DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 0000

Experiments with Parallel Graph Coloring
Heuristics and Applications of Graph Coloring

GARY LEWANDOWSKI AND ANNE CONDON

November 1994

ABSTRACT. We introduce a new hybrid graph coloring algorithm, which
combines a parallel version of Morgenstern’s S-Impasse algorithm [26], with
exhaustive search. Our goal is progress towards a coloring heuristic that
works well without extensive tuning of algorithm parameters. We also
contribute new test data arising in five different application domains, in-
cluding register allocation and course scheduling. Hybrid was implemented
on a Connection Machine CM-5, and tested on the application data as well
as several types of randomly generated graphs. The results are compared
with results of two simple sequential heuristics, the Saturation algorithm
of Brélaz [5] and the Recursive Largest First (RLF) algorithm of Leighton
[24], as well as with previous work reported by Morgenstern [26] and John-
son et al. [17].

On many random graphs, the performance of Hybrid without tuning of
parameters is comparable or better than tuned sequential algorithms; on
large random graphs, Hybrid does not come close to the best colorings found
by tuned time-intensive algorithms such as XRLF [17] and Morgenstern’s
tuned S-Impasse [26].

Of the application data, three applications are easily colored even by the
simple sequential heuristics; one (the course scheduling data) is optimally
colored by Hybrid but not by the simple heuristics, and one appears to be
very hard. In several cases, however, we found that finding an optimal col-
oring is not sufficient to solve the problem at hand, rather colorings satisfy-
ing additional restrictions are needed. We find that the course scheduling
applications is not well-modeled by random graphs, which suggests that
more application data should be collected for testing heuristics and that
new random generators are needed to model these problems.

1991 Mathematics Subject Classification. 90C35; Secondary 68U30,05C15, 05C90,
68R05,68R10.

Key words and phrases. parallel, graph coloring, scheduling.

Research by both authors was supported by NSF grant number CCR-9257241, and by a
grant from the AT&T Foundation.

Research by the first author was also supported by NSF grant DCR-9208639

Research on the Connection Machine CM-5 was supported by NSF Institutional Infrastruc-
ture grant CDA-9024618 and by the Thinking Machines Corporation.

(©0000 American Mathematical Society
0000-0000/00 $1.00 + $.25 per page

2 LEWANDOWSKI AND CONDON

1. Introduction

A classical problem in graph theory, the graph coloring problem is to color the
nodes of an undirected graph with as few colors as possible, such that no adjacent
nodes share a color. The earliest reference to the problem is the conjecture of
Guthrie in 1852 that all maps (planar graphs) can be colored using no more than
four colors. Subsequent work on that problem not only spurred the development
of graph theory, but ultimately led to the famous four-color theorem of Appel
and Haken [2], based on an extensive computer search.

Graph coloring has many uses beyond map coloring, and one would expect
that computers can be used to solve not just the four-color problem, but general
graph coloring problems. It is an abstraction of time-tabling problems, in which
lists of courses desired by students are given, and the minimal number of class
periods such that all students can take their desired courses must be determined
(de Werra [10], Leighton [24], Opsut and Roberts [29]). Garey, Johnson and
So [11] showed that graph coloring can be used for short circuit testing for
printed circuits. Chaitin [7, 8] reduced register allocation to graph coloring
and used it in a compiler. Poole and Ortega [30] showed how to use graph
coloring to decompose matrices used to solve sparse systems of linear equations;
the decomposition gives a method for easy parallelization of the solution.

Given the practical importance of the graph coloring problem, it is unfortu-
nate that, in theory at least, the cards are stacked against the designer of graph
coloring algorithms. Not only is it NP-complete to determine if a graph can be
colored with a given number of colors [20], but it is also hard even to approxi-
mate the chromatic number of a graph. Lund and Yannakakis [25] proved that
for some € > 0, approximating the chromatic number within a factor of n¢ is
NP-hard. The best known approximation algorithm, due to Halldérsson [15],
provides an extremely poor performance guarantee of O(n(loglogn)?/(logn)?)
for an n-node graph. (The performance guarantee is the maximum ratio, taken
over all inputs, of the number of colors used over the chromatic number).

On the other hand, the results of Grimmet and McDiarmid [13] on color-
ing algorithms for random graphs offer the algorithm designer some reason for
optimism. They consider random graphs such as the G, , graphs, which have
n nodes, where each pair is connected with independent probability p. Their
algorithms run in polynomial time and expect to use no more than 2x(G) col-
ors, where x(G) is the chromatic number. However, there is no guarantee that
algorithms which work well on random graphs will also work well on data arising
from real applications.

There is a fairly extensive body of literature on experimental graph coloring
algorithms. These have been tested primarily on random graphs, such as the
G,p graphs mentioned above. One of the simplest coloring algorithms is the
Saturation algorithm of Brélaz [5]. It is based on the following principle: the
vertex which is adjacent to the greatest number of differently-colored neighbors

PARALLEL GRAPH COLORING AND APPLICATIONS 3

is colored first, with a new color if necessary. Thus, if ever the color of a vertex is
forced, that is, there is at most one possible choice from the current set of colors,
that vertex is colored first. Another example of such a “successive augmentation”
algorithm is the Recursive Largest First (RLF) algorithm, proposed by Leighton
[24] when studying the exam scheduling problem at Princeton. This algorithm
colors the vertices one color class at a time, adding vertices one at a time to the
current color class so as to reduce as much as possible the number of edges left
in the uncolored subgraph.

These two algorithms have very efficient implementations, but as we will see,
do not produce very good colorings on standard test data. Johnson et al. [17]
pushed the successive augmentation approach much further with the XRLF al-
gorithm, which is essentially a semi-exhaustive version of Leighton’s RLF al-
gorithm, based on ideas of Johri and Matula [18]. The XRLF algorithm finds
better colorings than the simpler successive augmentation algorithms on ran-
dom G, ;, graphs, but takes significantly more time and is beaten by the simpler
Saturation algorithm on other randomly generated classes of graphs.

A quite different approach has been taken with iterative improvement al-
gorithms, which include the simulated annealing algorithm of Johnson et al.
[17], the Tabu Search algorithm of Glover [14] and the S-Impasse algorithm of
Morgenstern [26]. Briefly, iterative improvement algorithms differ from succes-
sive augmentation algorithms in that the colors of individual nodes may change
several times over the course of the algorithm. Of the iterative improvement
algorithms, Morgenstern reports the best results for the S-Impasse algorithm.
However, there are several parameters in this algorithm that need to be tuned
for different problem instances. We describe his algorithm in more detail later,
as our approach is based on his.

Based on reports of this previous work, we draw the following conclusions.
It is hard to design a “robust” graph coloring algorithm, that is, one which
works well on a wide range of inputs: none of the current approaches clearly
dominates the others. The best algorithms, such as XRLF or S-Impasse, are quite
sophisticated, with several parameters that need to be tuned, based on knowledge
of the input, or by trial and error. Moreover, in order to get good results,
sequential implementations may take several hours on a standard workstation,
even on relatively small graphs of 1,000 nodes or less, and the time to reduce
the size of a coloring by 1 increases greatly as better colorings are found (results
reported by Johnson et al. [17] and Morgenstern [26] are on machines 20-100
times slower than the processors of the CM-5 we used for our experiments).
Finally, there is little experimental work on data from real applications of graph
coloring.

One natural approach towards overcoming the limitations of previous algo-
rithms is with a parallel implementation, and this is the approach we take in
this project. The potential for good speedup is clear. A MIMD environment
also provides one way to achieve robustness, namely to run different algorithms

4 LEWANDOWSKI AND CONDON

on different processors and to take the best solution found. This hybrid approach
has the potential for the whole to be greater than the sum of the parts. For ex-
ample, the different algorithms can progress in a symbiotic fashion, one using a
good coloring obtained by another as a basis for further improvement. Finally,
it may be possible to dispense with tuning, either through simultaneous use of
several parameter settings or simply because the parallel implementation is fast
enough that the additional time needed without tuning may be significantly less
than the time spent by an implementer in finding the right settings.

We describe experiments with a parallel algorithm, Hybrid, which combines a
parallel version of Morgenstern’s S-Impasse algorithm with an exhaustive search
algorithm. Our algorithm is run on the CM-5, a powerful state-of-the-art par-
allel computer which gives much flexibility in designing hybrid algorithms. We
compare the performance of this algorithm with RLF and Saturation, and with
previous results reported by Morgenstern and Johnson et al. Our parallel algo-
rithm outperforms the sequential algorithms, both in the quality of the colorings
obtained and in the time spent to obtain the colorings, on all but the simplest test
graphs, where all algorithms find an optimal coloring very quickly. However, both
Morgenstern’s tuned sequential implementation of S-Impasse [26] and Johnson
et al.’s XRLF algorithm find better colorings than our algorithm on large G, ,
graphs. (Recall that our tests of Hybrid are untuned.) Our conclusion is that
our parallel methods are certainly useful in solving the graph coloring problems,
and are a step towards creating a heuristic that does not require tuning, but do
not yet eliminate the need for tuning.

We have collected new test data for our experiments. One test graph is an ex-
ample of a course scheduling graph, which models the problem of constructing a
timetable that allows all students to take their desired courses. The data was ob-
tained from a local high-school, yielding a graph with approximately 400 nodes.
Unlike the simpler heuristics, our hybrid algorithm performed extremely well
on the course scheduling graph data, finding an optimal coloring very quickly.
Another set of test data that we have contributed is based on the problem of
register allocation, which arises in compiling programs. Further data, relating to
sparse matrix computations, a problem on latin squares, and an exam schedule,
are also contributed.

We describe our parallel algorithm in detail in Section 2. Our test data,
including both our new contributions and other, randomly generated data, is
described in Section 3. The quality of the colorings obtained for our test data,
and the running times of our parallel algorithm are discussed in Section 4. A
brief concluding summary and directions for future work are presented in Section

5.

PARALLEL GRAPH COLORING AND APPLICATIONS 5

2. Algorithm Description

We first briefly review Morgenstern’s S-Impasse algorithm [26]. We then de-
scribe a parallel version of the S-Impasse algorithm, a parallel exhaustive search
algorithm, and finally our Hybrid algorithm.

2.1. The S-Impasse Algorithm. This is an example of an iterative im-
provement algorithm, proposed by Morgenstern [26]. In the following descrip-
tion, the parameters of the algorithm are italicized.

Initially, a target number of color classes is chosen, and a naive coloring of
the graph is quickly computed. All vertices from color classes beyond the target
are placed in an impasse set. The algorithm then repeatedly does the following.
If the current best coloring uses less than the target number of colors, then the
target is reduced to one less than the current coloring and a new impasse class is
created. (This is different from Morgenstern’s original algorithm, which halted
upon reaching its target. The user can then choose to rerun the algorithm with a
smaller target. Our method removes the tuning of the target parameter from the
algorithm, following our goal of creating a general purpose algorithm with little
need for tuning.) A random vertex is removed from the impasse set and is placed
into a random color class, moving neighbors of the vertex into the impasse set.
Moves are selected so as to reduce the average degree of vertices in the impasse
set; if several such moves are possible, one is chosen at random. With some
small probability, a disimprovement is allowed, i.e. a move which increases the
average degree of nodes in the impasse set. The probability of disimprovement is
controlled by a temperature parameter. This allows the algorithm to avoid being
trapped at local minima.

The S-Impasse algorithm also incorporates s-chain moves to keep the neigh-
borhood of moves large. An s-chain consists of a tuple (v, Vp,...,Vs) where v
is a member of the set V5 and each set V; is a subset of a distinct color class.
The sets V; have the property that placing set V; into the color class V(i1 1)mods
maintains a valid coloring. That is, the s-chain “shuffles” the coloring. (This is a
generalization of Kempe chains, an idea used by Kempe [21] in his flawed proof
of the four-color theorem.) A parameter, u, is a scaling factor that determines
how often the s-chain moves are performed. Morgenstern’s version of the algo-
rithm ran for a number of iterations before halting. Our algorithm runs until it
has reached its time bound.

We set our parameters to be the same for all graph classes. The initial target
is simply set to be the number of nodes in the graph. For explanations of exactly
how the other parameters are used, see Morgenstern [26]. In our implementa-
tion, the length s of a Kempe chain is set to 3; the temperature is 0.6 and the
parameter g is set to 10. These are the parameters used by Morgenstern [26]
for G, graphs of size less than 500. The temperature was lowered for graphs of
size 500 or more. Our hope was that the higher temperature (and corresponding
higher acceptance of disimprovements) would be offset by the parallelism find-

6 LEWANDOWSKI AND CONDON

ing good solutions faster through multiple search paths. The time bound on the
algorithm was set to three hours; this time bound was chosen mainly because
the job scheduler on the Connection Machine CM-5 we were using gave priority
to jobs of less than three hours.

2.2. The Parallel S-Impasse Algorithm. In the parallel S-Impasse algo-
rithm, several processors are run independently, each finding an initial coloring
independently and then setting the initial target to be one less than the number
of colors in the best coloring found. The processors then independently explore
improvements starting from their initial coloring. When a processor finds a new
best coloring, the new bound is broadcast to the other processors and all pro-
cessors lower the size of the target coloring, moving a color class (the smallest)
into the impasse set if necessary. When all processors have completed their total
number of iterations, the algorithm stops. Previous studies of simulated anneal-
ing algorithms for other applications indicate that if the number of processors is
small, this is a reasonable approach to parallelizing the S-Impasse algorithm, be-
cause the more paths that are explored independently, the smaller the expected
time for one to reach a new best coloring. (See Azencott [3], for example.) We
later show that this is in fact true for the S-Impasse algorithm on our test data.
Another advantage of this parallel approach is that, since the computation of dis-
tinct processors is almost completely independent, the amount of interprocessor
communication is kept to a minimum.

Processors do occasionally communicate. When a new coloring is found, a
limited number (five of thirty-two in our experiments) of processors whose last
target met is three greater than the new bound may abandon their partial so-
lution and receive the current solution. These values were selected after some
initial experiments on a G'500,0.5 graph (comparing the amount of time needed for
S-Impasse to find a 53-coloring of the graph). They then do an s-chain move as
an extra precaution against duplicating the search the sending processor. (Other
processors who similarly appear to be following a dead end in their search but
do not receive the current solution, do a large s-chain move instead.) Recent
results by Aldous and Vazirani [1] give theoretical support to the approach of
following the current best solution.

2.3. The Parallel Exhaustive Search Algorithm. This algorithm is a
straightforward branch-and-bound procedure, as described by Johnson et al.
[17]. A tree of partial colorings is expanded, using the size of the current best
coloring to prune the tree. Each node in the tree represents a partial coloring and
its children are all the possible extensions of that coloring obtained by coloring
one more node. In the parallel implementation, a polling mechanism is used by
idle processors to obtain work from busy processors. When a processor finds a
new best coloring, the number of colors is broadcast to all of the other processors.

PARALLEL GRAPH COLORING AND APPLICATIONS 7

2.4. The Parallel Hybrid Algorithm. In this algorithm, a manager pro-
cess starts a group of processors on parallel exhaustive search and another group
on parallel S-Impasse. The manager maintains the current best coloring, and
whenever either algorithm finds a new best coloring, this is sent to the manager,
which broadcasts it to the other algorithm. Hybrid halts when one of the al-
gorithms finishes its computation. Thus, the upper bound on the running time
is the maximum of the time bound given to the S-Impasse algorithm and the
completion of the exhaustive search.

We note that an execution of either the parallel S-Impasse or exhaustive search
algorithms cannot be easily serialized to give an execution of the corresponding
sequential algorithms. In particular, the parallel S-Impasse algorithm follows
several paths in the search space, whereas the sequential algorithm follows just
one path. Similarly, the order in which nodes of the search tree are expanded
in the parallel exhaustive search algorithm may be quite different than in the
sequential algorithm. (Time slicing could be used to implement the parallel
algorithms on a sequential machine, as long as separate random streams are
used for each virtual processor.)

3. Test Data

Our algorithms have been tested on random graphs, Leighton graphs, register
allocation graphs and two graphs constructed from a course scheduling problem.
Below we give a brief description of each graph class.

3.1. Random Graphs.

3.1.1. Leighton Graphs. Leighton graphs [24] are random graphs with a fixed
number of edges and predetermined chromatic number. The graphs are con-
structed by implanting cliques of sizes ranging from x(G) to 2 into the graph.
The vertices in the cliques are chosen in a manner that guarantees the chromatic
number will not be larger than the pre-specified value. The density of these
graphs is always less than 0.25, which Leighton claims is commonly the case in
applications such as exam scheduling. (We have collected real data that supports
this claim.) The experiments test the algorithms on Leighton graphs with 450
vertices and chromatic numbers 5, 15 and 25. In our experiments we label these
graphs as le450_xx, where x is the chromatic number of the graph and x is a
letter a, b, ¢ or d, designating a particular graph of the given chromatic number.

3.1.2. Gy,p Graphs. Commonly used in testing graph coloring algorithms, a
G p graph has n vertices, and an edge between each pair of vertices with inde-
pendent probability p. We test our algorithms on G, o.5 graphs for n = 70, 125,
250, 500 and 1,000.

3.1.3. Geometric Graphs. Geometric random graphs, Rz.y, are formed by
randomly placing z vertices in a unit square, then putting edges between any two
vertices which are within 0.y of each other. These graphs may model applications

8 LEWANDOWSKI AND CONDON

such as assigning cellular phone frequencies [17]. The algorithms are tested on
eight instances of geometric graphs, of size 125, 250, 500, and 1000, with y
parameters of 1 and 5. We also test them on complements of Rx.1 graphs,
denoted Rz.1lc. (Some of these geometric graphs are actually labeled DSJRx.y,
indicating they come from the Johnson et al. [17] benchmarks. The Johnson
et al. paper referred to these graphs as U, 4 graphs, where n is the number of
vertices and d is the distance parameter.)

3.1.4. Flat Graphs. These graphs are Gnp i graphs modified to have the
density of a G,,, graph. The experiments look at graphs of size 300 with
k = 20,26,28 and of size 1000 with k& = 50,60,76. The target p is 0.5. The
graphs are designated flat_n_k. See Culberson and Luo [9] for more discussion
on the construction of these graphs.

3.2. Application Graphs. We have gathered data from several problems
commonly referred to as applications of coloring. Our experiments test the
saturation and RLF algorithms on these graphs as well as the Hybrid algorithm.
We also attempt to get an exact coloring of each of these graphs.

In the course of experimenting with these graphs we have found that for several
of the applications, the graphs are easy to color but the problem posed in the
application is not being exactly solved. Instead colorings involving additional
restrictions or relaxations of proper coloring are needed. Below we describe the
applications and how there solution varies from simply solving the graph coloring
problem presented.

3.2.1. Register Allocation Graphs. Register allocation graphs are used in com-
pilers to determine a mapping of variables to registers. Variables that are active
in the same range of code cannot be placed in the same register. A conflict graph
is constructed, with variables as vertices and an edge representing variables live
in the same range of code. Coloring this graph yields a mapping of variables to
registers. If more colors are needed than there are registers, not all variables can
be placed in registers. In this case, spill code must be inserted to remove some
variables from the registers. Spill code removes some edges from the conflict
graph; this subgraph can then be colored to see if the variables can be mapped
to the registers with the spill code.

Preston Briggs of Rice University has constructed a system to test register
allocation schemes. He has provided us with many program files along with code
to output the original conflict graphs and several subgraphs constructed as spill
code is inserted. The conflict graphs range in size from a couple of hundred
vertices to several thousand vertices. In this study we consider conflict graphs
ranging in size from around 200 vertices to around 850 vertices. Specifically, we
study twelve graphs from four different base programs, mulsol, zeroin, fpsol2
and inithx. These graphs were constructed for a compiler having thirty-two
registers available. There are three graphs from each of these programs, resulting

PARALLEL GRAPH COLORING AND APPLICATIONS 9

from the initial graph and the graphs formed from spill code insertion (conflict
graphs were generated from spilling until the graph was colored with thirty-two
or fewer colors and the spill code did not spill vertices that had negative cost
— which indicated that there was no need to spill that vertex). The register
allocation scheme used by Briggs was based on the arena algorithm for memory
allocation of Hanson [16].

3.2.2. Course Scheduling Graphs. Many high schools ask students to select
a set of desired courses for the coming year and then attempt to construct a
timetable scheduling sections of the courses and assigning students to specific
sections in a way that allows students to take as many of their desired courses as
possible. A timetable with no conflicts corresponds to a coloring of a graph with
vertices corresponding to sections of courses and edges between two vertices if a
student is assigned to both sections or the same teacher teaches both courses.

The Course Scheduling Problem is quite difficult. The timetable construc-
tion is obviously NP-Complete since graph coloring can be reduced to it. The
assignment of students to sections has a large effect on the chromatic number
and ease of coloring the conflict graph that is used to construct the timetable
because the section assignments determine the structure of the conflict graph.
Unfortunately, assigning students to sections in the best possible way is also dif-
ficult, and one approach, minimizing the density of the resulting conflict graph
(in the hopes that this will reduce the chromatic number of the conflict graph),
is NP-Complete [22]. Lewandowski [22] discusses this problem in much greater
detail. Here we note that the problem is more involved than simply coloring,
but concentrate only on the coloring problem, namely the construction of the
timetable after students are assigned to sections of courses.

We have obtained the scheduling data from a high school that has approx-
imately 500 students. There are seven periods in a school day and the entire
year (two semesters) is scheduled at one time. Counting each section of a course
separately, there are 385 vertices in the class graph. Since we are working from
a final schedule, the graph is guaranteed to be 14-colorable.

For this study we have looked at algorithm performance on the entire graph,
called School, as well as the subgraph corresponding to removing all references
to study halls, called School-nsh.

3.2.3. Generated Course Scheduling Graphs. We have also experimented with
a generator for graphs modeling the class graphs used in this study. We started
by examining the real data to get an idea of the important factors affecting the
composition of the class graph.

Since we have only one data set we cannot be sure of all the factors, nonetheless
we believe the following factors are important in the composition of a class graph.
The first important factor is division of students into separate groups, such as
different grades and/or different tracks of study. These divisions are important
because each of these groups will have a core set of classes taken only by students

10 LEWANDOWSKI AND CONDON

in this group — and the vertices corresponding to classes taken by different groups
will be independent. The second important factor is the selection of courses that
intersect the interests of various groups; for example music courses will be shared
between all grades. The probability of students in a group taking courses that
also interest another group will vary among the groups. This variance will affect
the number of edges between the courses from these groups. Currently, our
generator concentrates on handling these two factors.

Our generator uses the CourseGroup model described above to generate ran-
dom data for the course scheduling problem. The generator takes as input the
number of students, the number of courses, and the number of courses selected
by each student. It also receives as input specification of student groups divid-
ing the students into subgroups and specification of course groups, specified by
listing the number of courses in the group and probabilities ps; that a student
in student group s will select a course from this group. The generator builds
a schedule for each student by selecting courses randomly from different course
groups, following the probabilities specified in the course group descriptions. Se-
lection of courses within a given course group is uniform, though students are
not allowed to select the same course more than once.

After student schedules are constructed, students are placed into sections of
their desired courses by arbitrarily ordering the students and then placing them
into the first available section of each of their courses. (There are always enough
sections of every course to accommodate all students.) The resulting conflict
graph is the data used in this coloring study. For further discussion of the
generators and other possible techniques for assigning students to sections, see
Lewandowski [22].

As a basis for comparison, we compare our results on a generated graph,
CGO with a G, , graph of the same number of nodes and density, G326,0.22, and
with a graph based on the real data but with students placed into sections of
their courses in the naive manner described above. This graph is referred to as
School-as.

3.2.4. Latin Square Graph. This graph represents a problem from design the-
ory, relating to latin squares. The graph is a 900 vertex graph, with independent
sets no larger than 10 vertices. The graph represents a formulation of a question
regarding the number of orthogonal size 10 latin squares. It is an open problem
whether or not this graph can be colored in 90 colors. (This graph was provided
by Wendy Myrvold [28].) Unlike the other application and random graphs in
our test suite, this graph has a high density of about 76%.

3.2.5. Graphs for Parallelizing Iterative Solutions of Sparse Linear Systems.
Solving large sparse linear systems can be done iteratively in parallel by up-
dating independent components of the system in parallel. Treating the matrix
representing the system as an adjacency matrix, with positive entries represent-
ing edges, the coloring of the graph with &k colors reveals a decomposition of an

PARALLEL GRAPH COLORING AND APPLICATIONS 11

iteration into k steps. At step ¢ of an iteration, all the components in color class
1 are updated in parallel. The parallelization does not actually require a true
coloring of the graph; it is sufficient to color the vertices so that no positive cycle
contains only vertices of the same color. (For more discussion see, for example,
Poole and Ortega [30] and Jones and Plassmann [19].) There are many appli-
cations of sparse linear systems; our graphs are examples from power systems,
of sizes 1993, 1084, 707, and 147. We refer to these graphs as sparsel1993,
sparsel084, sparse707 and sparsel47 respectively.

3.2.6. Final Exam Scheduling. As with class scheduling, final exam schedul-
ing must avoid scheduling courses taken by the same student simultaneously.
Vertices are courses, edges are between courses taken by the same student. We
have acquired data from Florida Institute of Technology (provided by Lynn Ki-
aer [23]) for exam scheduling. Each edge has an integer weight between one and
three, representing the severity of the conflict. (The severity of the conflict in-
creases by an order of magnitude as the weights increase, thus it is imperative to
avoid conflicts of type three.) To schedule the exams, the graph must be colored
with six or fewer colors — this may require leaving conflicts in the coloring. The
goal of the problem is to have as few as possible conflicts of the highest weights.
We examine three graphs from this data; graph fl-tech.1 contains all the edges,
fl-tech.2 removes edges of least severity, and fl-tech.3 contains only the edges
of highest weight.

4. Coloring Results

In this section, we discuss the performance of the Hybrid algorithm on the dif-
ferent test graph types listed in Section 3. For each class of graphs, we compared
Hybrid with the simpler RLF and Saturation heuristics, and also compared the
quality of our colorings with those obtained in previous work.

All of our algorithms were run on Thinking Machine’s Connection Machine
CM-5. RLF and Saturation were run on 1 processor, while Hybrid was run on
32 processors, which were partitioned with one acting as manager, 8 executing
the parallel exhaustive search algorithm, and 23 executing the parallel S-Impasse
algorithm. This partitioning was arrived at through initial experiments which
revealed that for G, , graphs in which exhaustive search finished within an hour,
speedup was near linear for up to eight processors and then began to drop.
We also reasoned that for more difficult graphs, the S-Impasse portion of the
heuristic would be more important in finding better colorings during much of the
algorithm. Thus our partitioning was set to maximize parallel speedup on easily
colored graphs while providing as many processors as possible for S-Impasse. As
noted in our discussion of S-Impasse, each computation was stopped after three
hours; we report the time less than that if the best coloring was found earlier. A
nice feature of our Hybrid algorithm is that if the exhaustive search procedure is
completed, the optimal coloring is known. Thus, we are able to report optimal

12 LEWANDOWSKI AND CONDON

coloring sizes for several graphs. All of these results are summarized in the tables
and figure found in Appendix I. Briefly, our main conclusions are as follows.

o Overall, the Hybrid algorithm performs well, producing good colorings
on a wider range of graphs than any previously reported algorithm. This
is perhaps not too surprising, since we are using a powerful machine, and
combine more than one previously touted technique. Still, our results
are obtained with no tuning of parameters; this is an important advan-
tage over previous work. Our algorithm performs most poorly on large,
randomly generated graphs. For example, using his tuned S-impasse al-
gorithm, Morgenstern [26] obtains better results on large G, , graphs.
Also, Johnson et al. [17] obtain better colorings with their XRLF al-
gorithm. A detailed comparison of Hybrid with other algorithms on
different classes of graphs is given in Section 4.1.

e Of the five types of test data, three are easily colored even by the simple
RLF and Saturation heuristics; one is optimally colored by Hybrid but
not by the simple heuristics, and one appears to be very hard.

e The Hybrid algorithm parallelizes well. One reason is because the num-
ber of iterations needed by S-impasse decreases as the number of pro-
cessors increase, supporting our approach of independently exploring
several coloring modifications independently. Also, in the exhaustive
search algorithm the work involved in expanding the search tree is ef-
fectively shared among the processors. We present some experimental
data supporting this in Section 4.3.

e There is often quite a variance in the running time depending on the
random seed. The variance exists even when disregarding runs in which
the size of the coloring differed. Table 8 summarizes the average running
time and variance for the Hybrid algorithm on several graphs. We also
examined repeated runs of Hybrid using the same random seed, to see
if machine effects cause the variance, but found very little difference in
running time while using the same seed.

4.1. Evaluation of Randomly Generated Data.

4.1.1. Leighton Graphs. (See Table 1.) Hybrid outperformed the simpler RLF
and Saturation heuristics on all Leighton graphs. Hybrid found optimal colorings
on all of the 5-colorable graphs, two of the four 15-colorable graphs and two of
the four 25-colorable graphs. Close to optimal colorings (off by one or two) were
found for the remaining graphs. The time required to find the best colorings
ranged from less than half a minute (on a 25-colorable graph) to almost three
hours (on a 15-colorable graph).

In the execution of the Hybrid algorithm on the 5-colorable Leighton graphs,
the exhaustive search and parallel S-Impasse alternated regularly in decreasing
the current best number of colors, finishing with the exhaustive search. On

PARALLEL GRAPH COLORING AND APPLICATIONS 13

the other Leighton graphs, with chromatic numbers 15 and 25, the exhaustive
search algorithm was useful in decreasing the current best coloring for several
colors in the initial stages, and to end the computation if the chromatic number
was found. Progress after the initial stages, however, was made by the S-Impasse
algorithm.

Hybrid also surpassed previous results of Morgenstern [26]. His tuned, se-
quential S-Impasse algorithm only found a 20-coloring, in somewhat less than
an hour, for each of the two 15-colorable graphs on which we find a 16-coloring.

4.1.2. Random G, Graphs. (See Table 1.) While Hybrid easily outper-
formed Saturation and RLF on G, ;, graphs, it failed to come close to the lower
bound estimates on the large G, , graphs. On the Gig0,0.5 graph, which has an
estimated lower bound of 46, the best coloring found was 52 colors, found by
Hybrid in about 2.19 hours. On the Gio00,0.5 graph, which has an estimated
lower bound of 80, the best coloring found was 99 colors, found in just under 2.5
hours. Still, Hybrid always outperformed the simpler heuristic algorithms on all
of these graphs.

The poor results are perhaps not too surprising, as Morgenstern [26] also
reported difficulty in obtaining good colorings for large G, , graphs, even with
his tuned sequential S-Impasse algorithm. For example, he reports running times
of about 65 hours to find a 90-coloring of a G1000,0.5 graph, and 28.2 hours to
find a 50-coloring of a Gs00,0.5 graph (these are times on a VAX 11/780, around
twenty times slower than the CM-5 used in our experiments).

4.1.3. Geometric Graphs. (See Table 1.) On six of the twelve geometric
graphs (R125.1, R125.1¢, R250.1, R250.1¢c, DSJR500.1, R1000.1) we were able
to find optimal colorings using Hybrid. There are no previous results on R125.5,
R250.5, R1000.1c, and R1000.5 and Hybrid did not prove it found an optimal
coloring so we do not know how close our colorings are to the optimal colorings.
For the 500 vertex graphs, DSJR500.1, DSJR500.1¢ and DSJR500.5, previous
results were reported by Johnson et al. [17] so we compare our results with
theirs on these graphs.

The performance of Hybrid was mixed on the 500 vertex graphs. On DSJR500.1,
the graph for which an edge is between two points if the distance between them
is less than 0.1, 12 colors is optimal, and Hybrid found a 12-coloring in less than
half a minute (and most of this time is actually spent reading the graph). On the
graph with an edge between two points if the distance between them is greater
than 0.9 (DSJR500.1c), Hybrid found an 85-coloring in three out of four runs, in
an average time of about two hours. In contrast, the best colorings obtained by
the RLF and Saturation algorithms were of size 89 and 88, respectively. Also,
Johnson et al. [17] reported that the best coloring they obtained was of size
85, using a tuned version of an annealing-type algorithm (the Fixed-K Anneal-
ing algorithm) which ran for over 75 hours on a Sequent. On the third graph,
with an edge between two points if the distance between them is less than 0.5

14 LEWANDOWSKI AND CONDON

(DSJR500.5), Hybrid obtained a coloring of size 128 in about 1.5 minutes, but
failed to find a better coloring in three hours. Johnson et al. report that in sev-
eral runs of the Saturation algorithm, a coloring of size 124 was obtained (they
report that 1% of 1000 runs of Saturation on permutations of the vertices of the
graph give a 124-coloring) so Hybrid fails to match this coloring.

4.1.4. Flat Graphs. (See Table 1.) Again, Hybrid did not come close to the
optimal colorings on these graphs, although it found better colorings than RLF
and Saturation. When given an initial target corresponding to k, instead of
having Hybrid start from an initial coloring and steadily decrease the number of
colors, Hybrid successfully found the optimal coloring of two of the 300 vertex
graphs (Table 1 presents results achieved by setting the target automatically so
these optimal results do not appear).

4.2. Evaluation of Application Data. Table 4 summarizes the informa-
tion about the application graphs discussed in this section.

4.2.1. Course Scheduling Graphs. (See Table 2.) For both course scheduling
graphs, an optimal 14-coloring was found by Hybrid. Surprisingly, for the School
graph, the exhaustive search algorithm was the main workhorse in Hybrid. To
explore how important the exhaustive search was, we ran the parallel S-Impasse
algorithm alone on this graph and found that it took (on average) 78 seconds
to find the 14-coloring, compared to an average of 46.2 seconds for the Hybrid
algorithm. The fast sequential heuristics did not do as well on the School graph.
The Saturation algorithm found a 17-coloring of the School graph, while the
RLF algorithm never did better than a 26-coloring.

The School-nsh graph was more difficult to color than the School graph. Hy-
brid took 66.4 seconds to find an optimal coloring, with exhaustive search finding
several early colorings, then S-impasse taking over the work until the last few
colorings, including the optimal, which were found by exhaustive search. We
again ran the parallel S-Impasse algorithm on this graph to evaluate the use-
fulness of the exhaustive search component of Hybrid. The parallel S-Impasse
algorithm took longer, 2.7 minutes, to find the optimal coloring. Among the fast
sequential heuristics, RLF out did Saturation on the School-nsh graph, using 22
colors compared to Saturation’s 28 colors.

Even though the graphs have over 300 vertices and are of density around 0.25,
exact coloring is quite feasible. The Hybrid algorithm completed its exhaustive
search on the School graph in an average of 78 seconds, and on the School-nsh
graph in an average of 90 seconds.

The assignment of sections greatly affects the chromatic number, as we see
below in our comparison of the generated class graph to the real data with section
numbers added automatically.

4.2.2. Generated Course Scheduling Graphs. (See Table 2.) We found that
the results on the generated graph appear to be more similar to the results on

PARALLEL GRAPH COLORING AND APPLICATIONS 15

the real data with sections added by the generator than to the G, , graph of the
same density. In particular, the G, , graph was colored with far fewer colors.

School-as was colored in 28 colors by both the RLF and Saturation algorithms.
Hybrid found a 23-coloring of the graph. The graph CGO, built by our generator
based on parameters similar to the real data, was colored by RLF in 30 colors,
and Saturation in 31 colors. The Hybrid algorithm found a 28-coloring of the
graph. The density of both School-as and CGO is around 0.22. We built a
random G326,0.22 graph, having the same number of nodes and the same density
as CGO. This graph was colored with far fewer colors by RLF and Saturation,
20 and 22 respectively. Hybrid found a 17-coloring.

Our conclusion is that our generator has constructed a graph that is a better
model for testing heuristics on class graphs than a GG, , graph. We note, however,
that model graphs do not yet appear to capture all aspects of the real data. The
largest clique in the model graph is 26 while the school-as graph has a clique of
size 18. Further discussion of models for the course scheduling problem can be
found in Lewandowski [22].

Unlike the 14-colorable school graphs, the model graph and the school graph
with sections generated automatically are not easily exactly-colored. The Hybrid
algorithm spent around an hour on each graph without finishing its search.

4.2.3. Register Allocation Graphs. (See Table 2.) The Saturation and RLF
algorithms performed just as well as Hybrid on these graphs, and all algorithms
halted quickly. We verified that the results were optimal by using dfmax [6] to
find the largest clique in each of the graphs; these cliques were the same size as
the colorings found.

Although Hybrid did not prove that it exactly colored the register allocation
graphs, it would be easy to add dfmax to the implementation to prove the
colorings optimal.

4.2.4. Graphs for Parallelizing Iterative Solutions of Sparse Linear Systems.
(See Table 2.) The RLF algorithm optimally colored all of the graphs. The
Saturation algorithm exactly colored three of the four graphs and used four
instead of three colors to color sparsel084. Two of the graphs, sparsel47 and
sparsel084, were quickly exactly colored by the sequential exhaustive search
algorithm. Lower bounds on the other two graphs were found using dfmax.

Because the sequential heuristics worked so quickly, we did not run Hybrid
on these graphs. However, we did attempt to exactly color the graphs using
the parallel exhaustive search algorithm alone. The search proved the optimal
colorings for sparsel47 and sparsel084, but could not prove the coloring for
sparse707 was optimal and could not run on sparse1993 due to memory problems
on the CM-5.

4.2.5. Final Exam Scheduling Graphs. (See Table 2.) Graphs fl-tech.1 and
fl-tech.2 were quickly and exactly colored using the Hybrid heuristic. The third

16 LEWANDOWSKI AND CONDON

graph, fl-tech.3 was quickly colored with 6 colors, but Hybrid did not show it
to be exactly colored. Both RLF and Saturation found the minimum coloring
on each graph. Only fl-tech.3 was colored with the six colors needed to actually
effectively schedule the exams. The largest clique in each of these graphs is equal
to the size of the minimum coloring.

Kiaer has constructed heuristics to use the weights of the conflicts to find a 6
coloring with no severe (weight 3) conflicts, 5 medium (weight 2) conflicts and
42 small (weight 1) conflicts [23].

4.2.6. Latin Square Graph. (See Table 2.) All the algorithms performed poorly
on this application. The RLF algorithm used at least 146 colors to color this
graph. The Saturation algorithm used 132 colors. As in the course scheduling
graphs, this is a reversal of the typical performance of RLF and Saturation on
random graphs. The Hybrid algorithm always used at least 109 colors on this
graph. We conclude that this graph is a hard test for graph coloring heuristics.
(Morgenstern [27] has the best results on this graph, a 98-coloring.)

The difficulty in coloring the Latin square graph most likely comes from its
regular structure. To achieve the hoped-for coloring of size 90, each color class
must be of size exactly ten, since no independent set is larger than ten vertices.
An error in coloring a single vertex could therefore have dire consequences for
the entire coloring.

Exact coloring appears completely infeasible at this point for the Latin Square
graphs.

4.3. Advantages of Parallelism. Clearly, the Hybrid algorithm must al-
ways produce colorings that are as least as good as the sequential S-Impasse
algorithm. Our hopes in undertaking this project were that Hybrid would pro-
duce good colorings in significantly less time than the sequential S-Impasse al-
gorithm. We were also curious if the exhaustive search component of Hybrid
would be useful. In order to understand the advantages of a parallel implemen-
tation, we compared the parallel and sequential versions of the S-impasse and
exhaustive search algorithms separately.

4.3.1. Parallel vs. Sequential S-Impasse. Our parallel version of S-Impasse
found good colorings faster than the sequential version. For several graphs, we
counted the number of iterations needed to find the best coloring, in the parallel
and sequential algorithms, and found that the number of parallel iterations was
consistently much less in the parallel implementation (see Table 6). For example,
on the 15-colorable Leighton graph (le450_15¢) the sequential algorithm required
2770 iterations to find a 27-coloring, while the parallel algorithm required only
350; the sequential algorithm needed 51,260 iterations to find a 23-coloring, while
the parallel algorithm needed 17,663; and the sequential algorithm never did bet-
ter than 23 colors, while the parallel version found a 21 coloring. Further testing
is needed to see a more general correlation between the improvement in perfor-

PARALLEL GRAPH COLORING AND APPLICATIONS 17

mance and the number of processors. Work by Morgenstern [27] and Aldous
& Vazirani [1] supports our belief that in general, having the processors work
in parallel yields better colorings faster than simply using multiple independent
runs.

4.3.2. Parallel vs. Sequential Erhaustive Search. We ran several additional
experiments to test the parallel exhaustive search algorithm, and concluded that
it performs very well. Table 3 shows the running time of parallel exhaustive
search on a Gr,0.5 graph, with the total number of nodes expanded, and the
minimum and maximum number expanded by each processor. While the 70 ver-
tex graphs are not big enough to give all thirty-two CM-5 processors work at
all times, a speedup of a factor of 3.2 is observed for four processors and more
speedup is observed as processors increase. Also encouraging is that the number
of search nodes examined in the parallel implementation is rarely more than five
percent more than the total number of nodes examined the sequential imple-
mentation. In other studies of several graphs, including the Leighton graphs, we
found that the number of nodes expanded by the processors are generally within
ten percent of each other.

4.3.3. Hybrid vs. Parallel S-Impasse. We compared the parallel S-Impasse
algorithm with the Hybrid algorithm on several graphs: School, School-nsh,
G125,0.5, G500,0.5, 1€450_5¢, 1e450_15¢, and 1e450_25¢c. We found that the Hybrid
algorithm often performed similarly to the parallel S-Impasse algorithm in terms
of the quality of the colorings, but often achieved these colorings faster. On
the G'500,0.5, 1€450_15¢ and le450_5¢ graphs, the Hybrid found better colorings
than parallel S-Impasse alone, on the other graphs the two achieved the same
colorings. The Hybrid algorithm found the coloring faster on all but two of the
graphs, the 1e450_25¢ and G'125,0.5 graphs. Table 5 summarizes the results of the
two algorithms on all seven of these graphs.

The exhaustive search component of Hybrid was most useful on graphs with
low chromatic number. Table 7 indicates how the exhaustive search and S-
Impasse components of Hybrid interacted on three Leighton graphs and the
School-nsh graph. In three of the cases, le450_5a, le450_15b and School-nsh, the
exhaustive search component helped decrease the target for the S-Impasse algo-
rithm in the early stages of computation, and then proved the coloring optimal
when S-Impasse found a coloring that was either optimal or within one of opti-
mal. In the le450_15c graph, the exhaustive search component helped decrease
the target for the S-Impasse algorithm, but could not find an optimal coloring
even though the S-Impasse algorithm found a 16-coloring of the graph.

In proving that colorings are optimal, the exhaustive search component could
perhaps be replaced by a clique finder. In particular, the maximum clique
matches the coloring bound on the Leighton graphs, the register allocation
graphs, school, school-nsh, the sparse matrix graphs, and the exam scheduling
graphs. However, because it is useful in the actual coloring of the school graphs,

18 LEWANDOWSKI AND CONDON

the Leighton graphs, the exam scheduling graphs and the sparse matrix graphs,
it seems unlikely that this replacement would yield equally good colorings in the
same amount of the time.

Further investigation of the exhaustive search algorithm on the Leighton
graphs revealed that unlike many G, , graphs, for which it is often the case
that it is harder to prove a coloring optimal than to find the coloring, proving
that no coloring of size x — 1 exists took little time (10 — 15 seconds) for all but
the ¢ and d 15-colorable graphs. However, finding the x-coloring for the ¢ and
d graphs of the 15 and 25 colorable Leighton graphs given an upperbound of
x + 1 was very difficult — the parallel exhaustive search was unable to find the
coloring in 2 hours.

5. Conclusions and Future Work

We were pleased to find that the Hybrid algorithm performed efficiently, and
produced good colorings on a wide variety of graphs. We believe Hybrid repre-
sents a step towards building a coloring implementation that requires no tuning
by the user but produces excellent colorings. Based on a comparison with Mor-
genstern’s previous results, we conclude that currently, tuning of Hybrid should
be useful in improving our results on the large random G, , graphs, but on
all other graph classes we tested, our untuned algorithm matches or exceeds
previously reported best results.

Our study of graphs arising from applications shows that several of the appli-
cations (register allocation, matrices for sparse linear systems, exam scheduling)
provide graphs which are quite easy to color. Course scheduling is a little harder,
with RLF and Saturation being insufficient to color the graphs but being easily
colored by the Hybrid heuristic. One of the applications, latin square, is very dif-
ficult. We conjecture that many applications will fall into the easy or moderately
difficult category, corresponding to our observations in this study.

Our study of applications also shows that unlike random graphs, where RLF
often tops the performance of Saturation, there is no clear winner when com-
paring the two on applications. For register allocation, exam scheduling, and
most sparse matrices, they gave the same results; RLF was better on one sparse
matrix and one course graph, while Saturation was better on the other course
graph and the latin square graph.

We also note that coloring the graphs of many of these applications, does not
actually solve the problem originally given in the application. Thus, although
these graphs do not provide a great challenge to current heuristics for color-
ing, they do offer a challenge to modify heuristics or add additional algorithm
techniques in order to better solve the exact problem posed by these applica-
tions. We have already made some progress in the area of course scheduling (see
Lewandowski [22]), and plan to work on other problems as well in the future.

In the future we also plan to add XRLF to our Hybrid, to run in parallel with

PARALLEL GRAPH COLORING AND APPLICATIONS 19

S-Impasse and exhaustive search. In contrast to S-Impasse, the XRLF algorithm
runs well on random G, , graphs, given enough time; for example, an 86-coloring
of a G1000,0.5 graph is found in 68.3 hours [17]. (This was on a VAX 750, which
is 20-100 times slower than current machines.) In our implementation of XRLF,
we use Hybrid as a replacement for the exhaustive search alone at the end of the
XRLF algorithm.

The issue of variance in running time depending on the random seeds used
needs to be further explored. It is not clear whether this is simply an effect
of the Hybrid algorithm being untuned or if this effect occurs in many of the
time-intensive algorithms that use random choices to color. Experiments using
several random seeds and several permutations of the graph would give some
indication about how sensitive a particular algorithm is to the seed.

Our experience with the course scheduling graphs strongly suggests that more
effort should be made to find applications and real data to compare algorithms.
Furthermore, although coloring is important in these applications, it is clear
that in many cases that the problem is more complex than simply finding good
colorings. It is still unclear whether good coloring heuristics can really be applied
in these applications.

6. Acknowledgements

We thank Robert Mills, Lynn Kiaer, Preston Briggs, Monika ten Bruggencate
and Wendy Myrvold for their helpful discussions about applications and help in
acquiring data, and Alex Chan for his work entering the course scheduling data.

We also thank Mike Trick for his work running the second DIMACS challenge,
and the referees, whose comments have helped us improve the presentation of
these results.

REFERENCES

1. D. Aldous and U. Vazirani, "Go with the winners” algorithms, Proceedings of the 35th
IEEE Symposium on the Foundations of Computer Science, 1994, 492-501.

2. Appel, K. 1., W. Haken and J. Koch, Every planar map is four colorable, Part I: Discharg-
ing, Illinois Journal of Mathematics, 21, 1977, 429-490.

3. R. Azencott, Editor, Simulated Annealing: Parallelization Techniques, New York, John
Wiley and Sons, 1992.

4. B. Bollobas and A. Thomason, Random Graphs of Small Order, Ann. Discrete Math, 28
1985, 47-97.

5. D. Brélaz, New methods to color vertices of a graph, Communications of the ACM, 22,
1979, 251-256.

6. Carraghan and Paradalos, An ezact algorithm for the mazimum clique problem, Operation
Research Letters, 9, 1990, 375-382.

7. G.J. Chaitin and M. Auslander and A.K. Chandra and J. Cocke and M.E. Hopkins and P.
Markstein, Register allocation via coloring, Computer Languages, 6, 1981, 47-57.

8. G.J. Chaitin, Register allocation and spilling via graph coloring, Proceedings of the ACM
SIGPLAN 82 Symposium on Compiler Construction, 1982, 98-105.

9. J. Culberson and F. Luo, Ezploring the k—colorable landscape with iterated greedy, Cliques,
Coloring and Satisfiability: Second DIMACS Implementation Challenge, David S. Johnson

20 LEWANDOWSKI AND CONDON

and Michael A. Trick (eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society, 1995.

10. D. de Werra, An introduction to timetabling, European Journal of Operations Research,
19, 1985, 151-162.

11. M. R. Garey and D. S. Johnson and H. C. So, An application of graph coloring to printed
circuit testing, IEEE Transactions on Circuits and Systems, 23, 1976, 591-599.

12. J.W. Greene and K. J. Supowit, Simulated annealing without rejected moves, IEEE Trans-
actions on Computer-aided Design, CAD-5, January 1986, 221-228.

13. G.R. Grimmet and C.J.H. McDiarmid, On colouring random graphs, Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 77, 1975, 313-324.

14. F. Glover, Tabu search, part 1, ORSA Journal on Computing, 1, 1989, 190-206.

15. M. M. Halldérsson, A still better performance guarantee for approximate graph coloring,
DIMACS Technical report 1990, 91-35.

16. D. Hanson, Fast allocation and deallocation of memory based on object lifetimes, Software
— Practices and Experience, January 1990.

17. D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon, Optimization by simulated
annealing: an experimental evaluation; part II, graph coloring and number partitioning,
Operations Research, 3, 1991, 378—406.

18. A. Johri and D. W. Matula, Probabilistic bounds and heuristic algorithms for coloring
large random graphs, Technical report, Southern Methodist University, Texas, 1982.

19. M. Jones and P. Plassman, The efficient parallel iterative solution of large sparse linear
systems, Graph Theory and Sparse Matrix Computation, Alan George, John Gilber, J. Liu,
Editors (eds.), IMA volumes in Mathematics and its Applications, 56, Springer Verlag,
1993.

20. R. M. Karp, Reducibility among combinatorial problems, Complexity of computer compu-
tations (R.E. Miller and J.W. Thatcher, eds.), Plenum Press, New York, 1972, 85-103.

21. A. B. Kempe, On the geographical problem of the four-colors, American Journal of Math-
ematics, 2, 1879, 193—-200.

22. G. Lewandowski. Practical implementations and applications of graph coloring, Ph.D.
thesis, Computer Sciences Department, University of Wisconsin- Madison, 1994.

23. Kiaer, Lynn. Discrete optimization strategies for timetabling, Ph.D. thesis, Department of
Applied Mathematics, Florida Institute of Technology, June 1992.

24. F.T. Leighton, A graph coloring algorithm for large scheduling problems, Journal of Re-
search of the National Bureau of Standards, 84, 1979, 489-506.

25. C. Lund and M. Yannakakis, On the hardness of approzimating minimization problems,
Proceedings 25th ACM Symposium on Theory of Computing, 1993, 286-293.

26. C. A. Morgenstern, Algorithms for general graph coloring, Ph.D. thesis, Technical report
CS89-16, Department of Computer Science, University of New Mexico, Albuquerque, 1989.

, Distributed coloration neighborhood search, Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge, David S. Johnson and Michael A. Trick (eds.),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society, 1995.

28. W. Myrvold, Personal communication, October 1993.

29. R.J. Opsut and Fred S. Roberts, On the fleet maintenance, mobile radio frequency, task
assignment and traffic phasing problems, The Theory and Applications of Graphs (G. Char-
trand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster and D.R. Lick, eds.), John Wiley & Sons,
New York, 1981, 479-492.

30. E. L. Poole and J. M. Ortega, Multicolor ICCG methods for wvector computers, STAM
Journal of Numerical Analysis, 24, 1987, 1394-1418.

31. D. C. Wood, A technique for coloring a graph applicable to large scale time-tabling prob-
lems, Computer Journal, 12, 1969, 317-319.

27.

PARALLEL GRAPH COLORING AND APPLICATIONS

Appendix I

21

In the tables below, graphs are described by file name, with the known or
estimated chromatic number in parentheses. For each of RLF, Saturation and
Hybrid, the following data is listed: (i) The size of the best coloring. (ii) The
number of runs achieving this coloring, over the total number of runs. (iii) The
average running time, over all runs obtaining the best coloring. Time is given in

minutes:seconds format.

~oo BeZ = OOSOR® =

= O

w=s0—~0Q0

F1GURE 1. Comparison of Hybrid Colorings with best known
sequential colorings. Difference between number of colors used
by Hybrid and best coloring known is plotted. (Points are the
number of colors used by Hybrid.) Points above 0 represent
graphs in which Hybrid obtained better colorings.

v 10 .
a
T 51 _
: 16 16

0 55 5 ~5-15 15— — — 2525 - - ~17 20— — — 1285 —
. 27 27
a 52
§ 5F 128 |
=-10{ .
% | | | | | | | | | | | | | | | 9|9 | | |

le450_5a le450_5¢ le450_15a 1e450_15c 1e450_25a 1le450_25c G125.0.5 G500.0.5 R500.1 R500.5

1le450_5b le450.5d

1e450_15b 1e450-15d 1e450-25b 1e450-25d G250,0.5 G1000,0.5 R500.1c

22

TABLE 1. Random Graphs: Leighton graphs, G, , Graphs, Ge-

LEWANDOWSKI AND CONDON

ometric graphs, flat graphs.

Graph RLF Saturation Hybrid(32 Procs)
G G)) |6 @ @) |6) G
le450-5a(5) 8 1/1 0:00:26 | 12 1/1 0:00:48 | 5 1/1 0:15:06
1e450-5b(5) 7 1/1 0:00:26 |11 1/1 0:00:38 |5 1/1 0:07:40
le450-5¢(5) 5 1/1 0:00:28 | 13 1/1 0:00:38 | 5 1/1 0:00:28
1le450-5d(5) 8 1/1 0:00:28 | 13 1/1 0:00:42 | 5 1/1 0:06:35
le450-15a(15) 17 5/5 0:00:27 | 17 5/5 0:00:41 | 15 5/5 0:02:43
1e450-15b(15) | 17 5/5 0:00:28 |17 5/5 0:00:41 |15 5/5 0:02:58
1e450-15¢(15) | 24 4/5 0:00:35 |24 5/5 0:00:33 |16 2/5 0:44:25
le450-15d(15) 24 3/5 0:00:33|24 1/5 0:00:43|16 1/5 1:36:00
1e450-25a(25) |25 1/1 0:00:28 |25 1/1 0:00:20 |25 1/1 0:00:28
le450-25b(25) 25 1/1 0:00:28 |25 1/1 0:00:31 |25 1/1 0:00:28
le450-25¢(25) 28 1/1 0:00:32 |30 1/1 0:00:46 |27 1/1 0:02:55
1e450-25d(25) |28 1/1 0:00:32 |31 1/1 0:00:41 |27 1/1 0:01:04
Gr0,0.5(11) 14 1/1 0:00:20|13 1/1 0:00:33|11 1/1 0:00:51
Gizsos(16) |22 5/5 0:00:22|23 5/5 0:00:36 |17 5/5 1:08:00
Gaso0s(27) |35 3/5 0:00:30 |37 2/2 00027 |20 4/5 1:29:00
G'500,0.5(46) 62 1/5 0:01:42 |63 5/5 0:00:52 |52 1/5 2:11:00
G1000,0.5(80) 112 3/5 0:09:03 | 117 5/5 0:01:20 |99 1/5 2:17:00
R125.1(5) 5 5/5 0:00:40 | 5 5/5 0:00:28 | 5 5/5 0:00:01
R125.1¢(46) 46 5/5 0:00:02 |46 5/5 0:00:30 46 5/5 0:00:01
R125.5 39 5/5 0:00:20|38 5/5 0:00:34 |37 5/5 0:00:32
R250.1(8) 8 5/5 0:00:22 | 8 5/5 0:00:29 | 8 5/5 0:00:22
R250.1c(64) 65 1/5 0:00:46 | 65 5/5 0:00:39 |64 5/5 0:04:36
R250.5 70 5/5 0:00:39 |67 5/5 0:00:36 |66 5/5 0:00:40
DSJR500.1(12) | 12 3/5 0:00:25 |14 5/5 0:00:38 | 12 5/5 0:00:27
DSJR500.1c 89 2/4 0:02:30 |88 5/5 0:01:26 | 85 3/4 2:00:00
DSJR500.5 132 5/5 0:02:00| 130 5/5 0:00:53 | 128 5/5 0:01:30
R1000.1(20) 20 5/5 0:00:50 20 5/5 0:01:01 |20 5/5 0:00:50
R1000.1c 104 2/4 0:10:00 | 104 5/5 0:04:18 | 101 1/5 2:24:00
R1000.5 261 2/2 0:12:00 | 248 5/5 0:02:36 | 243 1/5 0:03:42
flat30020(20) |39 4/5 0:00:58 | 41 5/5 0:00:52 | 20 5/5 0:04:30
flat300.26(26) |40 1/5 0:00:44 | 41 5/5 0:00:39 |32 3/5 2:30:00
flat300.28(28) |40 3/5 0:00:43 |43 5/5 0:00:38 |33 5/5 0:32:00
flat1000.50(50) | 109 1/5 0:08:36 | 114 5/5 0:02:18 |96 1/5 2:18:00
flat1000.60(60) | 110 3/5 0:08:54 | 112 5/5 0:02:30 | 97 2/5 1:54:00
flat1000_76(76) | 113 2/4 0:08:54 | 115 5/5 0:02:30 |99 4/4 1:48:00

PARALLEL GRAPH COLORING AND APPLICATIONS

TABLE 2. Application-related graphs:
Graphs, sparse matrix graphs, exam scheduling graphs, latin
square graph, and course scheduling graphs.

23

Register Allocation

Graph RLF Saturation Hybrid(32 Procs)
G G) G |6 @ @) |6 6) G
mulsol.1 (49) 49 1/1 00:27 49 1/1 00:34 49 1/1 00:27
mulsol.2 (31) 31 1/1 00:26 31 1/1 00:36 31 1/1 00:26
mulsol.3 (31) [31 1/1 00227 |31 1/1 00:33 |31 1/1 00:26
zeroin.l (49) |49 1/1 00:27 |49 1/1 00:32 |49 1/1 00:27
zeroin.2 (30) 30 1/1 00:26 30 1/1 00:36 30 1/1 00:26
zeroin.3 (30) 30 1/1 00:26 30 1/1 00:36 30 1/1 00:26
fpsol2.1 (65) 65 1/1 00:29 65 1/1 00:29 65 1/1 00:29
fpsol2.2 (30) 30 1/1 00:26 30 1/1 00:25 30 1/1 00:25
fpsol2.3 (30) 30 1/1 00:26 30 1/1 00:26 30 1/1 00:26
inithx.1 (54) 54 1/1 00:45 54 1/1 00:42 54 1/1 00:43
inithx.2 (31) [31 1/1 0041 |31 1/1 00:39 |31 1/1 00:39
inithx.3 (31) |31 1/1 00:41 |31 1/1 00:39 |31 1/1 00:39
sparsel084(3) |4 5/5 00:40 4 5/5 00:06 Did not run
sparse1993(4) |4 5/5 00:07 4 5/5 00:09 Did not run
sparse707(10) |10 5/5 00:09 10 4/5 00:03 Did not run
sparsel47(2) 2 5/5 00:01 2 5/5 00:01 Did not run
fl-tech.1(11) 11 5/5 00:23 11 5/5 00:39 11 5/5 00:23
fl-tech.2(8) 8 5/5 00:24 5/5 00:44 8 5/5 00:24
fl-tech.3(6) 6 5/5 00:23 6 5/5 00:38 6 5/5 00:23
Latin Square 146 2/4 00:09:48 | 132 5/5 00:02:30 | 109 3/4 1:54:00
School (14) 26 5/5 00:32 |17 5/5 00:33 |14 5/5 00:46
School-nsh (14) [22 5/5 00:31 |28 5/5 0042 |14 5/5 01:06
School-as 30 2/2 0:00:05 |28 2/2 0:00:15 |23 1/2 0:06:37
CGO 32 2/2 0:00:04 |31 2/2 0:00:15 |28 2/2 0:02:49
G326,0.22 20 1/1 0:00:04 |22 1/1 0:00:12 |17 1/1 0:32:07
TABLE 3. Parallel exhaustive search. The running time, total
nodes expanded, minimum and maximum nodes expanded by a
single processor are given for a G70,0.5 graph.
No. Procs. | Running Total Nodes Min Nodes | Max Nodes
1 19:30 323,881 (100%) 323,881 323,881
2 10:42 334,156 (103.2%) | 163,040 171,116
4 06:04 327,621 (101.2%) | 73,556 99,279
8 05:29 | 359,681 (111.1% | 35,234 79,744
16 05:13 340,893 (105.3%) | 12,382 73,925

24

LEWANDOWSKI AND CONDON

TABLE 4. Summary of information about application graphs

and generated course scheduling graphs. The latin square result

marked with * was found by Morgenstern, all other results are
from this paper.

Graph Number | density | Largest Clique | Best Best
Name vertices known lowerbound | coloring
mulsol.1 197 0.20 49 49 49
mulsol.2 188 0.22 31 31 31
mulsol.3 184 0.23 31 31 31
mulsol.4 185 0.23 31 31 31
mulsol.5 186 0.23 31 31 31
zeroin.1 211 0.19 49 49 49
zeroin.2 211 0.16 30 30 30
zeroin.3 206 0.17 30 30 30
fpsol2.1 496 0.09 65 65 65
fpsol2.2 451 0.09 30 30 30
fpsol2.3 425 0.10 30 30 30
inithx.1 864 0.05 54 54 54
inithx.2 645 0.07 31 31 31
inithx.3 621 0.07 31 31 31
school 385 0.23 14 14 14
school-nsh | 352 0.24 14 14 14
CGO 326 0.22 26 26 28
school-as 324 0.26 18 18 23
latin_square | 900 0.76 90 90 98*
sparsel084 | 1084 0.004 3 3 3
sparsel993 | 1993 0.01 4 4 4
sparse707 707 0.01 10 10 10
sparsel47 147 0.06 2 2 2
fl-tech.1 70 0.23 11 11 11
fl-tech.2 70 0.13 8 8 8
fl-tech.3 70 0.03 6 6 6

TABLE 5. Parallel S-Impasse vs Hybrid on five graphs.

Graph Hybrid Parallel S-Impasse
le450_5¢ 5 0:00:28 | 6 0:09:00
le450_15¢ | 16 0:44:25 | 17 1:12:50
le450_25¢ | 27 0:02:55 | 27 0:49:00
school 14 0:00:46 | 14 0:01:18
schoolnsh | 14 0:01:06 | 14 0:02:42

PARALLEL GRAPH COLORING AND APPLICATIONS

TABLE 6. Comparison of number of iterations and time needed
by parallel and sequential S-Impasse algorithms to decrease col-
orings for three graphs. A * in an entry indicates that the
program was not able to achieve this coloring in three hours.
Time is given in hours:minutes:seconds format.

Graph Coloring Parallel Sequential
Size S-Impasse S-Impasse

G005 14 0 0:00:00 | O 0:00:00
13 12 0:00:08 | 21 0:00:01
12 92 0:00:14 | 557 0:00:06
11 523 0:00:29 | 7757 0:01:38

le-450.15¢ | 29 1 0:00:00 | 434 0:00:37
27 350 0:00:56 | 2770 0:03:16
25 4915 0:04:24 | 11963 0:10:52
23 17663 0:13:56 | 51260 0:51:26
22 41861 0:28:26 | *
21 148349 1:16:30 | *

school-as | 28 48 0:00:20 | O 0:00:04
27 154 0:00:21 | 305 0:00:11
26 823 0:00:43 | 686 0:00:16
25 1789 0:00:49 | 4767 0:01:06

TABLE 7. Cooperation in Hybrid. The progression to the final
coloring is given for a single run (each run looked similar). The
coloring is reported in the row corresponding to the component
of Hybrid that found it. A * indicates the exhaustive search
proved the coloring was optimal.

le450_5a Exh 11 10 5
S-Imp | 12 9 8 7 6
le450_15b Exh 18 17 *
S-Imp | 21 20 16 15
le450_15¢ Exh 25 24
S-Imp | 29 28 23 22 21 20 19 18 17
school_nsh Exh 23 15 14 *
S-Tmp 22 21 20

26 LEWANDOWSKI AND CONDON

Appendix II

Second DIMACS Challenge
Coloring Benchmark Results
GENERAL INFORMATION Authors: Gary Lewandowski and Anne Condon
Title: Experiments with Parallel Graph Coloring Heuristics
Name of Algorithm: Hybrid
Brief Description of Algorithm: Heuristic: Parallel Hybrid of parallel branch
and bound exhaustive search algorithm and parallel S-Impasse algorithm.

Type of Machine: Connection Machine CM-5
Compiler and flags used: g++, -g flag

MACHINE BENCHMARKS
User time for instances:
r100.5 r200.5 r300.5 r400.5 1r500.5
1.83 14.38 122.88 773.39 2993.58

ALGORITHM BENCHMARKS

Authors’ Comments: Fach run was time bounded by three hours. We con-
sider machine crashes before three hours to be failures, with the exception of
R1000.5.col which always crashed after 15 minutes (for unknown reasons) so the
results are the best found in that period of time. The C2000 and C4000 graphs
did not run due to lack of memory on the CM-5. (This is partially a problem of
size and the memory allocator which allocates too much memory at a time.)

PARALLEL GRAPH COLORING AND APPLICATIONS

Results on Benchmark Instances

TABLE 8. Results on DIMACS benchmarks

Time Solution
Name Runs Min Avg Max Min Avg Max
(Fail) (Std. Dev.) (Std. Dev.)
DSJC125.5.col 5 1199.22 4043.63 8037.7 17 17 17
(2508.8) (0)
DSJC250.5.col 5 306.106 4358.12 8013.02 | 29 29.2 30
(2789.37) (0.4472)
DSJC500.5.col 5 1172.94 4783.86 7866.71 | 52 53 54
(2715.41) (0.7071)
DSJC1000.5.col 5 4171.87 5333.81 8232 99 100 101
(1644.59) (0.7071)
€2000.5.col 5 (5)
€4000.5.col 5 (5)
R125.1.col 5 50 64.6 104 5 5 5
(22.2666) (0)
R125.1c.col 5 60 85 120 46 46 46
(22.6716) (0)
R125.5.col 5 31.47 32.986 36.38 37 37 37
(1.9874) (0)
R250.1.col 5 22 22(0) 22 8 8(0) 8
R250.1c.col 5 110.7 278.16 505.8 64 64 64
(160.948) (0)
R250.5.col 5 38.9 39.88 40.3 66 66 66
(0.5630) (0)
DSJR500.1.col 5 24.5 26.64 34 12 12 12
(4.1198) (0)
DSJR500.1c.col | 5 (1) | 1331.1 5767.67 10139.6 | 85 85.25 86
(3703.33) (0.5)
DSJR500.5.col 5 85.6 90.5 96.2 128 128 128
(5.245) (0)
R1000.1.col 5 49.4 49.88 50 20 20 20
(0.2683) (0)
R1000.1c.col 5 259.4 3940 10178 | 101 102.6 104
(5009.89) (1.1402)
R1000.5.col 5 210 215.9 223.5 243 245.6 247
(4.9548) (1.5166

28 LEWANDOWSKI AND CONDON

Time Solution
Name Runs Min Avg Max Min Avg Max
(Fail) (Std. Dev.) (Std. Dev.)
£1at300-20-0.col 5 236.8 274.3 329.3 20 20 20
(36.6314) (0)
£1at300-26_0.col 5 2721.3 6637.14 10518.1 | 32 324 33
(3654.59) (0.5477)
£1at300-28_0.col 5 454.6 1913.54 3786.9 33 33 33
(1515.12) (0)
£1at1000.500.col 5 7172.8 7792.66 8374.7 96 97 98
(503.902) (0.7071)
£1at1000-60-0.col 5 3766 6288.36 7518.7 97 97.8 99
(1469.67) (0.8367)
£1at1000-76_0.col 5 (1) 5697 6497.85 7100.3 99 99 99
(664.774) (0)
latin_square_10.col | 5 (1) | 5266.4 6520.12 8588.5 | 109 109.25 110
(1532.44) (0.5)
le450_15a.col 5 88 162.62 278.1 15 15 15
(75.522) (0)
1le450_15b.col 5 113.3 178.36 226.1 15 15 15
(45.0573) (0)
le450_15c.col 5 1016.1 2229.61 3828.8 16 16.6 17
(1114.42) (0.5477)
1le450_15d.col 5 1303.5 2859.6 5754.8 16 16.8 17
(1999.92) (0.4472)
mulsol.i.l.col 5 27 27.2 28 49 49 49
(0.4472) (0)
schooll.col 5 37.6 46.26 55.2 14 14 14
(7.8229) (0)
schooll nsh.col 5 54.2 66.4 76.4 14 14 14
(9.3662) (0)

COMPUTER SCIENCES DEPARTMENT, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WIS-
CONSIN 53706

Current address: Department of Mathematics and Computer Science, Xavier University,
Cincinnati, Ohio 45207-4441

E-mail address: lewan@xavier.xu.edu

COMPUTER SCIENCES DEPARTMENT, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WIs-
CONSIN 53706
E-mail address: condon@cs.wisc.edu

