ¢, so that the pairs are (a,d) and (b,c)). Thus, for a
strand s = 8182 ... Sp, €55(4, j) = e-Stack(s;, si+1,8;j—1, 8;)- Because stacked
complementary base pairs are stabilizing, eS, values are negative if s; is the
Watson-Crick complement of s; and s;;1 is the Watson-Crick complement
of s;_1. (The values may be negative in other cases, such as when one of the
base pairs is G-U, sometimes called a “wobble pair”.)

— eH,(i,7). This function gives the free energy of a hairpin loop closed by 4.j.
We assume that for all but a finite number of small cases, eHs(i,7) depends
only on the length of the loop, s; and s;, and on the unpaired bases adjacent
to s; and s; on the loop. In particular, eH (i, j) = e-Stack(s;, si41, 5j-1,5;) +
e-Length(j — ¢ — 1), for some function e-Length. Moreover, we assume that
the function e-Length(j) grows at most linearly in j.

— eL4(i,4,4',4"). This function gives the free energy of an internal loop or bulge
with exterior pair 4, j and interior pair i', j'. We assume that eLs(4, 5,4, j') is
given by e-Stack(s;, 441, Sj—1, Sj) +e—Stack(sj/ y Sji41,Si—1, 8:) +e-Length(i' —
i— 1,7 — j' — 1) where we abuse notation slightly by using e-Length as a
function with two parameters here, different from the function e-Length(-)
used for hairpins, in this case growing at most linearly in ¢ + j.

We omit the free energy of multiloops for brevity in this abstract. The free
energy of a strand s with respect to a fixed secondary structure F' is



the sum of the free energies of the loops of F'. Sometimes when the strand s is
understood, it is convenient to refer simply to the free energy of the structure
F'. In this paper, we define the free energy of a strand s to be the minimum
free energy of the strand, with respect to all structures F. (We note that this is
a simplification; a better approach would be to define the free energy in terms
of the sum of Gibb’s factors [11].) We say that a strand s is structure free (at
a given fixed temperature) if its free energy is greater than 0. If the free energy
of s is less than 0, we say that the strand s has structure. We note that our
algorithm can trivially be modified to test whether any strand in a combinatorial
set has free energy below any other threshold, too.

2.2 An Algorithm for Secondary Structure Prediction

Let Ws(j) be the minimum free energy taken over all structures of the strand
8182 ...8;. Our goal is to compute Wy(n), which is the free energy of strand s.
Zuker and Steigler [14] described a dynamic programming algorithm for comput-
ing W(j); their algorithm can easily be extended to produce a structure whose
free energy is Wy(n). The algorithm is based on the following recurrences:

) 0, for j=0
Ws(j) = min(W,(j — 1), min (Va(i, ) + Wa(i = 1), for j > 0.
<]

Here, V5(3, j) is the free energy of the optimal structure for s; ... s;, assuming
i.j forms a base pair in that structure, also expressible as a recurrence:

Vali, ) = +oo fori> j
I = min(eH; (i, §), eSs(i, j) + Vs(i + 1,5 — 1), VBL(i, j), VMs(4, §)); fori <j

In turn, VBI,(i,j) is the free energy of the optimal structure for s;...s;,
assuming ¢.J closes a bulge or internal loop:

oo for j—i<1
VBI(i,j) = ¢  min (eLs(i,j,7,5") + Vs(@,4))
i<l $jt <
VM, (i,7) is the free energy of the optimal structure for s;...s;, assuming
i.j closes a multibranched loop (details omitted).
The running time of the resulting for the above algorithm is O(n*). It can
be improved to O(n?®) using the method of Lyngso et al. [10].

3 Structure Freeness for Combinatorial Sets

In this section, we describe an algorithm for testing that all strands in a com-
binatorial set are structure free. The input to our algorithm is a list of words
w(l),w(1),w(2),w(2),...w(t),w(t), each word has length [. Let

S ={z122...2|% € {w(@) or w(i)}}.



Intuitively, the set S is the set of strands of length n = It obtained by following
a path in the graph of Figure 2 (first suggested by Lipton [9]) from the left end
to the right end and concatenating the edge labels along the path.

w(l) w2) w@ w@ w(n-3) wn-2) wn-1) w(n)

wW(l) W) WwWE) w4 Wn-3) W(@n-2) Wn-1) wn)

Fig. 2. “Diamond Graph”: paths in the graph correspond to strands of S.

While conceptually the algorithm is quite simple, the description uses a lot of
notation that blurs the intuition. In Section 3.1 we first describe an algorithm
for a very simple model of secondary structure formation, which captures the
intuition. The details of our algorithm for the standard free energy model are
presented in Section 3.2.

3.1 Algorithm for the No Repeated k-Strings Model

A simple model of RNA folding is the no repeated k-strings model (simplified
from the staggered zipper model), which defines a sequence to have non-empty
secondary structure if there is a string of length k that repeats without overlaps
anywhere in the string. This captures the notion that long runs of stacked pairs
are a primary source of secondary structure, and correspond to occurrences of a
given substring and its reverse complement in sequence S. Avoiding the reverse
complement instead of a repetition does not introduce any important algorithmic
complexity.

Cohen and Skiena [4] prove, under the no repeated k-strings model, that it
is NP-complete to verify that there is at least one structure-free sequence in a
combinatorial set generated in a similar fashion to the diamond graph above.
Here, we show that verifying all are structure-free can be done in polynomial
time. The distinction is exactly that of proving a given CNF-formula is satisfiable
versus proving that it is a tautology.

We can verify that all 2! sequences of length n = [t contain no repeated
k-string in O(kn2) time. For each of the n starting positions in the sequence,
there are at most two such positions in the “diamond graph” which generate
the sequence starting from this position (either w(i) or w(i)). Given any two
word /position pairs, we now walk forward a total of k characters, comparing the
equality of the symbol on each path at every character. At most two such paths
are active in each walk, because the paths meet at in-degree-2 vertices of the
diamond graph. The existence of a length-k shared walk represents a repeated
k-string in at least one sequence, and terminates the algorithm.



We next enhance this basic approach for the more general class of secondary
structures of the standard models.

3.2 Algorithm for the Free Energy Model

Let W{(n) be the minimum of Wy(n) (as defined in Section 2.2), taken over all
s € S. We present in this section an algorithm to compute W§(n). The algorithm
runs in time O(n?). Using techniques of Lyngso et al. [10] the running time can
be improved to O(n?). In describing our algorithm, we follow the approach of
Section 2.2. Let S; be the set of prefixes of length j of strands in S and let W(4)
be the minimum of W,(j) taken over all s € S;. That is, W¢(j) is the optimal
energy of the strand in S, with the lowest energy secondary structure:

1o 0, for j =0,

Ws(i) = {minsesj W, (j), for 0 < j < n.
Roughly speaking, we would like to be able to express W{(j) in terms of W§(j—
1). It turns out to be more convenient to introduce some new functions to work
with in our recurrences. We use word#(j) to refer to the index of the word to
which base j of a string in S belongs. Thus, word#(j) = [j/I], where [ is the
word length.

Let S(T,j) be the subset of S in which the word containing the jth base is
w(word#(7)). Intuitively, S(T', j) corresponds to the set of paths that go through
the top of the diamond containing the jth base in Figure 2. Then, S(T), j) is

{7122 .. 2|z € {w(i), W(i)} for i # word#(j) and zyorap(;) = w(word#(j))}

Similarly, let S(B,j) be the subset of S in which the word containing the jth
base is w(word#(j)). Intuitively, S(B, j) corresponds to the set of paths that go
through the bottom of the diamond containing the jth base in Figure 2.

Let W{(b,,7) be the minimum of W, (j) for all s € S(b;, ). Formally:

Ws(bi, ) = in  Ws(j), for b; € {T, B}.
s(i,j) = min (We(j), for b; € {T, B}

Also, Wi(j) = b<en:{l%“nB} Wg(bj, 7). So if we can calculate the W((bj, j), we are
i 3

done. It turns out to be easier to obtain recurrence for W{(b;, j) than for W (j).

Similarly, we use generalizations of the functions V;, VBI,, in our re-
currences. For example, we use Vg (b, b, 4, j) to denote min,es,.5,,i,5) Vs (4, 7),
where S(T,T,i,j) is the subset of S corresponding to the set of paths that go
through the top of the diamond containing the ith base and the diamond con-
taining the jth base. S(b;,b;,14, j) is defined similarly for other values of b; and
bj. The base case is Wg(bo,0) = 0, for by € {T', B}. For j > 0 we have

min W:I?(bjflaj - 1)

Wé‘(b]‘,j) = min bj—1€X(j—1)
mi L : bi,b',‘7 1 —}—M/’ bz.7 7'_1
(bi,b;_l)ng(i,j)( 5(bi, b1, 9) 5(bi—1,i )

where X (j — 1) and X (i,j) are given by the tables of Figure 3. Due to space
limitations, we do not describe further recurrences here.



word# (i) |word#(4) X (4, 7)
word# () XG =1 —= —

word#(j — 1) yes yes {(0;,0,)}
yes {bJ} yes no {(T7 T)a (37 B)}
no {*} no yes {(b;,*)}
no no {(*,%)}

Fig. 3. Tables for X(j —1) and X (7, j). In the entries of the right hand column of each
table, each * may be replaced by a T or a B.

3.3 Experimental Results

We have implemented our algorithm, which we refer to as comfold in what fol-
lows. Our implementation uses Turner’s free energy parameters, as incorporated
in the mfold algorithm [15]. At this version (1.0 alpha), there are still some
small differences in the calculated energy values, compared with Zuker’s mfold
or Vienna package’s RNAfold. Another difference is that comfold does not return
suboptimal energies, as mfold does.

We compared the running time performance of comfold with that of a simple
(exponential time) exhaustive search algorithm, which we call ezhaust_v. The ex-
haust_v algorithm uses the Vienna package’s library to fold each of the possible
combinations of words, computes the energy for each, and then returns the com-
bination that folds into the smallest energy. Figure 4 shows the running time of
comfold compared to exhaust_v, plotted on a logarithmic scale. Our results were
obtained on a dual Pentium IIT 1GHz processor machine, with 1GB of RAM We
measured the CPU time in seconds (y) when running comfold and ezhaust_v, for
different number of groups (x) of randomly generated strands. For the left graph,
we used 2 words of length 10 in each group and for the right graph we used 3
words of length 10 in each group. The graph indicates that the running time of
exhaust_v grows exponentially, while that of comfold grows polynomially. At this
version of comfold, exhaust_v is faster for a small number of groups. However,
it is outperformed by comfold when the number of groups is 13 and 9 for the 2
words in a group set and the 3 words in a group set, respectively. Our results also
show that for a set with 4 strands in a group, comfold is faster than exhaust v
starting with 8 groups.

We have also tested several carefully designed combinatorial sets for structure
freeness, using our algorithms. The free energy results reported here in Table 1
are for both comfold and exhaust_v. We note that the results reported here use the
RNA free energy values at 37 degrees Celsius, rather than the DNA values. Every
time we found that a set had structure, we computed the minimum free energy
of the combination having the smallest minimum free energy. We calculated this
strand’s DNA free energy by using Michael Zuker’s folder for DNA. The results
are reported in Table 1, together with the CPU time in seconds for both comfold
and ezhaust_v.
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Fig. 4. Performance of comfold compared to ezhaust_v. We measured the CPU time
(seconds) for both comfold and ezhaust_v, for a variable number of groups, of 2 words
each (left) and 3 words each (right).

Combinatorial set (source)|RNA mfe|DNA mfe|time comfold|time exhaust_v
Braich et al.[1 0 0 36.50 0.53

Braich et al.[2 0 0 2,826.63 165,317.00

Brenner et al.[3 -0.10 0 1,027.25 6,851.59
Faulhammer et al.[5 -2.90 -2.20 444.01 63.95
Frutos et al.[6 -18.40 -11.80 1,062.31 7.31

Table 1. Results from testing some cited combinatorial sets for structure freeness.

Our results show that the combinatorial set of Braich et al.[1] described in the
introduction is indeed structure free, as well as the set for solving the 20-variable
3-SAT problem with a DNA computer [2].

In contrast, one strand in the set of Brenner et al. did have a very slight
negative energy (—0.10kcal/mol), namely, the strand TCTAATCATACTAATC-
CTTTTACTATCATTAC with corresponding structure .. (((-(((-(((----))))))))))
(here parentheses denote matching pairs, and dots denote unpaired bases). How-
ever, we obtained a positive DNA energy for this sequence.

We also found a strand with negative free energy in the reported sets of Faul-
hammer et al.[5]. This is CTCTTACTCAATTCTTCTACCATATCAACATCT
TAATAACATCCTCCACTTCACACTTAATTAAAATCTTCCCTCTTTACA
CCTTACTTTCCATATACAAGTACATTCTCCCTACTCCTTCATAATCTT
ATATTCTCAATATAATCACATACTTCTCCAACATTCCTTATCCCACAC
ACATTTTAAATTTCACAA, that has an energy of —2.90kcal/mol for RNA,
and an energy of —2.20kcal/mol for DNA.

The sets of Frutos et al. [6] with two pairs of word labels contain the strand
AACGGCATGAAGGCAATTCGCCTTCATGCGTT, with an RNA free energy
of —18.40kcal/mol and a DNA free energy of —11.80kcal/mol.



11

We note the tests reported here were done at a folding temperature of 37
degrees Celsius. The tests can be run at other folding temperatures, depending
on the design requirements of the user.

4 Structure Freeness for Kleene Sets

In this section we provide an algorithm for the following problem: given a finite
set S of words of equal length, are all words in S* structure free? We call this the
structure freeness problem for Kleene sets. We show that there is a constant m,
which depends on S, such that if there is a word with structure in S*, then there
is a word with structure in S™. The constant m is bounded by exp(poly(]S|,1)),
where [ is the maximum length of the words in S. With the constant m in hand,
the structure-freeness problem for Kleene sets is solvable using the method of
Section 3. We prove the existence of m as follows.

1. There is a strand with structure in S™ if and only if there is a strand in S*

with a so-called energy bounded structure.
We define what is an energy bounded structure in detail in Section 4.1, but
the intuition is as follows. If there is a strand with structure in S* that has a
very long hairpin loop, we can remove whole words from the unpaired bases
of the loop to obtain a shorter strand in S* which also has structure, and
the energy of the shorter hairpin is bounded. Other parts of the structure
that contribute a high positive free energy to the structure can similarly be
replaced by a hairpin with bounded energy.

2. The set of strands of S* that have energy bounded structures is context free.
Moreover, the size of the context free grammar that generates this set is
bounded by a polynomial in |S| and the maximum length [ of the words in
S. We note that for a given strand with an energy bounded structure, the
optimal structure for this strand may not be an energy bounded structure.

From this, in Theorem 1 we apply standard results on context free languages
that if there is a strand in S* that has structure, then there is such a strand of
length at most exp(poly(]S|,1).

4.1 Energy Bounded Structures

A secondary structure F' is E-energy bounded for a strand s if, with respect
to s, no substructure of F' has negative energy, and no substructure of F' is
expensive, i.e. has energy above some threshold E. Here, a substructure of
F is any proper subset of F' that contains all base pairs (i',5') of F' with 7 <
i' < j' < j, for some (i,j) in F, and contains no other base pairs. We call this
the substructure of F' that is bounded by (i, j). We say that a strand s has
E-energy bounded structure if the free energy of some E-energy bounded
structure is less than 0.
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Lemma 1. Let S be a set of strands. There exists a constant E that grows at
most linearly in the length | of words in S such that the following is true: There
is a strand with structure in S* if and only if there is a strand with E-energy
bounded structure in S*.

One direction of the proof is easy: regardless of the value of E, if there is a
strand with E-energy bounded structure in S*, then trivially this strand is a
strand with structure in S*. The proof of the other direction is based on the fact
that for suitable F, expensive substructures can be “cut” out of a structure, and
replaced by FE-energy bounded structures.

4.2 The Language of Strands with Energy Bounded Structures is
Context Free

There is a context free grammar that generates the language of strands with
energy bounded structures.

Lemma 2. The language of strands with E-energy bounded structures, when
the energy is measured according to the standard energy assumptions, is context
free. There is a context free grammar that generates this language which has
a number of nonterminals linear in E, in which each production has bounded
length (independent of E).

Proof. The proof provides a context free grammar for the language of strands
with energy bounded structures. The terminals of the grammar are {A, C,G, T},
and the nonterminals generate structures with fixed energy values. First, we con-
sider a simple case, namely how to generate energy bounded hairpins. Specif-
ically, we focus on developing a context free grammar that generates the set
of all possible strings that can form a hairpin loop (with no dangling ends)
that is closed by the base pair (¢,%) and has energy e. Call this set H(t,e). We
will use the nonterminal H; . to generate the set H(t,e). Since H(t,e) is finite,
we could simply have one production from H;. that directly generates each
string in H (t,e). However, according to the standard energy model, other than
a few special cases (such as tri-loops or tetra-loops), the free energy of a hairpin
formed by pairing the outside bases in the string taujus ...u;bt (where t,a,b
and u;,1 <i < jarein {A,C,G,T}) can be expressed as the sum of two terms,
namely a stacking energy term, e-Stack(t, a, b, t), and a length term e-Length(5),
where j + 2 is the number of unpaired bases in the hairpin. By taking advantage
of this, fewer rules are needed. Specifically, from Hy ., we add rules of the form:

Ht,e — tan_Qbf
foreach a,b € {A, C,G, T} for which there exists a j for which e—e-Stack(¢, a,b,t) =
e-Length(j). Here, U;_5 is a nonterminal that generates all sequences of j — 2

bases: for each t € {A4,C,G,T} and 1 < i < j, we add the rules

U; = tU;_1 and U; — ¢.
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The total number of rules generated from H;. is a constant independent of
e. In addition, the number of nonterminals U; is approximately e—Lengthfl(e).
Generalizing from the case of hairpins, we need other new nonterminals in our
grammar that generate different types of structures. Mirroring the notation used
in the recurrence relations of Section 2.2, we use the following nonterminals
(details omitted):

— We: generates the set of strings that can form an E-energy-bounded structure
with energy e.

— Vi,et generates the set of strings that can form an E-energy bounded struc-
ture that is closed by the base pair (t,t) and has energy e;

— It .: generates the set of strings that can form an E-energy-bounded struc-
ture with energy e, the outermost loop of which is an interior loop (other
than stacked pair) that is closed by the base pair (¢, ).

— M, : generates the set of strings that can form an E-energy bounded struc-
ture with energy e, the outermost loop of which is a multi-loop that is closed
by the base pair (t,1).

All of the productions above have length that is bounded (there is a maximum
of nine symbols on the right hand side of any rule).

Lemma 3. Let S be a set of strands, each of length l. Let L be the language of
strands in S* with E-energy bounded structures. Then L is contezt free, and there

is a context free grammar that generates L, for which the number of nonterminals
is O(E(I|S|)®) and each rule has bounded length (independent of E,l, and S).

The proof of this lemma follows from classical results of automata theory,
that the intersection of a context free language and a regular language is context
free (details omitted).

The main theorem of this section follows from the previous lemmas, together
with classical results from automata theory.

Theorem 1. There is a constant m, which depends on S, such that if there is
a word with structure in S*, then there is a word with structure in S™. The
constant m is bounded by exp(poly(|S|,1)), where | is the length of words in S.

5 Conclusions

We present an efficient algorithm for determining structure freeness of combi-
natorial sets. The algorithm should prove useful in verifying the quality of word
sets designed for DNA and RNA computations.

An important direction for future work is to use partition functions to cover
the range of alternative structures. Another direction for future work is to
study whether our algorithm can be generalized to determine structure freeness
of more general sets of strands, such as those used in Adleman’s Hamiltonian
graph experiment.
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