A THEORY OF STRICT
P-COMPLETENESS

ANNE CONDON

Abstract. A serious limitation of the theory of P-completeness is that
it fails to distinguish between those P-complete problems that do have
polynomial speedup on parallel machines from those that don’t. We
introduce the notion of strict P-completeness and develop tools to prove
precise limits on the possible speedups obtainable for a number of P-
complete problems.

Key words. Parallel computation; P-completeness.

Subject classifications. 68Q15, 68Q22.

1. Introduction

A major goal of the theory of parallel computation is to understand how much
speedup is obtainable in solving a problem on parallel machines over sequential
machines. The theory of P-completeness has successfully classified many prob-
lems as unlikely to have polylog time algorithms on a parallel machine with a
polynomial number of processors. However, the theory fails to distinguish be-
tween those P-complete problems that do have significant, polynomial speedup
on parallel machines from those that don’t. Yet this distinction is extremely
important from a practical point of view (see Snyder 1986). In this paper, we
refine the theory of P-completeness to obtain strict completeness results for a
number of P-complete problems.

Kruskal et al. (1990) identified the speedup of a problem as a critical param-
eter of the problem. This is simply the ratio between its sequential running
time and its parallel running time on a machine with a polynomial number
of processors. A problem has polynomial speedup if its speedup is Q(n¢), for
some € > 0. Given the practical importance of polynomial speedups, Kruskal
et al. (1990) introduced a new complexity class, SP (“semi-efficient, polynomial

2 Anne Condon

time” or “semi-efficient, parallel”) of problems which have polynomial speedup.
In earlier work, Simons and Vitter (1986) introduced similar complexity classes
and showed that versions of the Circuit Value Problem, Ordered Depth First
Search and Unification, where the underlying graphs are “dense”, have parallel
algorithms with running time approximately the square root of the input size.
Another example of a problem in SP is that of computing the expected cost of a
finite horizon Markov decision process, a well studied problem in optimization
theory (we discuss this problem in detail in Section 5).

However, other P-complete problems seem not to have polynomial speedups
on PRAMS with a polynomial number of processors. The general Circuit Value
Problem, for example, has no known parallel algorithm on a PRAM with a poly-
nomial number of processors that runs in time O(n'~¢) for any € > 0. Proving
any polynomial lower bound on the parallel complexity of this problem would
separate NC from P. Instead, we ask whether the theory of P-completeness can
be refined to prove that the Circuit Value Problem does not have polynomial
speedup unless all problems in P have polynomial speedup.

To address this question, we introduce the notion of strict P-completeness.
Roughly, a problem is strictly 7'(n)-complete for P if there is a parallel algo-
rithm for the problem with running time that is within a polylog factor of T'(n)
and moreover, the existence of a parallel algorithm that improves this by a
polynomial factor would imply that all problems in P (with at least linear run-
ning time) have polynomial speedup. We use this notion to investigate limits
on the speedups of P-complete problems.

Our first strictly P-complete problem is a restriction of the Circuit Value
Problem (CVP)—the Square Circuit Value Problem. A square circuit is a
synchronous circuit in which the number of gates at every level is equal to the
depth of the circuit. We prove that this problem is strictly y/n-complete for P.

We apply this result to obtain a similar result for the nonstationary, finite
horizon, Markov decision process problem. This problem is to decide the ex-
pected cost of a nonstationary Markov decision process with m states in a given
time T'. Dynamic programming is a sequential algorithm for this problem but
the parallel version requires Q(7") time. We show that, unless all problems
in P have polynomial speedup, any parallel algorithm for the nonstationary
Markov decision process problem requires Q(7'7¢) time on a PRAM with a
polynomial number of processors, for all ¢ > 0. We also describe limits on
the parallel speedup obtainable for a number of other P-complete problems,
including First Fit Bin Packing, Lex First Maximal Independent Set, Ordered
Depth First Search and Unification.

We use the RAM and PRAM as our models of sequential and parallel com-

Strict P-completeness 3

putation, respectively, with a log cost for instructions. The log cost RAM is
a model of sequential computation whose cost reflects accurately the actual
cost of solving a problem on a real machine (see Cook and Reckhow 1973). Al-
though the PRAM model has been criticized as being a poor practical model of
computation (see, for example, Snyder 1986), it is nevertheless an ideal model
for proving completeness results, since if polynomial speedup is not obtainable
for a problem on a PRAM, it is also not obtainable on more realistic mod-
els of parallel computation. There are many variations of the PRAM model,
depending on the way simultaneous access to global memory is resolved. Our
results are robust in that they hold for all the standard variations of the PRAM
model, such as Exclusive Read, Exclusive Write or Priority Concurrent Read,
Concurrent Write (see Karp and Ramachandran 1988 for definitions of these
models).

Our completeness proof for the Square Circuit Value Problem maps a RAM
running in time ¢(n) to a synchronous circuit of width and depth that are within
a polylog factor of t(n). Thus, the size of our circuit is significantly smaller than
that obtainable from previous results. By combining the reduction of Ladner
(1975) from a Turing machine computation to the Circuit Value Problem and
simulations of RAMs by Turing machines of Cook and Reckhow (1973), a RAM
running in time ¢(n) can be mapped to a circuit with depth and width Q(¢?(n)).
Obtaining a synchronous circuit then further squares the size of the circuit (see
Greenlaw et al. 1994).

The rest of the paper is organized as follows. In Section 2, we give some
background on sequential and parallel models of computation. In Section 3,
we define precisely our notion of strict P-completeness. In Section 4, we show
how to simulate a RAM by a square circuit whose depth is at most a polylog
factor times the running time of the RAM, and prove that the Square Circuit
Value Problem is strictly y/n-complete. In Section 5, we extend the results on
the Square Circuit Value Problem to obtain limits on the parallel speedups of
a number of other P-complete problems.

2. Definitions and background

In this section, we define our models of sequential and parallel computation.
We introduce a restricted RAM model in Section 2.1, and describe properties of
this model that are needed to prove the main results of the paper. The PRAM
model of parallel computation and parallel complexity classes are discussed in
Section 2.2. In Section 3, we define the notion of strict P-completeness.

4 Anne Condon

2.1. RAMS and restricted RAMS. Our RAM model is essentially the log
cost random access machine of Cook and Reckhow (1973). This model charges
for instructions based on the number of bit operations. A RAM consists of a
program, or finite sequence of instructions, which accesses an unbounded sized
memory of cells Ry, Ry,... Each cell can hold an unbounded length integer.
The instruction set we use is given in the following table, along with instruction
costs. Logarithms are in base 2.

‘ Instruction ‘ Cost
2. Ry« R; + Ry, log R; + log Ry,
3. Ri + R; — Ry log R; + log Ry,
4. R; + Rp, log R; + log Rp,
5. Rr. < R; log R; + log R;
6. goto L 1
7. halt 1
8. if R; > 0 then instruction | log R; (+ cost(instruction) if R; > 0)
9. if R; =0 then instruction | log R; (+ cost(instruction) if R; = 0)

We assume that the input is stored in contiguous memory cells, one bit per
cell. Initially the input length is in Rq. We view RAMs as language acceptors
and assume that the output bit is stored in Ry;. The running time of a RAM
on a fixed input is the total cost of the instructions executed on that input. We
say a problem, or language, has sequential running time t(n) if there is a RAM
that, for all inputs of length n, has running time at most ¢(n). We say that a
RAM M simulates RAM M’ if both M and M' accept the same language.

Cook and Reckhow (1973) showed that the largest value computed by

M, and hence the largest address referenced by M, is 920(/t(m)) Thus, the
cells accessed by a RAM running in time #(n) could have addresses of length
Q(4/(t(n))). In converting RAMs to circuits, it is convenient to assume that
the addresses accessed by a RAM running in time ¢(n) have length O(logt(n)).
In the next lemma, we show how to “compress” the address space of a RAM
that runs in time #(n), so that all address lengths are O(logt(n)). The cost of
this is an additional factor of O(logt(n)) to the running time of the RAM.
Previous work on compressing the space used by a RAM was done by Slot
and Van Emde Boas (1988). Using hashing techniques, they showed that if a
RAM M uses d distinct addresses, it can be simulated by another RAM M’ for
which the largest address is numbered O(d). Moreover, if the space used by a
RAM is defined as the sum over all cells of the length of the maximum value in

Strict P-completeness 5

every cell, then the space used by M’ is within a constant factor of the space
used by M. However, the time required by M’ may be exponential in the time
required by M. In contrast, our simulation guarantees that the time required
by M’ is within a logarithmic factor of the time required by M, but the cost
to M’ is O(t(n)) extra space.

LEMMA 2.1. Let M be a RAM which runs in time t(n) and space s(n). Then
there is a RAM M' that accepts the same language as M, runs in space O(s(n)+
t(n)) and time O(t(n)logt(n)), and accesses only cells whose addresses are

O(t(n))-

Proor. Let M be a RAM with running time ¢(n). We construct a RAM
M’ that simulates M, but which uses a table to store the addresses of cells
referenced by M, together with the values at those addresses. The table can
be stored in O(t(n)) contiguous cells. It is organized as a sequence Tp, 11, . ..
of balanced binary search trees. As our running time analysis will show, this
organization is chosen to ensure that the cost of accessing small addresses is not
too large (a single binary tree would not suffice to obtain the desired running
time).

Each node of a tree in the table is a record consisting of a cell address, the
value at that address and pointers to the nodes which are its children, if there
are any. The first tree Ty contains at most two nodes, containing the addresses
0 and 1. For 7 > 1, the sth binary tree T; contains addresses referenced by M
between 22" and 22' — 1, inclusive. The number 2% — 1 is the indez of the ith
binary tree. For each tree there is also a tree record, which contains the index
of the tree, a pointer to the root of the tree, if any, and a pointer to the next
tree record, if any. The trees are built dynamically by M’ as it is simulating
M.

Suppose the value of cell Ry is needed for an instruction. This is located
by M’ as follows. First, N is compared with the indices of the binary trees in
order, until the first index is found which is at least N. If no such tree exists,
new, empty trees and their tree records are created in sequence until one exists.
Let i be such that 227" < N < 22 — 1. Next, the tree 7T} is searched for N. If
not found, a node with the address IV is added to the tree with value 0. Then,
the value of Ry can be retrieved or updated as specified by the instruction.

Space for the trees can be allocated dynamically as needed, so that all space
used by the algorithm is stored in contiguous memory cells. The total number
of cells needed to store the table is O(#(n)), since O(t(n)) distinct cells are
accessed by M and there are only O(logt(n)) tree records.

6 Anne Condon

The running time of M’ is the time to simulate the instructions of M,
including searching and updating the trees, plus the time to build the empty
trees. The time to create an empty tree is dominated by the cost of computing
the tree indices. Let 22 —1 be the largest index computed. Then some address,
say N, referenced by M is at least 227 + 1. Since N is computed within time
t(n) by M, any individual index up to 227" can be computed in time O(t(n)),
by repeated additions. The time to then compute 2% from 22" is O(2%), since,
using repeated additions, 2'~! additions are needed, each involving numbers of
length O(2). Since log N > 2i~1, this time is O(log” N). Finally, since from
Cook and Reckow (1973), N < 20(\/“7)), this is O(¢(n)). Hence, an empty tree
can be built in O(t(n)) time. Since there are O(logt(n)) trees, the total time
required to build the trees is O(t(n)logt(n)).

We next consider the time for M’ to simulate an instruction of M. It is
straightforward to show that for instructions 1,2,3,6, and 7, this time is the
time for M to execute the instruction, plus a constant. The same is true for
the conditional part of instructions 8 and 9. Consider instructions 4 and 5.
For these instructions, there is extra overhead to locate operands or to update
the result of the instruction. The time to search for the tree in which address
R; is stored (not counting the time to create new trees, which we have already
accounted for) is O(logt(n) log R;). This is because there are O(logt(n)) trees
in the table, and hence R, is compared with O(logt(n)) indices, each of length
O(log R;). The time to search for R; in its tree is O(logt(n)log R;). This is
because the search tree is balanced, thus ensuring that R; is compared with
O(logt(n)) entries, and also all entries in the tree have address length O(log R;).
(Note that if the table were organized as a single binary tree, the cost could
be Q(log®t(n))—this is why we use a sequence of binary trees.) Similarly, the
time to insert R; in the tree is O(logt(n)log R;). It follows that the time for
M’ to execute instructions 4 or 5 is log Rg, + O(logt(n))log R;. Clearly, this
is within a factor of O(logt(n)) of the time taken by M for these instructions.

Hence, the total time taken by M’ is O(t(n)logt(n)). O

We say a RAM is restricted if for all inputs z, and all k£, the kth instruction
executed on z (if any) is a function only of k and |z|. Note that the if statement
is considered to be just one instruction (an instruction of this form is also known
as a guarded command): this is needed for Lemma 2.2. Thus, the flow of control
of the program of a restricted RAM is oblivious of the actual input. We next
show that any RAM with running time #(n) can be simulated by a restricted
RAM with running time O(¢(n)). Again, this restriction later simplifies our
reduction from a RAM to a circuit in Theorem 4.1. The proof of the next

Strict P-completeness 7

theorem is straightforward, using ideas similar to those in the main proofs of
Ashcroft and Manna (1971) and Béhm and Jacobini (1966).

LEmMA 2.2. Any RAM M with running time t(n) can be simulated by a
restricted RAM M’ with running time O(t(n)). Moreover, the space and the
maximum address of a cell accessed by M' are within a constant factor of the
space and the maximum address of a cell accessed by M, respectively.

PROOF. Let M be a RAM with running time ¢(n). Without loss of generality,
we assume that cells Ry, ..., R3 are never used by M. We describe a restricted
RAM M’ that simulates M. The idea of the construction is that M’ repeatedly
“cycles” through the instructions of M, testing which one should actually be
executed at a given step, and executing that instruction.

To implement this, the instructions of M are numbered in sequential order.
M’ consists of a loop that is executed at most ¢(n) times. The loop consists of
a sequence of segments, one per instruction of M. M’ maintains counters inst
and newinst, which store the number of the current and next instructions of M
to be executed, respectively. The counter inst is initialized to the number of
the first instruction and is updated to newinst at the end of the loop. A third
variable, test, is used in each segment k to test if inst = k and if so, to execute
the kth instruction of M. The variables inst, newinst and test are stored in
memory cells Ry,..., Rs.

Suppose the kth instruction of M is instruction and is not a goto or an if
instruction. Then the kth segment simply tests if inst has the value £ and if
so, executes the kth instruction of M. Then newinst is updated to be the next
instruction. This is accomplished by the following code:

test < k

test < test — inst

if test = 0 then instruction

if test = 0 then newinst +— k + 1

In the case of a goto L instruction, the segment code is simplified by
removing the first if statement and replacing the second by: if test = 0 then
newinst < L. Finally, suppose that the kth instruction is of the form if R; =0
then instruction. Then the third line of the above algorithm is replaced by the
following two lines, which ensure that instruction is executed only if R; = 0.

if test = 0 then test <+ R;
if test = 0 then instruction

8 Anne Condon

The statement if R; > 0 then instruction is handled in a similar fashion.
In the kth iteration of the loop, the cost of the instructions is O(1), plus the
cost of the kth instruction of M that is executed. Therefore, the running time
of M"is O(t(n)). O

2.2. Parallel RAMs and complexity classes. Our model of parallel com-
putation is the PRAM model (see Fortune and Wiley 1978), which consists
of a set of RAMs, called processors, plus an infinite number of global memory
cells. An instruction of a processor can access its own memory cells or the
global memory cells. There are many variations of the PRAM model, depend-
ing on how simultaneous access to a global memory location by more than one
processor is handled. However, since the various PRAM models with a polyno-
mial number of processors can simulate each other with O(logn) loss in time,
the particular model does not affect our results. See Karp and Ramachandran
(1988) or Greenlaw et al. (1994) for a survey of the various PRAM models.
Note that the sequential running time of a problem on the RAM is within a
constant factor of its parallel running time on the PRAM with O(1) proces-
sors; thus, any speedup on the PRAM is due to parallelism and not to a change
between models.

In what follows, we only consider PRAMs that use a number of processors
that is polynomial in the input length (that is, the number of memory cells
containing the bits of the input). With this assumption, we say that a language
has parallel running time T'(n) if there is a PRAM accepting the language with
running time 7'(n). We say a language L has parallel speedup s(n) if there is a
PRAM accepting L with running time ¢(n)/s(n), given that L has sequential
running time t(n). L has polynomial speedup if it has parallel speedup Q(n¢)
for some € > 0. We use the notation 5(f(n)) to denote O(f(n)log®® f(n)).

The class NC is the set of languages with parallel running time log®® n.
A language L is NC-reducible to language L' if there is an NC-computable
function f that is a many-one reduction from L to L'. See Greenlaw et al. (1994)
and the references therein for an introduction to the class NC. We say f is
honest if there exists k such that |f(z)| > |z|'/* for sufficiently large z.

3. Strict P-completeness

In this section, we define the notion of strict P-completeness. This is a refine-
ment of the standard definition of P-completeness (see Greenlaw et al. 1994),
which is that a problem L in P is P-complete if every problem in P is many-one
NC-reducible to L. Roughly, a problem L in P is strictly 7'(n)-complete for P

Strict P-completeness 9

if L has parallel running time within a polylog factor of T'(n) and furthermore,
if this could be improved by a polynomial factor, then all problems in P with
at least linear running time have polynomial parallel speedup. We now make
this precise.

DEFINITION 3.1. A language L in P is at most T'(n)-complete for P if and only
if for every language L' € P, for every sequential RAM that accepts L' with
running time t'(n) where t'(n) = Q(n) and t'(n) is eventually non-decreasing,
for every € > 0, there exists an honest, many-one NC reduction f from L' to L
such that

T(|f(@)]) = O (|=))|=[).

DEFINITION 3.2. L is strictly T'(n)-complete for P (or simply strictly T'(n)-
complete) if L is at most T'(n)-complete for P and the parallel running time of

L is O(T(n)).

We claim that if L is at most 7T'(n)-complete for P, then if the parallel
running time of L is a polynomial factor less than 7T'(n), every problem in P
with at least linear sequential running time has polynomial speedup. This is

evidence that parallel running time 5(T(n)) is the best one can expect for L.
We prove this in the next lemma.

LEMMA 3.3. Suppose that L is at most T'(n)-complete for P. If the parallel
running time of L is a polynomial factor less than T'(n), then every problem in P
with sequential running time t'(n) has polynomial speedup, where t'(n) = Q(n)
and t'(n) is eventually non-decreasing.

PROOF. Let L’ be any problem in P with sequential running time ¢'(n), where
t'(n) satisfies the hypothesis of the lemma. Let f be an honest, many-one, NC
reduction from L' to L. Since f is honest, there is an integer k£ such that
|f(z)| > |z|'/*, for sufficiently large . Suppose also that there is a parallel
algorithm A for L that runs in time O(T'(n)n2*), for some € > 0. Consider the
parallel algorithm for L' that on input z, computes f(z) and runs the parallel
algorithm A on f(z). This algorithm has running time O(T(|f(z)|) | f(x)|~2*¢).
This is O(t'(|z) |z|) since T'(|f(z)]) = O('(|z[) |2[) and |f(z)| > [«|'/* for
sufficiently large z. Hence there is a parallel algorithm for L’ which achieves
speedup Q(n¢) over the sequential algorithm with running time t'(n). Hence L'
has polynomial speedup. O

In Theorem 4.1, we show that the Square CVP is strictly y/n-complete.
The next lemma is useful in extending Theorem 4.1 to obtain bounds on the

10 Anne Condon

parallel speedups of other problems. (In the following lemma, the definition of
s 1(n) can be chosen in any reasonable way if s is not onto; for example, let
s~ 1(n) = m, where s(m) = n' if n’ is the largest number no greater than n in
the range of s.)

LEMMA 3.4. Suppose L is at most T'(n)-complete and that there is an honest,
many-one, NC reduction f from L to L'. Let s(n) be the maximum of |f(z)|
over all instances x of L of size n. Suppose T(n) and s(n) are eventually
non-decreasing functions. Then, L' is at most T'(s~'(n))-complete.

PrROOF. Let L” be an arbitrary language in P with sequential running time
t"(n) = Q(n) where t"(n) is eventually non-decreasing and let ¢ > 0. To prove
the lemma, we show that L” is NC-reducible to L’ by an honest function f’
such that T'(|f'(z)[) = O(#"(|x) |z).

Since L is at most T'(n)-complete, L" is NC-reducible to L via an honest
reduction f” such that T'(| f"(z)|) = O(t"(|z|)|z|¢). Let f'(xz) = f(f"(z)). Then
f' is an honest NC reduction from L” to L'. Also,

T(s (I @) =T(s “(IF (" @)D) < T(s *(s(f"(@)])))
=T(|f"(@)]) = O("(|«[)|z[). O

4. The Square Circuit Value Problem

The Circuit Value Problem, CVP, denotes the set of all Boolean circuits to-
gether with an input to the circuit, such that the circuit evaluates to 1 on the
input. This problem is well known to be complete for P (see Ladner 1975)
and in fact many restrictions of the CVP are also P-complete. Greenlaw et
al. (1994) proved that the CVP is P-complete even when accepted instances
must be monotone, alternating, synchronous and with fan-in and fan-out 2.
Here, monotone means that the gates are all and or or gates, alternating
means that on any path of the circuit starting at an input gate, the gates al-
ternate between and and or gates and synchronous means that the inputs for
level 7 of the circuit are all outputs of level 7 — 1.

We now define a square circuit to be one with all of the above properties
and in addition, such that the number of gates at every level equals the depth.
The Square C'VP is the subset of CVP where the circuits are square.

The next theorem shows how to simulate RAMs with running time #(n)

by square circuits with depth O(t(n)). Related work on simulating PRAMs

Strict P-completeness 11

by circuits was done by Stockmeyer and Vishkin (1985), who showed that
parallel time and number of processors for Concurrent Read, Concurrent Write
PRAMS correspond to depth and size for unbounded fan-in circuits, where the
time-depth correspondence is to within a constant factor and the processor-size
correspondence is to within a polynomial. Our proof differs from theirs in that
we are simulating a RAM rather than a PRAM and want a precise bound for
the size of the circuit in terms of the running time of the RAM. Furthermore,
our circuits have bounded fan-in and are synchronous.

THEOREM 4.1. Any RAM that runs in time t(n) = Q(n) can be simulated by

a family of square circuits of depth O(t(n)). Furthermore, for a specific RAM
and input, the corresponding circuit can be constructed in NC (actually, by a
CREW PRAM with a polynomial number of processors which runs in O(log® n)
time).

PROOF. Given a RAM with running time ¢(n), let M be a RAM that
accepts the same language and has the following properties. There is a number
T = O(t(n)logt(n)) such that on inputs of length n,

(i) T is an upper bound on the maximum running time of M,
(ii) only cells Ry, ..., Ry are accessed during a computation and

(iii) the total sum of the lengths of the non-zero cell values at any step of a
computation is at most 7.

Such a machine M exists with properties (i) and (ii) by Lemma 2.1, and with
property (iii) because of the log cost assumption. Furthermore, we can assume
that M is a restricted RAM, by Lemma 2.2.

We construct a circuit that simulates M on inputs of length n. We describe
the construction of the circuit in stages. We first describe how to construct
a circuit of the correct size and depth, and then describe the transformations
needed to make the circuit square.

High level description. The circuit consists of 7" layers. The kth layer
corresponds to the kth instruction of M that is executed on inputs of length n.
Since M is restricted, this depends only on n and k. The output gates of the
kth layer output the values of the cells Ry, ..., Ry after the kth instruction is
executed and are inputs to the (k + 1)st layer. In addition, the (k + 1)st layer
may also have constant 0 and 1 inputs. One simple scheme would be to allow
T output gates per cell, at each layer. However, this would require the circuit
to have width Q(#?(n)), which is too big.

12 Anne Condon

We use T tuples of output gates, one per bit value of the cells. Each tuple
contains O(logT') gates to record the bit position, O(logT') gates to record the
cell number and one gate to record the value of the bit. Call these tuples the
cell tuples. Tuples with all gates equal to 0 do not correspond to any bit value.

Constructing layers. A layer consists of a circuit for an instruction,
preceded by select circuits that select the correct inputs for the instruction and
an update circuit that updates the T edge tuples, based on the result of the
instruction. We next, describe each of these three circuits in more detail.

For all instructions of a RAM, there is a circuit of depth O(logt(n)) and
size O(t(n)) that computes the result of the instruction, if any, on inputs of
length at most ¢(n). The circuit is trivial for the instructions R; < C, goto
L and halt. In the case of the indirect addressing instruction R; < Rg;, the
input to the circuit is Rg;, so the circuit simply outputs its input. The circuit
for addition and subtraction is based on the parallel prefix circuit of Ladner
and Fischer (1980). The circuit for the if R, = 0 then instruction contains
a subcircuit which checks that R; = 0 and another for instruction. There is
an additional subcircuit which selects as the output either the output of the
wnstruction circuit if R; = 0, or a 0-valued output otherwise.

For instructions other than R; < Rg;, the select circuit first selects the
tuples recording bit values of the operands of the instruction, orders them and
“pads” them on the left to T bits. For the instruction R; <— Rpg,, two layers
of the select circuit are needed. One layer selects the value R; and the next
layer selects the value Rg,. The select circuit can be implemented in log®® t(n)

depth and O(t(n)) size using a sorting circuit, for example, based on the sorting
network of Batcher (1968) or Ajtai et al. (1983).

The update circuit receives as input both the result of the instruction and
the bit values of all the cells with their labels. The update circuit “unpads” the
result of the instruction and outputs these bits, correctly labeled. In the case
of the instruction Rp, < R;, the label is the value of R;; otherwise, the label
can be hard wired into the circuit. The update circuit also outputs, unchanged,
the bit values of the cells that are not modified by the instruction, together
with their labels. Again, a sorting circuit can be used to implement the update
circuit in log®W ¢(n) depth and (N)(t(n)) size.

Achieving monotonicity, alternation, and restricted fan-in. We
now have a circuit of the desired depth and size. To complete the proof, we
show how this circuit can be transformed into a square circuit. The construc-
tion of Goldschlager (1977) can be used to make the circuit monotone. This
construction doubles the size of the circuit and does not increase the depth.

Strict P-completeness 13

Techniques of Greenlaw et al. (1994) can be used to ensure that the circuit
is alternating and that each gate has fan-in and fan-out 2. These techniques
can be applied to each layer independently so that the resulting circuit has the
following structure.

In the first layer of the circuit, all inputs are connected to or gates. All
output gates of every layer are or gates. An output gate of layer k is either
not connected to anything, or the two edges from the gate are connected to an
and gate at layer £ + 1. We refer to these and gates as inputs of layer £ + 1,
in addition to the real inputs of the layer.

Synchronizing layers. Greenlaw et al. (1994) also describe how to make
the resulting circuit synchronous, but their method at least squares the size of
the circuit. We show that for the layered circuit of the above form, their tech-

nique can be modified to obtain a square, synchronous circuit of depth 5(t(n))
There are two main steps. First, each layer is converted into a synchronous
circuit of depth O(log®® ¢(n)) and size 5(t(n)) This transformation of the
layers increases the width of the layers, and hence duplicates the inputs and
outputs of each layer. A problem caused by this is that the set of outputs of
one layer may not equal the set of inputs to the next layer. The second main
step, described in the next subsection, is to connect the synchronized layers.
This is done by transforming in a synchronous fashion the set of outputs of one
layer so that it equals the set of inputs of the next layer.

Following Greenlaw et al. (1994), a layer of depth d is made synchronous
as follows. Construct d/2 copies of the circuit. Each copy can be viewed as
having two levels. The and level consists of and gates and inputs; the or level
consists of or gates. The edges between and levels and or levels are preserved
within each copy. For all [;1 <[< d/2, if or gate i is connected to and gate
j in the layer, then gate i of the (I — 1)st copy is connected to gate j of the /th
copy. Input and output gates are handled as follows. An input gate at any copy
is connected via a chain of alternating and and or gates to a duplicate of that
input at the first level. Similarly, an output gate from any copy is connected
via a chain of alternating and and or gates to the last level. The resulting
layer is clearly synchronous and the properties of monotonicity, alternation, and
restricted fan-in and fan-out are preserved by this transformation. It follows
that there must be the same number of nodes at every level. Furthermore, the

number of nodes at each level is 5(t(n)) This is because there is at most one
node at each level for each gate of the original layer which is not an input or
output gate, and at most d nodes at each level for each input and output gate
of the original layer. The depth of the layer does not increase. The inputs to
the synchronized layer are duplicates of the inputs to the original layer (both

14 Anne Condon

constant inputs and the outputs of the previous layer), and the output gates of
the synchronized layer are both duplicates of the output gates of the original
layer and other arbitrary output gates, corresponding to other or gates in the
original layer.

Connecting the synchronous layers. To complete the proof, we need to
show how to transform the set of outputs of one layer into the set of inputs of the
next layer in a synchronous fashion. By adding extra gates to some layers, we
can assume that the number of gates at every level of every layer is equal. We
can assume that the set of output gates of any layer includes the cell tuples and
in addition, two gates with value 0 and 1 respectively. These two outputs can
be produced by a synchronous layer simply by adding constant 0 and 1 gates
as inputs and using or and and gates as identity gates to propagate these
values to the output level of the layer. Call this set of outputs the essential
outputs and the other outputs the redundant outputs. The set of inputs of
layer £+ 1 can be produced by duplicating the essential outputs and replacing
the redundant outputs of layer k£ with these duplicates.

To do this, first the edges from the redundant output gates are set to 0.
This is achieved by a synchronous circuit of depth O(logt(n)): the following
“doubling” circuit. At the first and level of the circuit, the edges from one
output gate are set to 0 by and-ing them with the outputs of the constant
0 gate. At the sth and level, there are 2! 0-valued edges, which are and-ed
with 2¢ other redundant edges (or the remaining redundant edges if there are
fewer than 2%), to produce 2+ 0-valued edges. Output gates whose edges are
unchanged at an and level simply pass their values on via an and gate used
as an identity gate. At or levels, or gates are used as identity gates.

Essential outputs are duplicated in a similar fashion. An output gate g can
be duplicated ! times in depth [logl] by doubling the number of duplicates
at each level (except possibly the last, if the number of duplicates is not a
power of 2). In this part of the circuit, and gates are used as identity gates.
This duplication can be done independently for all essential outputs in depth
O(logt(n)).

Since every gate of the circuit has fan-in and fan-out 2 and the circuit is
synchronous, every level must have the same number of nodes. If this is less
than the depth of the circuit, extra levels can be added to the circuit so that
the depth equals the width. This completes the proof of Theorem 4.1. O

We can now show that the Square CVP is strictly /n-complete. Before
giving the proof in Theorem 4.3, we need one technical lemma. The proof of
this is due to J. Hoover.

Strict P-completeness 15

LEMMA 4.2. Let t be an eventually non-decreasing function such that t(n) =
Q(n) and t(n) = n®WY. For all § > 0, there is a rational number ¢ and a natural
number ngy such that

1. t(n) < n° for n > ny,
2. n° = O(t(n)n?).

Proor. Consider the real o > 0 given by the following equation:

. nF
a=sup{k ‘nh_{gomz[)}

Such an « exists since t(n) = Q(n), t(n) = n°Y and t is eventually non-
decreasing. For all € > 0, we have

o+e€
lim —— >0,
and so there exists an n, such that ¢(n) < n**€ for n > n..
Let ¢ be any rational number in the interval [+ /4, a + 6/2]. Then there
exists ng such that t(n) < n? for n > ny and we have condition 1 of the lemma.
Now, suppose that 0 < « (if not, we are done immediately). Then, for some
sufficiently small €, 0 < € < min{a, §/4} we have

a—e€,,0—a+e€

g n* n

1. = 1 —_— Y = O

Hence, n° = O(t(n)n°), and we have condition 2. O

THEOREM 4.3. The Square CVP is strictly v/n-complete.

Proor. Given a square circuit with n gates and an input for the circuit,

there is a PRAM algorithm with running time 5(\/5) that simply evaluates the
gates of each row of the circuit in parallel. (On a Concurrent Read, Concurrent
Write PRAM the time is O(y/n); but on an Exclusive Read, Exclusive Write
model an extra logarithmic factor is introduced).

We next show that the Square CVP is at most \/n-complete. Let L' be a
language in P and let ¢'(n) = Q(n) be a sequential running time for L', with
t'(n) eventually non-decreasing. Let M’ be a RAM that accepts any x € L' in
time ¢'(|z|). Let T(n) = \/n.

For any € > 0, we show that there is an honest, many-one reduction f from
L' to Square CVP such that T'(|f(z)|) = O(t(|z|) |=|¢). By Lemma 4.2, there
is a rational number ¢ and a natural number ng such that

16 Anne Condon

1. t(n) < n? for n > ny,
2. n? = O(t(n)n?).

Since [n?] is computable in NC, and t'(n) = Q(n) implies n” = Q(n), we can
apply Theorem 4.1 to machine M’ and input z and obtain a square circuit of
depth O(|z|?). For inputs z > ny, this circuit correctly decides membership of
zin L.

Let f be the function that, given z, produces the corresponding square
circuit. |f(z)| is order the size of this circuit, and so |f(z)| = 5(|x|2") By
condition 1 above, and the lower bound on t'(n), we conclude that f is honest.

~

By condition 2 above, we get |f(z)| = Ot (|z|)? |z|*).
Thus, T(|f(z)|) = O (|z|) |z|°) as required. O

5. Completeness results for other problems

We now apply Theorem 4.1 to prove strict completeness results for other prob-
lems. We first consider the problem of computing the expected cost of a Markov
decision process, a central and well-studied problem in optimization theory.
P-completeness results for Markov decision processes were obtained by Pa-
padimitriou and Tsitsiklis (1987); we strengthen their results in the case of
nonstationary finite horizon processes in Section 5.1. In Section 5.2, we de-
scribe a number of problems that are at most y/n-complete for P, but which
are not known to be strictly P-complete.

5.1. Markov decision processes. A Markov decision process consists of
a set S of m states, including an initial state sg. There is a finite set D
of decisions and a probability transition function p(s, s’,d,t) which gives the
probability of going from state s to s' at time ¢, given that decision d is made.
The cost function c(s,d,t) gives the cost of decision d at time t if the process
is in state s. We consider the problem of minimizing the expected cost over
T steps, starting at the initial state. The decision version of this problem,
the Nonstationary Finite Horizon Markov Decision Process Problem (NMDP)
is defined as follows: given an instance (S, sg, D, p,c,T), is the expected cost
equal to 07

A sequential algorithm for this problem is based on dynamic programming
(Howard 1960). Roughly, the algorithm fills in a table of size T' x m row by
row, where entry (t,s) of the table is the minimum expected cost when ¢ is
the finite horizon and s is the initial state. A table entry in row ¢ can be

Strict P-completeness 17

computed independently from the entries in row ¢ — 1. Thus these entries can
be computed in parallel, and the computation of each entry can be parallelized
so that the parallel running time is within a polylog factor of 7. For example,
if 7= ©(m) so that the input size n = ©(m?T), then the sequential algorithm

has a running time of 2(n), whereas the parallel running time is 5(711/ 3.

Thus, the bottleneck in the above parallel algorithm for NMDP seems to be
that the rows of the table must be computed in sequential order. We now show
that under the assumption that 7' = ©(m), NMDP is strictly n'/3-complete for
P. Informally, this implies that if there is a parallel algorithm for the NMDP
with running time O(T"€) for some € > 0, then all problems in P have poly-
nomial speedup.

THEOREM 5.1. The Nonstationary Finite Horizon Markov Decision Process
Problem where T = ©(m) is strictly n*/*-complete.

ProOOF. We reduce the Square CVP to NMDP. Our reduction is based on the
reduction of Papadimitriou and Tsitsiklis (1987), but achieves an improvement
by a factor of \/n on the number of states. Let C be a square circuit with
n gates. Order the gates at each level of C' from 1 to y/n. We construct a
nonstationary finite horizon Markov decision process M with m = /n + 1
states and let T'= m. One state is a special end state ¢ and the other m states
correspond to the gates of C at any given level of the circuit. Thus, a pair
(s,t),1 <s<m,1<t<T,corresponds to the sth gate in the circuit at level
t, where the output gate is defined to be at level 1. The initial state is the
number of the output gate of the circuit. There are two decisions, 1 and 2,
associated with each state.

The probability transition function is defined as follows. p(s,q,d,T) = 1,
for all s. For 1 <t < T, suppose that the sth gate at level ¢ of the circuit
has as inputs gates (s;,t + 1) and (sg,¢t + 1). If (s,t) is an and gate, then
for d = 1,2, p(s,s1,d,t) = p(s,s9,d,t) = 1/2. If (s,t) is an or gate, then
p(s,s1,1,t) =1 =p(s, sq9,2,t). All other probabilities are 0. The cost function
c(s,q,t) = 1if (s,t) is a false input gate. All other costs are 0.

The resulting process M has expected value 0 if and only if the circuit
evaluates to 1; moreover the reduction is NC-computable and maps instances
of the Square CVP of size n to instances of the NMDP of size n3/2. Applying
Lemma 3.4, it follows that NMDP is at most n'/3-complete. O

5.2. Problems that are at most /n-complete. We next describe upper
bounds on the parallel speedup obtainable for many other P-complete problems,

18 Anne Condon

starting with the unrestricted Circuit Value Problem. The proof of the following
corollary is immediate from Theorem 4.1.

COROLLARY 5.2. The CVP is at most v/n-complete for P, even when the cir-
cuits are restricted to be monotone, alternating and synchronous, with fan-in
and fan-out 2.

However, it is an open problem whether CVP is strictly 1/n-complete, since

on the one hand, there is no known 5(\/5) parallel algorithm for the CVP and
on the other hand, it is not clear that a RAM which runs in time O(¢(n)) can
be simulated by a circuit family of size O(t(n)). Examples of other problems
that are at most \/n-complete are given in the following list. The completeness
follows from Lemma 3.4 and the reductions cited below.

o First Fit Decreasing Bin Packing (FFDBP). Anderson, Mayr and War-
muth (1989) gave an NC-reduction from the Monotone CVP with fan-in
and fan-out 2 to FFDBP. The reduction maps a circuit with n gates to
an instance of FFDBP with O(n) items whose weights are represented
using O(logn) bits.

o Ordered Depth First Search (ODFS). Reif (1985) gave an NC-reduction
from NOR CVP to ODFS that maps a circuit with n gates to a graph
of size O(n). There is a simple reduction from the Square CVP to NOR
CVP that preserves the size of the circuit to within a constant factor (see

Greenlaw et al. 1994).

o Stack Breadth-First Search (SBFS). Greenlaw (1988) gave an NC-reduc-
tion from the Monotone, Alternating, Synchronous CVP to SBFS. The
same reduction maps an instance of the Square Circuit Value Problem
with n gates to an instance of SBFS of size O(n).

o Unification. Dwork, Kanellakis and Mitchell (1984) reduced the Mono-
tone CVP to Unification, mapping a circuit of size n to an instance of
Unification of size O(n).

o Lex First Mazimal Independent Set (LFMIS). Cook (1985) gave a linear-
sized reduction from the Monotone CVP to LFMIS.

Finally, the Lex First Mazimal Clique (LFMC) is an example of a problem

for which there is a O(y/n) parallel algorithm, and the problem is at most n!/4-
complete. Cook (1985) gave a reduction from Monotone CVP to LEMC which

Strict P-completeness 19

maps a circuit with n gates to a graph with O(n) nodes but Q(n?) edges. There

is a parallel algorithm that solves the problem in parallel time O((n + m)/2).
This algorithm maintains an ordered list of possible clique candidates, which
are nodes connected to all nodes already in the clique. While this list is not
empty, the smallest is removed and added to the clique, and the list is pruned
of those candidates not adjacent to the newly added node. The list pruning
can be performed in parallel for each list member in log®® n time on a PRAM.
Hence the total running time is within a polylog factor of the number of nodes
in the clique. Clearly, the number of nodes in the LFMC is at most the square
root of the number of edges in the graph, and hence is at most a square root
of the input size.

6. Conclusions

We have introduced the notion of strict P-completeness, which refines previous
work on P-completeness. We proved that the Square Circuit Value Problem and
the Nonstationary Finite Horizon Markov Decision Process Problem are strictly
v/n-complete and n'/3-complete, respectively. In doing this, we obtained im-
proved reductions from the RAM model to the circuit model of computation.
We also obtained limits on the possible speedups for many other P-complete
problems; in particular, showing that the CVP is at most y/n-complete.

We note that Definitions 3.1 and 3.2 of strict P-completeness can be ex-
tended in a straightforward way from many-one reductions to Turing reduc-
tions.

An interesting open problem is whether the CVP is strictly y/n-complete,
strictly m-complete, or somewhere in between. A related question is whether
there are ways to prove limits on the parallel speedup that can be obtained
for the CVP problem, other than by direct reduction from the RAM model.
Finally, we have not severely restricted the number of processors in our PRAM
model, since we allow any polynomial number of processors. Can our results be
strengthened to obtain sharper limits if there is a stricter bound on the number
of processors available?

Acknowledgements

Thanks to Jim Hoover for carefully reviewing and correcting a previous draft of
this paper. The current definition of strict P-completeness incorporates many
of his suggestions. Also, the proof of Lemma 4.2 is due to him. Thanks also to

20 Anne Condon

Ray Greenlaw and an anonymous referee for several invaluable comments on
the presentation.

This work was supported by NSF grant numbers CCR-~9100886 and CCR-
9257241, with matching funds provided by IBM Rochester and the AT&T
Foundation.

References

M. Ajtal, J. KomrLos, AND E. SZEMEREDI, An O(nlogn) sorting network. Com-
binatorica 3 (1983), 1-19.

R. ANDERSON, E. MAYR, AND M. WARMUTH, Parallel approximation schemes for
bin packing. Inform. and Comput. 82 (1989), 262-277.

E. ASHCROFT AND Z. MANNA, The translation of “go to” programs to “while” pro-
grams. In Proc. 1971 IFIP Congress, Amsterdam, The Netherlands, North Holland
Publishing Company, 1 (1972), 250-255. Reprinted in Classics in Software Engineer-
ing, ed. E. N. YOURDAN. Yourdan Press, N.Y., 1979.

K. E. BATCHER, Sorting networks and their applications. In Proc. AFIPS Spring
Joint Summer Computer Conference, 1968, 307-314.

BoHM AND JAcOPINI, Flow diagrams, Turing machines and languages with only
two formation rules. Comm. ACM 9 (5) (1966), 366-371. Reprinted in Classics in
Software Engineering, ed. E. N. YOURDAN. Yourdan Press, N.Y., 1979.

S. A. Cook AND R. A. REckHOW, Time bounded random access machines. J.
Comput. System Sci. 7 (1973), 354-375.

S. A. CooK, A taxonomy of problems with fast parallel algorithms. Inform. and
Control 64 (1985), 2-22.

C. Dwork, P. C. KANELLAKIS, AND J. C. MITCHELL, On the sequential nature
of unification. J. Logic Prog. 1 (1984), 35-50.

S. FORTUNE AND J. WYLLIE, Parallelism in random access machines. In Proc. 10th
Ann. ACM Symp. Theor. Comput., 1978, 114-118.

L. M. GOLDSCHLAGER, The monotone and planar circuit value problems are log
space complete for P. SIGACT News 9 (1977), 25-29.

R. H. GREENLAW, A model classifying algorithms as inherently sequential. Inform.
and Comput. 97 (1992), 133-149.

Strict P-completeness 21

R. H. GREENLAW, J. HOOVER, AND W. L. Ruzzo0, Topics in Parallel Computation:
A Guide to P-Completeness Theory. Oxford University Press, 1994. See also A com-
pendium of problems complete for P, Department of Computing Science Technical
Report TR 91-11, University of Alberta, March 1991. Also available as Department
of Computer Sciences Technical Report TR 91-14, University of New Hampshire,
March 1991 and Department of Computer Science Technical Report TR 91-05-01,
University of Washington, May 1991.

R. A. HOWARD, Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge, 1960.

R. M. KArRP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory ma-
chines. Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity, Chapter 7, ed. J. VAN LEEUWEN. MIT Press/Elsevier, 1990, 869-941.

C. P. KruskAL, L. RupoLPH, AND M. SNIR, A complexity theory of efficient
parallel algorithms. Theoret. Comput. Sci. 71 (1990), 95-132.

R. E. LADNER, The circuit value problem is log space complete for P. SIGACT News
7 (1975), 18-20.

R. E. LADNER AND M. J. FISCHER, Parallel prefix computation. J. Assoc. Comput.
Mach. 27 (1980), 831-838.

C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS, The complexity of Markov decision
processes. Math. Oper. Res. 12 (1987), 441-450.

J. REIF, Depth first search is inherently sequential. Inform. Proc. Lett. 20 (1985),
229-234.

R. A. SiMONS AND J. S. VITTER, New classes for parallel complexity: a study
of unification and other complete problems for P. IEEE Trans. Comput. 35 (1986),
403-418.

C. SroT AND P. VAN EMDE BoAs, The problem of space invariance for sequential
machines. Inform. and Comput. 77 (1988), 93-122.

L. SNYDER, Type architectures, shared memory, and the corollary of modest poten-
tial. Annual Review of Computer Science 1 (1986), 289-317.

L. STOCKMEYER AND U. VISHKIN, Simulation of parallel random access machines
by circuits. SIAM J. Comput. 13 (1985), 862-874.

22 Anne Condon

Manuscript received 15 June 1993

ANNE CONDON

Computer Sciences Department
University of Wisconsin at Madison
1210 West Dayton St.

Madison WI 53706 USA

condon@cs.wisc.edu

