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Abstract A major goal of natural computing is to design
biomolecules, such as nucleic acid sequences, that can be
used to perform computations. We design sequences of
nucleic acids that are “guaranteed” to have long folding
pathways relative to their length. This particular sequences
with high probability follow low-barrier folding pathways
that visit a large number of distinct structures. Long fold-
ing pathways are interesting, because they demonstrate that
natural computing can potentially support long and com-
plex computations. Formally, we provide the first scalable
designs of molecules whose low-barrier folding pathways,
with respect to a simple, stacked pair energy model, grow
superlinearly with the molecule length, but for which all sig-
nificantly shorter alternative foldingpathways have an energy
barrier that is 2− ε times that of the low-barrier pathway for
any ε > 0 and a sufficiently long sequence.

Keywords Nucleic acid strands · Low-barrier pathways ·
Sequence design · Folding pathways

1 Introduction

Novel means for performing computations or designing
nanostructures at the molecular level have been success-
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fully developed, that exploit base pairing interactions of
nucleic acids. Prominent examples include DNA strand dis-
placement systems (DSDs) (Seelig et al. 2006) and RNA
origami systems (Geary and Andersen 2014). Our work here
is motivated by the goal of computing with a single RNA
sequence as the nucleic acids of the sequence interact with
each other.

RNA sequences form folded structures in which pairs of
nucleic acids biochemically bond to each other. These bonds
change the physical energy of the sequence, and a given
sequence prefers to assume low-energy folded structures.
Folding is a dynamic process, constrained by kinetics, dur-
ing which an RNA sequence will move through a sequence
of structures with each differing from the previous one by
the addition or removal of a single base pair. The process
may reach a low-energy structure from a high-energy struc-
ture or simply maintain low energy (a process referred to
as the natural “breathing” of the molecule). Folding path-
ways will tend to meander along low-energy “valleys” in
the landscape of secondary structures, rather than scaling
high-energy “barriers”, even if the low-barrier valleys are
longer.

Here, we focus on design of an RNA sequence that tra-
verses a low-energy pathway as the molecule breathes. We
imagine molecules suspended in a solution, where each
molecule interacts only with itself. Our goal is to design
nucleic acid strands that, because of kinetic folding con-
straints, are fated to follow inordinately long low-barrier
pathways, relative to the strand length, from some initial to
target structure. We seek a scalable design that, for any n,
yields a strand of length Θ(n) such that all low-barrier path-
ways from initial to target visit a number of distinct structures
that grows superlinearly with n, while any shorter pathway
has a significantly higher barrier and is unfavourable kineti-
cally.
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1.1 Motivation and related work

The motivation for our goal stems in part from the strengths
and weaknesses of multi-stranded nucleic acid systems, such
as DNA strand displacement systems (DSDs), as a means
of molecular programming and design. Toehold-mediated
DNA strand displacement systems support circuit and arti-
ficial neural network computations via folding pathways
(Qian and Winfree 2011; Qian et al. 2011; Seelig et al.
2006), and can in principle support general Turing machine
computations (Qian et al. 2011). Earlier designs of multi-
state DNA machines also relied on multi-stranded folding
pathways involving the formation and breakage of hairpins
(Hagiya et al. 2006; Uejima and Hagiya 2004). Moreover,
multi-strandedDNA folding pathways are themeans for real-
izing molecular tweezers (Yurke et al. 2000), autonomous
locomotors (Yin et al. 2008), and many other nano-scale
mechanical devices (Simmel and Dittmer 2005). In these
examples, correct steps in a computation or execution of a
device correspond to low-barrier pathways of multi-stranded
pseudoknot-free structures; incorrect steps are unfavourable
because of high energy barriers. However, all of these com-
putational or mechanical processes use a number of strands
that is proportional to the number of steps of the process.
Consider, for example, computations involving strand dis-
placement, in which so-called signal strands serve as the
memory of the computation. Each signal strand is a reac-
tant in only one strand displacement step, becoming part
of a waste complex that is one of the products of the step.
Thus, DNA strand displacement processes use DNA strands
as a sort of write-once, read-once memory. If such a process
occurs in a closed volume, that volume must be at least pro-
portional to the number of steps of the process in order to
accommodate all of the needed strands. This is very differ-
ent from typical silicon-based computations, where memory
can be re-used.

DSDs can in principle simulate volume-efficient compu-
tations, i.e., computations where the total length of strands
involved is polynomial in the input size, via multi-stranded
folding pathways that have length exponential in the number
of strands involved (Thachuk and Condon 2012). However,
such volume-efficient DSD computations would be difficult
to carry out experimentally, in part because single copies of
some participating strands are needed. To avoid this diffi-
culty and other practical limitations of multi-stranded DSDs,
it would be interesting to find a way to compute in a volume-
efficient way within a single strand. A computation would
correspond to a folding pathway of the strand from some
input structure to a solution structure; the longer the path-
way, the longer the computation.

Apart from this computational motivation, developing
principles for design of nucleic acids whose structure or
kinetically-preferred folding pathways have unusual prop-

erties can contribute to fundamental scientific understanding
of the diversity of folding pathways that are possible with the
basic building blocks of nature and, ultimately, applications
of this diversity. There has beenmuch interest in inverseRNA
secondary structure prediction, that is, computational design
of RNA sequences that fold into given (typically pseudoknot
free) secondary structures (Andronescu et al. 2004; Busch
and Backofen 2006; Dirks et al. 2004; Haleš et al. 2015;
Jaeger et al. 2001; Leea et al. 2014; Schuster et al. 1994; Zhou
et al. 2013). Leea et al. (2014) have developed eteRNA, a
crowd-sourcing approach toRNA secondary structure design
and inference of design rules. Mathieson and Condon (2015)
provide designs of RNA sequences with folding pathway
whose minimum barrier pathways from an initial to target
structure are necessarily indirect, that is, involve base pairs
that are neither in the initial or target structure, and in addi-
tion may contain “repeats” where a base pair is removed and
later added back in again. The folding pathways introduced in
this paper contain structures with both indirect repeated base
pairs, with the repetitions occurring many times, in contrast
to just one repeat in the designs of Mathieson and Condon.

Yet other related work pertains to the design of bistable
or multistable DNA or RNA molecules, inspired by biologi-
cal molecular switches. Molecular riboswitches are bistable
RNAmolecules in nature that are capable of changing struc-
ture, and thus function, in changing environments; there is
evidence that molecular switches facilitate processes such as
viroid replication (Gultyaev et al. 1998) and gene expres-
sion (Babitzke and Yanofsky 1993). Goals in the field
of synthetic biology and its applications have motivated
rational computational design of synthetic riboswitches—
subsequences of mRNA’s that regulate gene expression via
structural changes—sometimes guided by properties of the
RNA’s folding pathways (Beisel and Smolke 2009; Isaacs
et al. 2006). Soukup and Breaker (1999) designed an RNA
switch that changes its structure in the presence of certain lig-
ands. Schultes and Bartel (2000) designed an RNA sequence
whose bistable structures are motifs of two functionally dif-
ferent ribozymes, even though the two structures havenobase
pairs in common. There has also been work on design (or
redesign) of protein folding pathways (Kuhlman et al. 2002;
Nauli et al. 2001), motivated both by improving fundamental
understanding of protein folding pathway processes and also
by the goal of designing proteins that fold into biologically-
relevant structures with faster folding rates than wild-type
protein sequences.

Flamm et al. (2000) show how the design of multi-stable
nucleic acid sequences can be cast as an optimization prob-
lem with constraints, and have developed computational
methods to design sequences that satisfy the constraints.
Theirmethods can be used, for example, to design a sequence
with two prescribed low-energy structures and a high energy
barrier between these structures. The design goal that we
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consider here, namely to design sequences with long folding
pathways, is quite different than the design goals for multi-
stable sequences or switches, but our design incorporates
both of these elements in more general ways than previ-
ous work. Specifically, our sequences have multiple stable
(i.e., minimum free energy) structures—in fact, the number
of such structures grows as a function of the overall sequence
length, unlike designs proposed by Schultes and Bartel and
by Flamm et al. Our design also incorporates a switch,
whose purpose is to provide relatively low-barrier pathways
between numerous minimum free energy structures of the
rest of our sequence. In contrast, the Soukup-Breaker design
facilitates a switch between just two configurations. Of
course, while our design incorporates switching and multi-
stability in more general ways than previous work, we can
only establish its efficacy on paper, with respect to a sim-
ple energy model. Moreover, we provide just one design,
whereas Flamm et al. provide a design method which can
produce many designs with different constraints.

In the field of nucleic acid nanotechnology, Geary et al.
(2014), Geary and Andersen (2014) recently showed how to
create RNA origami structures using single strands. In con-
trast with earlier DNA origami folding, where short staple
strands guide the folding pathway of a much longer DNA
strand, Geary et al. use co-transcriptional folding to con-
strain the folding pathway of their RNA origami structures.
The molecules designed by Geary et al. follow intricate fold-
ing pathways, following increasingly lower-energy states to
a stable structure, and thus the pathway is not intended to
visit a large number of intermediate structures, as is our
design.

1.2 Contributions of this paper

In this paper we make progress on our goal of designing
RNA strands that have “long” low-barrier pathways from
a given initial to a given target structure, and such that
any shorter alternative pathway has a significantly higher
barrier. We present a high-level overview of this design in
Sect. 1.3.

With respect to a simple energy model that assigns an
energy of−1 to each stacked pair in a structure, we prove that
for any n, our design produces a strand of length Θ(n) over
a 4-letter alphabet whose shortest low-barrier pathway has
length Θ(n log n). Moreover, any o(n log n) length pathway
has a barrier that is at least 2− ε times that of the low-barrier
pathway for any ε > 0 and sufficiently large n.

We first design a polymer over an 8-letter alphabet, with
the letters forming four distinct complementary base pairs,
each of which has energy −1. Details of our 8-letter design
and proofs of correctness with respect to the simple base pair
energy model are in Sect. 2. We present our 4-letter design
for the stacked pair model in Sect. 3. To improve the flow of

ideas in Sects. 2 and 3, we have put some technical details
in an “Appendix”. In Sect. 4, we argue heuristically that our
designed pathway will be followed with high probability.

We work with a simple energy model because we want to
provide rigorous proofs that our design avoids subtle unin-
tended interactions between sub-strands, that would yield a
short, low-barrier pathway. Indeed, in the process of build-
ing the proof we uncovered and fixed several design flaws,
leading us to appreciate the value of a simple model. State-
of-the-art energy models have thousands of parameters, and
rigorous proofs for such models would be prohibitively
complicated. Our proofs also do not address pseudoknot for-
mation, or formation of base pairs between multiple copies
of our designed strand, which would also compromise the
design in an experimental setting. In Sect. 5, we discuss how
weaknesses of our design with respect to more realistic mod-
els might be addressed in follow-on work. Conclusions are
in Sect. 6.

To summarize, thiswork provides thefirst scalable designs
of “long” folding pathways for single-stranded molecules.
Our design does not “compute”, per se, but suggests that
computations might be possible within single strands, where
the number of steps of the computation grows superlinearly
with the strand length. But our design ingredientsmay be use-
ful in guiding the design of real RNA strands with interesting
folding pathways, and can help lay the foundations for per-
forming simple computations with single-stranded nucleic
acid molecules.

1.3 Design overview

The high-level idea underlying our design is to simulate
nested loops: an outer loop with B iterations and an inner
loop with A iterations. Each of the A iterations involves a
change of Θ(k) base pairs. The total pathway length is thus
Θ(ABk) (summingover AB iterations, each of lengthΘ(k)),
while the total sequence length is only Θ((A + B)k).

Our 8-letter design is the concatenation of a lock and a
switch, which embody the outer and inner loops respectively.
See Fig. 1 for an illustration when the number of outer loop
iterations B is 4 and the number of inner loop iterations A is
6. Part (a) shows the initial structure: the lock has B “bands”,
or stems, with 2k bases each, connecting the left part of the
lock to the right part of the lock (center arcs). Part (d) shows
the target structure, where the lock has 2B bands with k bases
each (connectingX bases toY bases andP bases toQ bases).
Without the switch, any folding pathway from the initial to
target lock structure necessarily has a barrier of 2k, because
one band of 2k center arcs from the initial structure must be
removed to add two bands (one band of k X ·Y-arcs and one
band of k P · Q-arcs) of the target.

However, if bases of the lock pair with bases at the ends
of the switch, forming trans-arcs as illustrated by the dotted
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GUGUGU C A C A C A XXXX C C YAAY C C YAAY PUUP GG PUUP GGQQQQ

(a)

GUGUGU C A C A C A XXXX C C YAAY C C YAAY PUUP GG PUUP GGQQQQ

(b)

GUGUGU C A C A C A XXXX C C YAAY C C YAAY PUUP GG PUUP GGQQQQ

(c)

GUGUGU C A C A C A XXXX C C YAAY C C YAAY PUUP GG PUUP GGQQQQ

switch lock

(d)

Fig. 1 The sequence switch-lock(k, A, B) with A = 6 and B = 4,
and some minimum free energy structures along our designed pathway
from initial structure to target structure. Each letter represents k bases,
and each arc represents a band of k base pairs between complemen-
tary bases. The pathway models the execution of a nested loop with
A outer iterations and B inner iterations, with each iteration involving
Θ(k) pathway steps (arc additions and removals). a Initial structure.
The switch, in its left position, has A−1 = 5 bands, leaving a region of
unpaired A’s at its right end and a region of unpaired U’s at its center.
The lock has B = 4 bands, two C · G bands and two A · U bands. b
Intermediate structure, with outermost band of the initial lock structure
removed. The switch has changed to its right position via a barrier-

(k + 1) pathway of Θ(Ak) arc removals and additions (not shown).
Facilitated by this switch change, trans-arcs (dotted red arcs) are pos-
sible between the k leftmost G’s of the switch and C’s of the lock. c
Intermediate structure, marking the end of the first iteration of the outer
loop. The trans-arcs have been removed and an X · Y band has been
added. d Final (target) structure obtained by successive iterations of the
outer loop, the A · U, C · G and A · U bands of the lock are removed
from the outside in, and replaced by X · Y and P · Q bands (details not
shown). The outer iterations require that the switch alternernate between
left position right positions, with each alternation corresponding to an
iteration of the inner loop

red arcs in part (b) of the figure, the barrier can be reduced
to k + 1. To make room for the trans-arcs, the switch must
first change from its left position structure of part (a) to its
right position structure, illustrated in part (b). This requires
the removal of A bands of the switch and the addition of
A new bands. These removals and additions correspond to
A iterations of an inner loop, with each iteration involving
Θ(k) pathway steps (arc removal and additions), since k is
the number of arcs in a band of the switch.

Thus in the overall barrier-(k + 1) folding pathway, the
lock alternately forms base pairs with left and right ends
of the switch, B times in total; upon each alternation the
switch shifts from left to right position or vice versa via A
band removals and additions. Each band removal and addi-
tion requires Θ(k) arc removals and additions, for a total
pathway length of Θ(ABk).

By varying the number of bands B in the initial lock struc-
ture, the number of bands A in the initial switch structure,
and the number k of bases in initial bands of the switch and
lock, we obtain different tradeoffs between the length of the
low-barrier pathway and the gap between this low barrier and
the higher barrier of shorter alternatives.

To get from the 8-letter design to a four letter design, we
need to map our X, Y, P, and Q sequences to sequences
over {A,C,G,U} so that X is complementary to Y, P is
complementary to Q, and no other pair of band sequences
involving at least oneX,Y,P, orQ sequence will stably bind
to each other in the stacked pair model. We achieve this by
choosing the X, Y, P, and Q to have alternating symbols,
e.g., X4 = CACA, etc.

2 The 8-letter alphabet design

In this section we will present our polymer design over an
8-letter alphabet. While it is possible to use synthetic nucleic
acids to realize this polymer, the main reason why we are
doing this is that it allows us to simplify the construction. In
the next section, we will then map this construction to a 4-
letter alphabet, and prove that it retains the desired properties,
although the bounds will become weaker.

We first introduce notation and our designed sequence
over the 8-letter alphabet in Sect. 2.2, where the designed
sequence is specified as a switch whose initial structure has
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A “bands” with k base pairs in each band, concatenated with
a lock whose initial structure has B bands with 2k base pairs
in each band. We use the terms “base pair” and “arc” inter-
changeably, since arcs correspond to base pairs in an arc
diagram representation of a secondary structure (see Fig. 1).
Then in Sect. 2.3, we bound the total number of arcs in struc-
tures with trans-arcs, i.e., arcs from the lock to the switch.
In Sect. 2.4 we will use these bounds to limit occurrences of
certain types of (off-center) base pairs in structures within
the barrier of 2k − 1. Finally, in Sect. 2.5, we show that any
pathway between the initial and the target structure with all
intermediate structures within a barrier of 2k − 1 has to go
through B “milestone” structures in a fixed order. The crucial
property of these milestone structures is that any two consec-
utive structures have the switch in different positions, i.e., a
complete reconfiguration of switch is required to move from
one milestone to another, from which it will follow that the
length of the pathway is in Ω(k AB).

2.1 Definitions

We will use the following 8-letter alphabet:
{A,C,G,U,P,Q,X,Y}, where the following pairs of let-
ters are complementary (A,U), (C,G), (P,Q) and (X,Y).
We assume that only the complementary bases can form base
pairs (arcs). Throughout we consider only pseudoknot-free
secondary structures, i.e., structures with no crossing arcs.
We will use the simple arc counting energy model, in which
each base pair contributes energy −1 to the total energy
and there are no other contributions to the total energy. Let
AC(S) denote the arc count of a secondary structure S and
let MAC (s) denote the maximum arc count over all struc-
tures for a sequence s.With respect to the arc counting energy
model, structures for a sequence swith AC equal toMAC (s)
will be referred to as minimum free energy (MFE) structures
for s.

For a given sequence, a folding pathway is a sequence
of seondary structures for that sequence, where each struc-
ture (except for the first one in the sequence) differs from
its predecessor by exactly one base pair. Consider a pathway
P = S1, S2, . . . , Sm for a sequence s. The barrier of P is
defined as the biggest gap between a low energy point and
a subsequent high energy point in the pathway. In particu-
lar, if using the arc counting energy model, the barrier of
P is defined as max

1≤i≤ j≤m
[AC(Si ) − AC(S j )]. Note that if the

initial structure of P is MFE then the barrier of P is simply
MAC (s) − min

1≤ j≤m
AC(S j ).

2.2 The design and notations

Let k, A and B ∈ N, and let A and B be even. The variable A
is distinguished from the baseA by font. Consider the family

of sequences obtained from the following regular expressions
by concatenating the switch and lock sequences:

Switch (GkUk)A/2(CkAk)A/2

Lock (Xk)B(C2kYkA2kYk)B/2(PkU2kPkG2k)B/2(Qk)B

For example, if A = 6 and B = 4, then we have the switch
sequence

GkUkGkUkGkUkCkAkCkAkCkAk

and the lock sequence

XkXkXkXkC2kYkA2kYkC2kYkA2kYkPkU2kPkG2kPkU2k

PkG2kQkQkQkQk

We denote the switch sequence by switch(k, A), the lock
sequence lock(k, B), and the concatenated switch-lock
sequence by switch-lock(k, A, B); its length is n = 2k A +
8kB.

For convenience, we will refer to the G and U portion of
the switch as the left side, and the C and A portion as the
right side. Similarly, the left side of the lock is the sequence
containing letters X, Y, C, and A and the right side of the
lock contains P, Q, U, and G.

Let a region be themaximal substring of consecutive iden-
tical bases. We label the regions of the switch and lock as
follows:

Gk
︸︷︷︸

L1

Uk
︸︷︷︸

L2

. . . Gk
︸︷︷︸

LA−1

Uk
︸︷︷︸

LA

Ck
︸︷︷︸

RA

Ak
︸︷︷︸

RA−1

. . . Ck
︸︷︷︸

R2

Ak
︸︷︷︸

R1

Xk
︸︷︷︸

xB

. . . Xk
︸︷︷︸

x1

C2k
︸︷︷︸

l1

Yk
︸︷︷︸

y1

. . . A2k
︸︷︷︸

lB

Yk
︸︷︷︸

yB

Pk
︸︷︷︸

pB

U2k
︸︷︷︸

rB

. . . Pk
︸︷︷︸

p1

G2k
︸︷︷︸

r1

Qk
︸︷︷︸

q1

. . . Qk
︸︷︷︸

qB

Figure 1 depicts our initial and target structures above and
below sequence switch-lock(k, A, B). The initial structure
contains k arcs between regions Li and Ri+1 of the switch,
for 1 ≤ i ≤ A − 1 and 2k arcs between regions li and ri
of the lock, for 1 ≤ i ≤ B. The target structure contains k
arcs between regions Li+1 and region Ri of the switch, for
1 ≤ i ≤ A − 1, and k arcs between regions xi and yi of the
lock plus k arcs between regions pi and qi of the lock, for
1 ≤ i ≤ B. We sometimes refer to the set of arcs between
two regions as bands.

We denote the i-th leftmost base in region La (la) as La,i

(la,i ) and the i-th rightmost base in region Ra (ra) as Ra,i

(ra,i ).
Let u and v be two regions. When we refer to a “u ·v-arc”,

we mean any arc from a base in region u to a base in region
v. This is only possible if the two bases are complementary.
We sometimes refer to such an arc as a “u-arc” if it is not
important what is the region v. In particular, la · rb-arcs will
be called center-arcs—see Fig. 2 for an illustration of center-
arcs and other types of arcs introduced next. A center-arc is
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L1

. . . Lc,i

Lc

. . .

LA RA

. . .

R1 xB

. . .
x1 l1

. . .

lb−q+1

. . . lb,j
lb

. . .

lB yBpB rB

. . .
pa

. . .
r1 q1

. . .
qB

trans-arcs
...

...
intra-switch arcs ...

X·Y-arcs ...
center-arcs

...

P·Q-arcs

q l-regions

Fig. 2 Notation used when considering left–left trans-arcs

off-center if a �= b and is on-center otherwise. (All center-
arcs in Fig. 1 are on-center.) We refer to arcs between the
switch and lock as trans-arcs. Note that all arcs are either
intra-switch, intra-lock or trans-arcs. We say that an intra-
switch arc from region La to region Rb is in the left (right)
position if b = a + 1 (b = a − 1). In the initial structure,
all intra-switch arcs are in the left position, and in the target
structure all intra-switch arcs are in the right position—see
Fig. 1.

We have several claims that establish the minimum free
energy (MFE) structures for the sequences of the switch,
lock, and switch and lock. The proofs and the auxiliary claims
used to establish these facts are given in the “Appendix”.

Claim 1 All MFE structures of switch(k, A) have
MAC switch(k, A) := (A − 1)k arcs.

Claim 2 All MFE structures of lock(k, B) have
MAC lock(k, B) := 2kB arcs.

Claim 3 All MFE structures of the switch and lock sequence
switch-lock(k, A, B) have MAC (k, A, B) :=
MAC switch(k, A)+MAC lock(k, B) arcs. The initial and tar-
get structures are MFE structures.

To conclude this section, we describe our long, low-
barrier folding pathway from the initial to target structure
of switch-lock(k, A, B).

Claim 4 Let B be even. There is a pathway from the initial
to the target structure of switch-lock(k, A, B) with barrier
k + 1 and with length 2k(AB + A + 2B − 1).

Proof We first describe a folding pathway that causes the
switch to be reconfigured from the initial switch structure (all
intra-swich arcs are in the left position) to the target switch
structure (all intra-swich arcs are in the right position)—see
the left side of Fig. 1 for an illustration of these structures.
Note that it is necessary to remove all arcs of the initial switch
structure and add all of the arcs of the target, since they have
no arcs in common. This can be done in 2k(A−1) steps with
barrier k + 1 as follows, in three subphases:

• Barrier-k ascent Remove all k L1 · R2-arcs.

• Branchmigration Repeatedly remove the outermost arc
in the left position, say an Lσ ·Rσ+1-arc, and immediately
add an arc between the freed base in Lσ and the rightmost
available base in Rσ−1.

• Barrier-k descent Add the k innermost arcs of the target
switch structure.

Note that the reverse of this folding pathway, with arc addi-
tions replaced by arc removals and vice versa, reconfigures
the switch from its target to initial structure.

We next describe a folding pathway that “unlocks” the
i-th band of the initial lock structure, i.e., removes the band
between regions li and ri . We consider the case where i is
odd; the pathway when i is even is similar. First, reconfigure
the switch from the left to the right position as described
above; this exposes the outermostG at the left of the switch.
Then:

• BranchmigrationRepeatedly, for k iterations, remove the
outermost li · ri -arc and add a trans-arc from the newly
freed C in the lock to the leftmost free G in the leftmost
region of the switch.

• Barrier-k ascent Remove the remaining k li · ri -arcs.
• Barrier-k descent Form k pi · qi -arcs.
• Barrier-k ascent Remove the trans-arcs added in the
branch migration step above.

• Barrier-k descent Form k xi · yi -arcs.

This pathway has barrier k + 1 and requires 6k steps plus
the steps to switch the switch, i.e., 2k A + 4k steps. This is
repeated B times.

Finally, we need to reconfigure the switch one more time,
so that it is in the target position. Hence, the total number of
steps of this pathway from the initial to the target structure
is 2k(A + 2)B + 2k(A − 1). ��

2.3 Bounding the arc count in structures with trans-arcs

We want to obtain upper bounds on the number of arcs in
structures with trans-arcs, i.e., arcs from a base in the switch
to a base in the lock. This will be useful, because we can
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conclude that many such structures, e.g., structures with too
many trans-arcs, cannot be on low-barrier pathways.

Each trans-arc either connects the left part of the switch
with the left part of the lock, or the right part of the switch
with the right part of the lock. In addition, all left–left trans-
arcs cross all right–right trans-arcs, therefore each structure
can contain only one type of trans-arcs.

For any structurewith trans-arcs,wewill use the following
notation throughout this subsection. First, suppose that there
are trans-arcs from the left part of the switch to the left part of
the lock. Let c be the largest number such that switch region
Lc is involved in trans-arcs. Assume that the outermost trans-
arc pairs with lock base lb, j and the innermost trans-arc pairs
Lc,i with a base in the region lb−q+1, i.e., q is the number of
lock regions that can only be involved in trans-arcs. Let the
outermost P · Q-arc have an endpoint in region pa . Let t be
the number of trans-arcs involving switch region L1.

Next, suppose that there are trans-arcs from the right part
of the switch to the right part of the lock. In this case, sym-
metric to the left case above, let c be the largest number such
that switch region Rc is involved in trans-arcs. Assume that
the innermost trans-arc pairs with lock base rb, j and the out-
ermost trans-arc pairs Rc,i with a base in the region lb−q+1.
Let the outermost X · Y-arc have an endpoint in region ya .
Let t be the number of trans-arcs involving switch region
R1.

Finally, in both cases (left–left trans-arcs and right–right
trans-arcs), let T be the number of trans-arcs. Figure 2 illus-
trates these definitions in the left–left case. We will use these
quantities to bound the number of different types of arcs in a
structure.We provide one such bound here; several others are
in the “Appendix”. The following claim shows that AC(S)

must be “low” for structures S with trans-arcs that connect
regions that are not close to the outside of the switch (i.e.,
c + q > 4).

Claim 5 Consider a structure S for switch-lock(k, A, B),
where S has trans-arcs. Suppose that c + q > 4. Then
AC(S) ≤ MAC (k, A, B) − 2k.

2.4 Bounding the arc count in structures with off-center
arcs

Recall on-center and off-center arcs, which we defined in
Sect. 2.2. The next claim limits occurrences of off-center
arcs in structures with at least MAC (k, A, B) − 2k arcs.

Claim 6 Let S be a structure for switch-lock(k, A, B), in
which an on-center arc covers an off-center arc. Then
AC(S) ≤ MAC (k, A, B) − 2k.

It follows that in any structure S with AC(S) >

MAC (k, A, B) − 2k, all arcs covered by an on-center arc
are also on-center arcs. We have the following corollary.

Corollary 1 Let S be a structure for switch and lock
sequence switch-lock(k, A, B)withAC(S)> MAC (k, A, B)

− 2k, such that S has an on-center arc α between regions lσ
and rσ of the lock. Then for every σ ′, σ < σ ′ ≤ B, there is
at least one on-center arc from lock region lσ ′ to lock region
rσ ′ .

2.5 The main proof

Consider a pathway P = S1, S2, . . . from the initial to the
target structure. Let pi be the index of the first structure of
pathway P that has no on-center arc from region li to region
ri of the lock and such that no subsequent structures of P
have such an arc either.

Claim 7 If pathway P from the initial structure to the target
structure of switch-lock(k, A, B) has barrier at most 2k−1,
P must remove on-center arcs from the outside in, i.e., p1 <

p2 < · · · < pB.

Proof Assume to the contrary that pi+1 ≤ pi for some i.
Consider structure Spi−1 of pathway P. By the definition of
pi , Spi−1 must contain an li · ri -arc. By Corollary 1, Spi−1

contains also an li+1 · ri+1-arc. Since Spi removes the li · ri -
arcs, it still contains the li+1 · ri+1-arc, which contradicts the
fact that pi+1 ≤ pi . ��
Claim 8 Suppose that i is such that AC(Spi ) >

MAC (k, A, B) − 2k. If i is odd, then all intra-switch arcs
must be in the right position and if i is even, all intra-switch
arcs must be in the left position.

Corollary 2 If AC(Spi−1),AC(Spi ),AC(Spi+1−1),

AC(Spi+1) > MAC (k, A, B) − 2k, the number of steps
(i.e., structures in the pathway P) from Spi to Spi+1 is at least
2(A − 4)k.

We are now ready to prove the main result of this sec-
tion, namely that to avoid a high barrier along a pathway
from initial to target structure, it is necessary to follow a
long pathway. Figure 3 illustrates the difference between the
long low-barrier and the short high-barrier pathways from
the initial to the target configurations of the switch and lock
sequence.

Theorem 1 Let B be even. There is a pathway from the initial
to the target structure of switch-lock(k, A, B) with barrier
k + 1 and with length 2k(AB + A+ 2B − 1). Moreover, any
pathway from the initial to the target structure with barrier
at most 2k − 1 has length at least 2k(AB − A − 4B + 4).

Proof Thefirst part of the theorem follows fromClaim4.The
second part of the theorem follows by Claim 7 and Corol-
lary 2. ��
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Fig. 3 Illustration of the long low-barrier and the short high-barrier
pathways from the initial to the target configurations of the switch and
lock sequence. The long pathway is depicted with a black dashed line:
vertical long stretches correspond to switching the switch from one

position to another, and two “hills” at the ends correspond to unlocking
one band of the lock. The short pathway depicted with a white dotted
line along the bottom border avoids switching the switch, but needs to
ascend over a higher peak when unlocking every other band of the lock

Corollary 3 For any constant C > 0, for any positive inte-
ger n, there is a sequence of length n + O(log n) over the
8-letter alphabetwith twoMFEstructures such that the short-
est pathway between these structures with barrier between
C log n + 1and 2C log n − 1 has length Θ(n2/ log n).

Proof Set k to be �C log n	, B to be the smallest even number
that is greater than or equal to n

16k , and A to be 4B. Then the
length of sequence switch-lock(k, A, B), which is 2k A +
8kB, is n + O(log n). By Theorem 1, switch-lock(k, A, B)

satisfies the conditions of this corollary. ��

3 The 4-letter alphabet design using the stacked
base pair energy model

For sequences over the 4-letter alphabet, we will use a dif-
ferent energy model, the stacked base pairs energy model.
Stacked base pairs, or stacked arc pairs, are two consecu-
tive base pairs, one between positions i and j and the second
between positions i +1 and j −1 of the sequence, for some i
and j. In our energy model, each stacked arc pair contributes
the same energy (−1) and there are no other contributions to
the total free energy of the structure. In amore realistic energy
model, the energy of each stacked arc pair would depend
on the bases. Let SAC(S) denote the number of stacked arc

pairs of a structure S and MSAC (s) the maximum number
of stacked arc pairs over all structures for a sequence s.

3.1 General results

Let s be a sequence over the 8-letter alphabet
{A,C,G,U,P,Q,X,Y} of length n with r regions. Map
each u-region um , where u ∈ {A,C,G,U}, to a sequence
um+1, and each u-region um , where u ∈ {P,Q,X,Y}, to a
sequence of length m + 1 of alternating AG’s, UC’s, CA’s,
GU’s, respectively. We will still refer to these subsequences
as u-regions. The new sequence s′ = map(s) is a sequence
over the 4-letter alphabet {A,C,G,U} of length n + r .

Let s be a sequence over the 8-letter alphabet. Consider
any structure S for the 4-letter sequence s′ = map(s). We
say that an arc of S is eccentric if it connects a u-region to a
v-region, where u and v are not complementary in the 8-letter
alphabet. For instance, an arc connecting any base of a G-
region and any base C of an X-region is eccentric. A stacked
arc pair between positions i and j, and i + 1 and j − 1, is
called eccentric if (a) either i and i + 1 or j − 1 and j belong
to different regions, or (b) one of its arcs is eccentric.

We refer to the first and last bases of each region that is
adjacent to another region as boundary bases. A boundary is
the pair of neighbouring boundary bases. To bound the num-
ber of eccentric stacked arc pairs, we observe the following.

123



Design of nucleic acid strands with long low-barrier folding pathways

Claim 9 Let s be a sequence over the 8-letter alphabet. Let
S′ be a structure for s′ = map(s). For any eccentric stacked
arc pair of S′ between positions i and j, and i + 1 and j − 1,
either pair i, i + 1 or pair j − 1, j is a boundary.

Corollary 4 Let s be a sequence over the 8-letter alphabet
with r regions. Let S′ be a structure for s′ = map(s). The
total number of eccentric stacked arc pairs in S′ is at most
r − 1.

Proof The number of the boundaries in s′ is the number of
all regions in the sequence minus 1, i.e., r − 1. Since each
boundary can be used by at most one stacked arc pair, it
follows that the number of eccentric stacked arc pairs is at
most r − 1. ��

The next claim shows how to convert a structure S′ of
s′ = map(s) to a structure for s with the same number of
arcs as the number of non-eccentric stacked arc pairs of S′.
For this we need to define a new mapping from structures
of s′ = map(s) over the 4-letter alphabet to structures of s
over the 8-letter alphabet. Let S′ be a structure for s′. Then
we define S = Map′(S′) as follows. For each non-eccentric
stacked arc pair in S′, let the outer arc of the two stacked arcs
connect the i-th position of a region u and the j-th position
of a region v. We add an arc to S connecting the i-th base of
the region u and the ( j − 1)-th base of v. Note that j > 1,
since the right end of the inner arc of the stacked arc pair lies
in the same region v.

Claim 10 Let s be a sequence over the 8-letter alphabet.
Let S′ be a structure for s′ = map(s) with E eccentric arc
pairs. Then S = Map′(S′) is a structure for s with AC(S) =
SAC(S′) − E.

Proof The claim follows directly from the definition of
Map′().

We can now prove the main theorem which extends the
claim about the length of pathways between two structures
for a sequence s over the 8-letter alphabet to a similar claim
for the 4-letter sequence s′ = map(s).

Theorem 2 Let s be a sequence over the 8-letter alphabet
and let s′ = map(s). Assume that any structure for s′ with at
least MAC (s) − (K − E) stacked arc pairs has at most E
eccentric stacked arc pairs. Let S′

1 and S
′
2 be two structures of

s′, and let S1 = Map′(S′
1) and S2 = Map′(S′

2) be structures
of s. Let D = SAC(S′

1)−MAC (s). Suppose that any pathway
between S1 and S2 with barrier at most K has length at least
L. Then any pathway between S′

1 and S′
2 with barrier at most

K + D − E has length at least L/2.

We can apply this theorem to the sequence s =
switch-lock(k, A, B). Define the initial and target structures

for s′ = map(s) in the natural way, to be those structures
that map to the initial and target structures for s under the
mapping Map′(). Then we have:

Corollary 5 Let s′ = map(switch-lock(k, A, B)), where B
is even. Then there exists a pathway from the initial to the
target structure of s′ with barrier k+3 andwith length (2(k+
1)(A+2)−3)B+2(k+1)(A−1). The length of any pathway
from the initial to the target structure with barrier at most
2k − A − 6B − 2 is at least k(A − 4)(B − 1).

The second part of Corollary 5 is useful only if A+6B <

k. In this case the barrier is inΩ(
√
n), where n is the length of

the sequence. It ismore practical to have a barrier logarithmic
in the length of the sequence which we will achieve in the
following subsection.

3.2 The switch and lock sequence for the 4-letter
alphabet

In this section we will improve the result of Corollary 5 by
showing that the bounds on the barrier of a long pathway
from the initial to the target structure of the switch and lock
depend on B, but not on A. To achieve this we will include
eccentric intra-switch stacked arc pairs in our design (thus,
we will need to amend the definition of eccentric stacked
arc pairs to exclude these arc pairs). We also need to modify
slightly the mapping map() of the switch and lock sequence
to the 4-letter alphabet: we will leave the sequence of the
switch unchanged, while mapping the sequence of the lock
as described in Sect. 3.1. We will assume that k is even. The
regular expressions that produce sequences for the switch
and lock are as follows.

Switch [GkUk ]A/2[CkAk ]A/2

Lock [(CA)k/2C]B [C2k+1 (GU)k/2GA2k+1 (GU)k/2G]B/2·
[(AG)k/2AU2k+1 (AG)k/2AG2k+1]B/2[(UC)k/2U]B

We denote the switch sequence by switch′(k, A), the lock
sequence by lock′(k, B), and the concatenated sequence
by switch-lock′(k, A, B) (its length is 2k A + (8k + 6)B).
The initial and target structures of switch-lock′(k, A, B) are
defined analogously to the initial and target structures of
switch-lock(k, A, B), however the initial structure has 2k+1
arcs between regions li and ri and the target structure has k+1
arcs between regions xi and yi , and regions pi and qi . Let
MSAC(k, A, B) denote the maximum number of stacked arc
pairs over all structures for switch-lock′(k, A, B).

We will use the same definition of eccentric arcs as above,
however, a stacked arc pair between positions i and j, and
i + 1 and j − 1 is called eccentric if at least one of its arcs is
eccentric. The difference between this new definition and the
definition from the previous section is that the intra-switch
stacked arc pairs that connect a boundary to a boundary are
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not considered eccentric. Note however, that the boundaries
of the switch can be still involved in eccentric stacked arc
pairs if they are composed of trans-arcs.

Theorem 2 relies on Claim 10, so we need to prove a
new variant of that claim for our new sequence
switch-lock′(k, A, B). To redefine map Map′(), we will use
the following mapping of non-eccentric stacked arc pairs of
switch-lock′(k, A, B) to arcs of switch-lock(k, A, B): Con-
sider a pair of non-eccentric stacked arcs. Let the outer arc
of this pair connect the i-th position of a region u and the j-th
position of a region v. We map this pair to the arc connecting
the i-th base of the region u and the j-th base of the region v if
v is in the switch or the ( j − 1)-st base of v if v is in the lock.
It is easy to check that Claim 10, and thus also Theorem 2
hold with these new definitions of eccentric arcs, mappings
map() and Map′().

By Claim 9 we have that the number of eccentric stacked
arc pairs is at most 2A+6B−1. We will improve this bound
by showing that the number of these pairs does not depend
on A for structures within a specific barrier.

Claim 11 Consider a structure S′ for lock′(k, B). Then the
number of non-eccentric stacked arc pairs in S′ is at most
(2k + 1)B.

Claim 12 For any structure S′ of switch-lock′(k, A, B)with
at leastMAC (k, A, B)− 2k + 8B + 4 stacked arc pairs, the
number of its eccentric stacked arc pairs is at most 8B + 2.

Using these results and Theorem 2, we have the following
result.

Theorem 3 Consider the sequence switch-lock′(k, A, B).
There is a pathway from the initial to the target structure
with barrier k + 2 and with length (2k(A− 1)+ 6k + 3)B +
2k(A−1). Moreover, any pathway from the initial to the tar-
get structure of switch-lock′(k, A, B) with barrier at most
2k − 8B − 5 has length at least k(A − 4)(B − 1) − 1.

Corollary 6 For any constants C > 0 and ε > 0, for any
positive integer n, there is a sequence of length n+Θ(log2 n)

over the 4-letter alphabet with two structures such that the
shortest pathway between these two structures with barrier
betweenC log n+O(1) and (2−ε)C log n−O(1) has length
Θ(n log n), where the constant hidden in this Θ depends
linearly on C and ε.

Proof Set k to be �C log n	, A to be the smallest even number
that is greater than or equal to n/2k, and B to be �kε/8	. The
result follows immediately from Theorem 3.

Corollary 6 implies that for any ε > 0, for sufficiently
large n, there is a sequence of length n + o(n) whose low-
barrier folding pathways grow superlinearly in n, and for
which any significantly shorter folding pathway, say of length

O(n), has an energy barrier that is 2 − ε times that of the
low-barrier pathway. To see this, substitute ε/4 for ε in the
statement of Corollary 6, and choose n large enough so that
O(1) terms in the lower and upper bounds on the barrier are
less than εC log n/4. Then the ratio of the upper and lower
barrier range endpoints, namely (2 − ε/2)C log n − O(1)
divided by C log n + O(1), is at least 2 − ε.

4 On the likelihood of following a low-barrier
pathway

Although they establish barrier gaps, Theorems 1 and 3
do not address the following question: Which is the more
likely route from an initial to target structure of our designed
sequence: a low-barrier pathway that requires repeated recon-
gifuration of the switch, and thus visits many distinct
structures, or an alternative high-barrier pathway? In this
section we provide a heuristic argument that for sufficiently
long sequences, a low-barrier pathway is more likely to be
followed.

In Sect. 4.1, we first prove exponential upper and lower
bounds on the expected time, i.e., number of arc addition
and removal steps, needed to ascend a barrier of size k, for a
simple stochastic folding model. Then in Sect. 4.2 we show
simulation results, indicating that the exponential bounds
may hold for somewhat more complex folding models. In
Sect. 4.3 we then use the upper bound of Sect. 4.1, along
with some informal arguments, to bound the expected time
to follow the low-barrier pathway. This time is dominated
by the time to remove all B center bands in the initial lock
structure (and the associated time for the switch to reconfig-
ure from its left and right orientation). Finally, in Sect. 4.4
we argue that this expected time to follow a low-barrier path-
way is significantly faster than the expected time to follow
an alternative, high-barrier pathway, and conclude that the
low-barrier pathway is more likely to be followed.

4.1 Bounds on scaling a barrier

We start by proving a bound on the expected time to ascend a
barrier, for a stochastic folding pathwaymodel. By ascending
a barrier, we mean that k initially-present arcs are removed,
where the only re-pairing of bases that form the arcs is with
other bases within the arcs.

In our stochastic folding pathway model, which we call
the distinct-arc model, we assume that the k initially-present
arcs are between bases A1 . . . Ak and bases Āk . . . Ā1 (in
reverse order to avoid pseudoknots), and the only arcs that
can be added or removed are arcs between Ai and Āi . We
define the stochastic model by assigning a propensity α to
adding an arc, and a propensity 1/α to removing an arc, for
some constant α > 1. Then at a step of the pathway, if the
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current structure has k − i arcs, the probability of adding an
arc is iα/(iα + (k − i)/α) = iα2/(iα2 + k − i), with each
missing arc being equally likely to be added, and probability
of removing an arc is (k − i)/(iα2 + k − i), with each of the
i currently present arcs being equally likely to be removed.

In measuring the time to follow a pathway, we simply
count the number of arc addition and removal steps, since
for our simple model, the expected time to follow a step is
constant (depending on α).

Claim 13 Let B(k) be the expected time to ascend a barrier
of size k in the distinct-arc model. Then

2(α2 + 1)k−1 − 2 + k ≤ B(k) ≤ 2k(α2 + 1)k−1 − k. (1)

Proof We will construct a Markov chain with k + 1 states
0, . . . , k, where state i represents the configuration with i
of the k arcs removed. Assume that we are at state i. Then
the probability that one of these i arcs will be added back is
pi,i−1 = iα2

iα2+k−i
and the probability that any of the remain-

ing k − i arcs will be removed is pi,i+1 = k−i
iα2+k−i

. Let

si = pi,i−1/pi,i+1 = iα2

k−i . Note that 1/pi,i+1 = iα2+k−i
k−i =

iα2

k−i + 1 = si + 1.

We would like to calculate the expected time until the
Markov chain visits state k. We will use the following result:

Theorem 4 [Theorem 1.3.5 in Norris (1997)] Let A be a set
of states. Let T A

i be the expected time to hit (visit) a state in A
when starting the Markov chain from state i. Then the vector
of mean hitting times (T A

i )ki=0 is the minimal non-negative
solution to the system of linear equations

T A
i = 0 for i ∈ A

T A
i = 1 +

∑

j

pi j T
A
j for i /∈ A

In our case, we set A = {k} and we are interested the
value of T A

0 . Let Ti := T {k}
i . We have the following system

of equations:

T0 = 1 + p0,1T1

Ti = 1 + pi,i−1Ti−1 + pi,i+1Ti+1 for i = 1, . . . , k − 1

Tk = 0

(2)

Note that dividing both sides of (2) for i = 1, . . . , k − 1
by pi,i+1, we get

(si + 1)Ti = si + 1 + si Ti−1 + Ti+1. (3)

Let di = Ti−1−Ti −1. Then by (3), for any i = 1, . . . , k−1,

di+1 = Ti − Ti+1 − 1 = si (Ti−1 − Ti + 1) = si (di + 2). (4)

By (2), d1 = T0 − T1 − 1 = 0, since p0,1 = 1. Let (n)i =
n(n − 1) . . . (n − i + 1). It is easy to verify by induction that

d j = 2
j−1
∑

i=1

( j − 1)i
(k − j + i)i

α2i (5)

It follows by the binomial theorem and the fact that
(k−1)i

(i)i
= (k−1

i

)

that dk = 2(α2 +1)k−1 −2. Unfortunately, it
is not possible to calculate exactly the remaining d j ’s, how-
ever, we will show that for any j, d j ≤ dk .

Note that 0 = s0 < s1 < · · · < sk−1 = (k − 1)α2,
and let p be the integer such that sp−1 ≤ 1 < sp. Then for
any j ≥ p, d j+1 = s j (d j + 2) ≥ d j , hence, d j ≤ dk .
Next we will show by induction on j that for any j < p,
d j ≤ 2( j − 1). Clearly, this is true for j = 0. Assume that
j < p and d j−1 ≤ 2( j − 2). Then d j = s j−1(d j−1 + 2) ≤
d j−1+2 ≤ 2( j−2)+2 = 2( j−1). The claims follows, and
hence, for any j < p, we have d j ≤ 2 j − 2 ≤ 2(k − 1) ≤
(α2 + 1)k−1 − 1 = dk (since α2 + 1 > 2).

Note that

k
∑

j=1

d j =
k

∑

j=1

(Tj−1 − Tj − 1) = T0 − Tk − k = T0 − k. (6)

Finally, we can bound the expected time until all arcs are
removed (T0) as follows. Since dk ≤ ∑k

j=1 d j ≤ kdk , we
have

2(α2 + 1)k−1 − 2 + k ≤ T0 ≤ 2k(α2 + 1)k−1 − k. (7)

Since T0 = B(k), the expected time to ascend a barrier of
size k in the distinct-arc model, the result follows. ��

4.2 Simulations of other energy models

It ismore challenging to prove bounds on the expected time to
scale a barrier in stacked pair energy models, so we instead
provide some insights using simulations. We consider the
following models:

• Distinct-stack model Like the chain model, bases A1 . . .

Ak are initially paired with Āk . . . Ā1 (in reverse order),
and the only arcs that can be added or removed are arcs
between Ai and Āi . In constrast with the distinct-arc
model, the propensity of adding an arc is α2 if the arc
forms two new stacked pairs, α if the arc forms one new
stacked pair with another arc, and is 1 otherwise, while
the propensity of removing an arc is 1/α2 if the arc forms
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Fig. 4 Dependency of the
average number of steps to scale
a barrier on the size k of the
barrier for the distinct-arc,
distinct-stack and uniform-stack
models when the propensity rate
is a α = 1.5 and b α = 2. The
average is taken over 1000
experiments
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two stacked pairs, 1/α if the arc forms a stacked pair with
another arc and is 1 otherwise, where again α > 1.

• Uniform-stackmodelThismodel is similar to the distinct-
stacked model, except that for any 1 ≤ i, j ≤ k, Ai can
pair with any Ā j as long as no two arcs cross. Equiva-
lently, all of the Ai ’s are the same base and all of the Ā j ’s
are the complement of the Ai ’s.

• Alternating-stack model This model is similar to the pre-
vious stacked models, except that for any 1 ≤ i, j ≤ k,
Ai can pair with any Ā j as long as i and j have the same
parity and no two arcs cross. Equivalently, all Ai ’s in odd
(even) positions are the same base and each Āi is the
complement of Ai .

Figure 4 shows how the average number of steps to scale a
barrier of size k depends on k for each model, where propen-
sity rates are α = 1.5 and α = 2. For both values of α, the
average number of steps needed by the distinct-stackmodel is
less than than the average for the distinct-arcmodel. Thismay
be because in the distinct-arc model, any removed arc has
propensity α to be added, while in the distinct-stack model,
adding arcs that do not extend one of the the current stacks
of arcs has propensity 1, so the overall probability of adding
an arc is smaller in the stack model (especially when only
few arcs remain).

Forα = 1.5, the number of steps needed by uniform-stack
model starts to surpass the number needed by the distinct-arc
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Fig. 5 Dependency of the
average number of steps to scale
a barrier of size k = 8 on the
propensity rate α, for the
distinct-arc, distinct-stack and
uniform-stack models. The
average is taken over 1000
experiments
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model for k = 11; however for α = 2 it tracks closely with
the lower number needed by the distinct-stack model. While
it is difficult to be sure based on the plots, it seems plausible
that the time to scale a barrier of size k grows exponentially
with k for all three models.

Figure 5 shows how the average number of steps needed
to scale a barrier of size k = 8 depends on the propensity
rate α. Not surprisingly, the average grows as α increases.
However, the rate of increase is significantly less for the
uniform-stack model than for the distinct-arc and distinct-
stacked models. This may be because when arcs are added in
the uniform-stack model, they may prevent other arcs from
being added; for example, if A1 is paired with Āk then any
additional arcs would form a pseudoknot. Impediments to
the addition of arcs would make it easier to scale the bar-
rier.

4.3 Time needed to follow a low-barrier pathway

In the rest of this section, suppose that the constantsC and ε of
Corollary6 arefixed.LetE[low]be the expected time to reach
the target structure from the initial structure of the switch
and lock sequence while following a low-barrier pathway. In
the stochastic setting, it does not make sense to ask when
is the target structure reached exactly, i.e., when are all of
the arcs of the target structure—and no other arcs—present.
Instead, by “reaching the target structure”, we mean that all
of the bands of the initial lock structure are unlocked, i.e., no
center arcs are present in the lock structure. By “following a
low-barrier pathway” we mean following a pathway whose
barrier is atmost the bound (2−ε)C log n−O(1)ofCorollary
6.

We will first show, using informal arguments, that E[low]
is in O(n log2 nγ k) for some γ > 1 (where k = C log n).We
then applyMarkov’s inequality to argue that with probability
1 − 1/Θ(n), the target is reached while following a low-
barrier pathway within f (n) = n2 log2 nγ k time.

To get from the initial to the target structure requires the
removal (unlocking) of all B lock bands of the initial struc-
ture. Recall from Claim 7 that the bands must be removed
from the outside in, in order to keep the barrier low. Because
the folding process is stochastic, once i bands are removed,
the pathway could regress by adding a band back in, or the
pathway could progress by removing the (i + 1)-st band (if
the pathway regresses, the band added back in may not nec-
essarily be the most recently removed band, or even a center
band, but this detail is not significant in our argument).

4.3.1 Removal or addition of a single band

Within a band removal or addition phase of a low-barrier
pathway, a reconfiguration of the switch may be necessary;
it will certainly be necessary at some point between the first
removal of band i and the first removal of band i + 1. Recall
that reconfiguring the switch involves three subphases, as
described in Claim 4: a barrier-k ascent, followed by branch
migration and a barrier-k descent. We argue that the over-
all expected time for switch reconfiguration is dominated
by the barrier-k ascent. To estimate the expected time for
each subphase, we first estimate the number of “progression-
specific” steps needed for switch reconfiguration, i.e., the
arc addition and removal steps that either make progress, or
undo progress, in the subphases of reconfiguring the switch.
The branch migration process, resembling a random walk,
is expected to take O(n2) progression-specific steps, and
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barrier descent takes Θ(n) steps. These are both negligible
compared with the expected time for the barrier-k ascent,
which we estimate as beingΘ(γ k) for some γ > 1, based on
the results of Sects. 4.1 and4.2. In addition to the progression-
specific steps described so far, other arcs may form and break
that do not affect the progress of switch reconfiguration, e.g.,
in the lock. Since there are Θ(n) arcs in any structure along
a low-barrier pathway, and any of these may break, the slow-
down they introduce to switch progression is bounded by a
factor of Θ(n). Thus, overall, the expected time for switch
reconfiguration should be O(nγ k).

In addition to the switch reconfiguration subphase, band
removal will also involve lock-specific subphases, namely
two barrier-k ascents, two barrier-k descents, and a branch
migration process as described in Claim 4. Band addition,
when the pathway regresses, involves similar phases. Again,
the expected time for these subphases is dominated by the
barrier-k ascents. Thus overall, additionor removal of a single
band is expected to complete in O(nγ k) steps.

4.3.2 Unlocking all of the initial lock bands

Recall that the bands must be removed from the outside
in, in order to keep the barrier low, and that the time for
band removal or addition is dominated by the time to do
barrier-k ascents. Once i bands of the initial lock structure
are unlocked, it is roughly equally likely that the process will
regress, by adding a band, or that the process will progress by
reconfiguring the switch. Similarly, if the switch is reconfig-
ured, it’s roughly equally likely that the process will regress,
by “un”-reconfiguring the switch, or that the process will
progress by removing another lock band. Thus a reasonable
approximation of the folding process is that it is an unbi-
ased random walk of barrier-k ascents that ends when all
B bands are removed. Since O(1) ascents are needed per
band removal, the expected number of phases in such a ran-
dom walk is Θ(B2). Thus, the overall expected time E[low]
to follow a low-barrier pathway and reach the target is in
O(B2nγ k) = O(n log2 nγ k).

4.3.3 Applying Markov’s inequality

Let p(n) be any function whose range is [0,1]. Then with
probability at least 1−p(n), the time to reach the target,while
following a low-barrier pathway, is at most E[low]/p(n).
This follows directly fromMarkov’s inequality, which states
that if X is a nonnegative random variable then

P(X ≥ a) ≤ E(X)

a
.

We simply choose X to be the time to reach the target
while following a low-barrier pathway, and choose a to be
E[low]/p(n).

Thus, with probability 1 − 1/Θ(n), the target is reached
while following a low-barrier pathway within f (n) =
n2 log2 nγ k time.

4.4 On the likelihood of following a low-barrier pathway

Here we argue that a low-barrier pathway from the ini-
tial to target structure, which must have Ω(n log n) distinct
secondary structures due to switch reconfigurations and
trans-arcs, is more likely to be followed than a pathway that
removes even one lock of the band via a barrier 2k-ascent.

Let p2k(n) be the probability of ascending a 2k-barrier
within f (n) = n2 log2 nγ k time, where k = Θ(log n).
We can bound the expected time for a 2k-barrier ascent
as a function of p2k(n) and f (n) as follows. If, after
f (n) steps of a pathway the ascent has not completed,
the probability that it will complete in the next f (n)
steps is at least p2k(n), because the worst case is that
after f (n) steps the current structure has all 2k base
pairs. More generally, if the ascent has not completed
after if (n) steps, then the probability that it is completed
in the next f (n) steps is at least p2k(n). Therefore the
expected number of steps to complete the ascent is at
most

∞
∑

i=0

if (n)p2k(n)(1 − p2k(n))i−1 = f (n)/p2k(n).

From Sect. 4.1, the expected time to ascend a barrier of
size 2k is at least γ 2k (using the same γ as in Sect. 4.3). Thus
γ 2k < f (n)/p2k(n). Therefore,

p2k(n) < f (n)/γ 2k = n2 log2 n/γ k = 1/nΘ(1),

since k = C log n and we can choose constant C to be larger
than 6/ log γ .

Thus for sufficiently large n, the probability of ascend-
ing a 2k-barrier within f (n) = n2 log2 nγ k time is less than
1/nΘ(1), while the probability that a low-barrier pathwaywill
be followed within f (n) time is at least 1 − 1/Θ(n).

To summarize, we have argued that reaching the target
structure from the initial structure is significantly more likely
via a low-barrier pathway with switch reconfigurations, than
by direct removal of even a single band of the lock. However,
the arguments of this section do not address the possibility
of pathways from initial to target structure that avoid both
Ω(n log n) switch reconfigurations and a barrier-2k ascent.
Corollary 6 does rule out any such pathway with barrier less
than (2 − ε)k − O(1), and the arguments of this section
apply equally well to show that a low-barrier pathway is
significantly more likely than a barrier (2 − ε)k − O(1)-
ascent. But it would be interesting to also show that pathways
from initial to target that avoid switch configurations not only
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have a higher barrier, but more specifically must ascend a
barrier of size at least (2 − ε)k − O(1).

5 Design challenges

Key properties of our design rest on simplifying assump-
tions of our model: our energy model ignores loop penalties,
pseudoknots, and intra-molecular bonds. Because state-
of-the-art nucleic acid energy models have thousands of
parameters, it would be very difficult to reason mathemat-
ically about properties of our design with respect to such
models. While our simplifying assumptions made it feasi-
ble for us to develop a rigorous proof, they may also result
in design weaknesses that cause problems in a real experi-
mental setting. Here we consider how some such weaknesses
might be addressed.

5.1 Pseudoknots

With our current design, it’s possible that bands of the lock
from both the initial and final structures could bind simulta-
neously, thereby forming pseudoknots. Then, our initial and
target structures would not be minimum free energy struc-
tures. Moreover, the switch could be rendered ineffective if
the innermost unpaired bases could stably pair with the out-
ermost complementary bases of the switch. (I.e., in Fig. 1a,
the unpaired U’s of the switch could pair with the unpaired
A’s of the switch.) To avoid these problems, the design
could be adapted so that some band regions of the lock and
switch have their own internal structure, making pseudoknot
formation thermodynamically unfavourable. For example, a
hairpin structure within theX region of a band could be more
stable than a pseudoknotted structure involving both C · G
and X · Y bands, yet less stable than a pseudoknot-free band
between theX andY regions once the interveningC·G bands
are removed.

5.2 Inter-molecular bonds

If bonds form betweenmultiple copies of the design, the lock
of one moleculeM could be unlocked via a short pathway by
forming base pairs with switches of two additionalmolecules
M ′ and M ′′. This would be possible, even while avoiding
pseudoknotted structures, if the switch of M ′ is fixed in the
left position (as in Fig. 1a) while the switch of M ′′ is fixed
in the right position (as in Fig. 1b). The switches would not
need to repeatedly change from left to right position and thus
the superlinear pathway of our design would be lost. This
problem could be avoided in an experimental setting, if indi-
vidual copies of the molecule are isolated from each other,
for example by tethering them to a surface or running the
experiment with a very low concentration of our molecules.

5.3 Energy model

How might one adapt our design (or other future designs
of complex folding pathways) to work with more realistic
energy models? The sequence design could be iteratively
tested and modified via folding pathway simulators such as
Multistrand (Schaeffer et al. 2015) or RNAtabupath (Dotu
et al. 2010), but it could be prohibitively time consuming to
find robust solutions to design flaws with such an approach.
Instead, a multi-level design and testing approach could
first simulate pathways at a domain level, where comple-
mentary regions are represented by abstract symbols over
a large alphabet (such as our 8-letter alphabet). Tests at
the domain level would check for unexpected interactions
between complementary domains that are design flaws, e.g.,
short-cuts to our designed pathway. Such tests would be akin
to the DSD simulator for DNA strand displacement systems
(Lakin et al. 2011), but for more sophisticated pathways
than strand displacement. At a lower level of detail, abstract
domains of aworking design could then bemapped to nucleic
acid sequences so that there is a low probability of binding
between a domain d and another domain d ′ that is not com-
plementary to d, or between d and the concatenation of two
non-complementary domains d ′ and d ′′.

Yet another issue that is not addressed in our methods is
how to initially arrange for the molecule to form the initial
structure, before the folding rearrangement can proceed. One
way to do this could be to initially add complements to the X
and Q domain sequences, so that these are paired with their
complements. If these sequences are bound, the only mini-
mum free energy structure for the rest of the lock sequence is
the initial structure. A toehold-mediated strand displacement
mechanism could then remove the complementary strands,
whereupon the planned folding pathway would be followed.
The pathway reaches the target structure only if the inner-
most bases of the lock sequence are exposed, i.e., are no
longer inside a loop. By inserting a distinct sequence at the
center of the lock, it should be possible to detect, i.e., read
out, when the target is reached.

Another drawback of our design is that the target con-
figuration is just one of many stable (MFE) structures, and
so the molecule’s pathway may rarely visit the target. This
issue could be addressed by adding additional bases to the
sequence that can form base pairs only when the target is
reached, thereby making the target more stable. For exam-
ple, bases could be added at the very center and outermost
regions of lock that can only pair with each other once all
of the C · G and A · U bands are removed. This adapta-
tion of the design could be generalized so that, as successive
C ·G or A ·U bands are removed and replaced by X · Y and
P · Q bands, the structure becomes increasingly stable and
thus the folding pathway is energetically biased towards the
target structure.
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6 Conclusions

In this work we have presented the design of RNA mole-
cules whose folding pathways from a given initial to target
structure are expected to visit a number of distinct structures
that grows superlinearly in the strand length. Our design is
based on a conceptually simple lock and switch mechanism,
and advances current understanding of properties of indirect
folding pathways (Dotu et al. 2010;Morgan andHiggs 1998).

The energy barrier of the desired long pathway grows (log-
arithmically) with the length of the molecule, assuming that
it is also necessary to ensure that the barrier gap between
the desired pathways and alternative shorter pathways also
grows with the length of the molecule. It would be interest-
ing to find a design in which the energy barrier of the desired
low-barrier pathway is independent of the length of themole-
cule, while still achieving a barrier gap that grows with the
length of the molecule.

Yet a different way improvement would be to obtain a
design in which the length of the desired low-barrier folding
pathway grows exponentially with the length n of the strand,
rather than proportional to n log n.

Our design suggests that it may be possible to do non-
trivial volume-efficient computations with single-stranded
nucleic acids. To see how a volume-efficient counter could
be useful for this purpose, it is helpful to recall our earlier
work (Condon et al. 2012), where we designed a multi-
stranded, volume-efficient counter using strand displacement
primitives. We were then able to incorporate that design into
a general method for volume-efficient simulation of space
bounded computations (Thachuk and Condon 2012). For
example, to test the truth of a Boolean formula, the role of the
binary counter is to enumerate all possible truth assignments
of the variables of the formula. A single-stranded counter
would similarly be useful in enumerating states that should
be explored as part of another computation. Alternatively, a
counter might be useful to coordinate proper order of com-
putational steps, for example, to ensure that certain reactions
only happen after enough time has passed for preparatory
steps. As noted above, the design could be modified so that
a unique subsequence at the center of the lock sequence is
exposed only when the target structure is reached. This sub-
sequence could then react to trigger further reactions.

A different direction for further research would be to
develop a higher level language for design of single-strand
RNA molecules as the concatenation of abstract domains,
i.e., substrands represented by a single symbol (just as DSDs
are often described as domains) and a “compiler” that could
translate a sequence of domain symbols into an RNA strand
by associating a string over {A,C,G,U} with each domain
symbol. The compiler would need to do this translationwhile
preserving folding pathway properties of the abstract design.
Such a compiler could help avoid the cumbersome work of

proving correctness at the sequence level, and possibly ease
the task of doing empirical studies. Ultimately, the goal of
tools that provide useful layers of abstraction would be to
facilitate 4D-RNA printing—the design of RNA strands that
not only have desired secondary and even 3D structures, but
in fact change their 3D shapes in desired ways over time.
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Appendix

Here, we give proofs of claims that are auxiliary to the main
thread of argument and to claims that were stated without
proof in the text. Claims with numbers in parentheses are
mentioned in the main text. Claims with numbers that are
not in parentheses are claims that were not mentioned in the
main text. In several proofs wewill only focus on the left–left
case; the right–right case is symmetric: consider a structure
with right–right trans-arcs, exchange the order the switch and
lock and reverse the order of the whole sequence. It is easy
to check that we have the left–left case of a sequence with
permuted bases.

The 8-letter alphabet design

Bounding the arc count in structures with trans-arcs

Switch

Claim (1) All MFE structures of switch(k, A) have
MAC switch(k, A) := (A − 1)k arcs.

Proof If no base of region L1 is paired then the total number
of arcs is at most (A − 1)k. Otherwise, assume there is an
arc from region L1 to region Rσ , where σ is even. It follows
that bases in region R1 are unpaired, hence again the total
number of arcs is at most (A − 1)k. Since the initial and
target structures of the switch demonstrate that structures
with (A − 1)k arcs exist and achieve this count, then we
know that the MFE structures have these many arcs. ��
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Claim 14 The number of intra-switch arcs in any structure S
of switch-lock(k, A, B) is at mostMAC switch(k, A) if c = 1
and is at mostMAC switch(k, A) + (2 − c)k − i if c > 1.

Proof There are no intra-switch arcs involving a base to the
left of Lc,i . If c = 1, byClaim1, the switch can form themax-
imal number of intra-switch arcs, namely MAC switch(k, A).
If c > 1, the number of intra-switch arcs to the right of
Lc,i is at most the number of U’s and G’s to the right
of Lc,i in the switch which is (A − c)k + (k − i) =
MAC switch(k, A) + (2 − c)k − i . ��
Claim 15 Consider any structure of switch-lock(k, A, B).
Then the number of arcs involving bases of the switch is at
mostMAC switch(k, A) + t ≤ MAC switch(k, A) + k.

Proof Note that, by Claim 1, MAC switch(k, A) = (A− 1)k.
If there are no trans-arcs, then t = 0 and the number of arcs
involving bases of the switch is at most MAC switch(k, A),
and so the claim holds. If there are trans-arcs, either all are
left–left or right–right.

If c = 1 then T = t ≤ k and the claim follows easily. Sup-
pose that c > 1. The number of bases of regions L2, . . . , Lc

that are involved in trans-arcs is T − t . Note that bases of
region L1 cannot form intra-switch arcs. The number ofG’s
and U’s in the regions L2, . . . , L A that are not involved in
trans-arcs is (A− 1)k − (T − t), and so the number of intra-
switch arcs is at most MAC switch(k, A) − T + t . Thus the
total number of arcs that involve bases of the switch is at
most MAC switch(k, A)−T + t +T = MAC switch(k, A)+ t .

The proof when all trans-arcs are right–right follows by
symmetry. ��

Lock

Claim (2) All MFE structures of lock(k, B) have
MAC lock(k, B) := 2kB arcs.

Proof Consider anMFE structure S of the lock. Let σ (σ ′) be
the largest index such that no base in region lσ (region rσ ′ ) is
forming an arc. Clearly, for any d > σ , there are no yd -arcs
and for any d > σ ′, there are no pd -arcs. Hence, S has at
most kσ Y-arcs and at most kσ ′ P-arcs. On the other hand,
we have 2k(B−σ) bases in l-regions and 2k(B−σ ′) bases in
r-regions which can form arcs. Hence, the number of center
arcs is at most 2kmin(B−σ, B−σ ′) = 2k(B−max(σ, σ ′)).
The total number of arcs in S is at most

kσ + kσ ′ + 2k(B − max(σ, σ ′)) ≤ kσ + kσ ′

+ 2k
(

B − kσ+kσ ′
2k

)

= 2kB. (8)

Since the initial and target structures of the lock achieve this
arc count, all MFE structures have this many arcs. ��

Claim 16 The number of intra-lock arcs in any struc-
ture S of switch-lock(k, A, B) with trans-arcs is at most
MAC lock(k, B) − qk + max{k − j, 0}.
Proof We count the intra-lock arcs in the left–left case (the
right–right case follows by symmetry) as follows.

• X ·Y arcs These are only possible to the left of the trans-
arcs. There are at most (b−q)k such arcs.

• P · Q−arcs There are at most ak such arcs.
• Center−arcs If a < b, the number of center arcs is
bounded by the number of available bases in l-regions,
which is (B − b)2k + (2k − j). If a ≥ b, the number of
center-arcs is bounded by the number of available bases
in r-regions, which is (B − a)2k.

Summing all three types of intra-lock arcs, if a < b, the total
is

(b−q)k + ak+(B − b)2k + (2k − j) ≤ B2k − qk + k − j

(the inequality is obtained by setting a = b − 1, since this
maximizes the quantity for all a < b). If a ≥ b the total is

(b − q)k + ak + (B − a)2k ≤ B2k − qk

(the inequality is obtained by setting a = b).
The total number of intra-lock arcs is therefore at most

B2k − qk + max{k − j, 0} = MAC lock(k, B) − qk

+max{k − j, 0},

reflecting the fact that the best choice of a (as being b− 1 or
b) depends on whether j ≤ k. ��

Switch and Lock

Claim (3) All MFE structures of the switch and lock
sequence switch-lock(k, A, B) have MAC (k, A, B) :=
MAC switch(k, A)+MAC lock(k, B) arcs. The initial and tar-
get structures are MFE structures.

Proof Consider a structure S of the switch and lock. If S does
not contain any trans-arcs, then the claim easily follows by
Claims 1 and 2. By Claims 15 and 16, we have

AC(S) ≤ MAC switch(k, A) + t + MAC lock(k, B) − qk

+max{k − j, 0}.

If q ≥ 2, since t ≤ k and k − j < k, we have AC(S) ≤
MAC switch(k, A) + MAC lock(k, B). If q = 1, since t ≤ j
and t ≤ k, we have
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AC(S) ≤ MAC switch(k, A) + MAC lock(k, B)

+ max{t − j, t − k}
≤ MAC switch(k, A) + MAC lock(k, B).

Since the initial and target structures achieve this bound, they
are MFE structures. ��
Claim (5) Consider a structure S for switch-lock(k, A, B),
where S has trans-arcs. Suppose that c + q > 4. Then
AC(S) ≤ MAC (k, A, B) − 2k.

Proof We prove the claim for the case where S has left–left
trans-arcs; the right–right trans-arcs case is symmetric. We
consider several cases for the values of c and q, calculate
the maximum possible number of trans-arcs for each case,
and then add this maximum to the bound on intra-switch arcs
from Claim 14 and the bound on intra-lock arcs from Claim
16 to bound the total number of arcs as follows:

MAC switch(k, A) + (2 − c)k − i + MAC lock(k, B) − qk

+max{k − j, 0} + T

= MAC (k, A, B) − (c + q − 2)k − i

+max{k, j} − j + T . (9)

To reduce the number of cases, we observe that if the left-
most region of the lock that is involved in trans-arcs contains
A’s, then c must be even, since the rightmost bases of the
switch that pair with the lock must be U’s and U’s are in
even-numbered regions of the switch. Similarly, if the left-
most region of the lock that is involved in trans-arcs contains
C’s, then c must be odd. For example, if q = 2 and c = 4,
it must be that the two regions of the lock that are involved
in trans-arcs contain A’s followed by C’s. To improve read-
ability we will use MAC instead of MAC (k, A, B) in the
formulas.

• q = 1 and c = 4 The number of trans-arcs is at most
j ≤ k + i ; this bound is attained when the single lock
region that is involved in trans-arcs contains A’s, which
are pairedwith k U’s from the second region of the switch
and i U’s from the fourth region.By expression 9, the total
number of arcs is at most

MAC − 3k − i + max{k, k + i} = MAC − 2k.

• q = 1 and c ≥ 5 The number of trans-arcs is at most
j ≤ 2k. By expression 9, the total number of arcs is at
most

MAC − 4k − i + max{k, 2k} ≤ MAC − 2k.

• q = 2 and c = 3 The number of trans-arcs is at most
j + i , where j ≤ k; this bound is attained when the two

regions of the lock that are involved in trans-arcs contain
C’s followed by A’s, with the C’s of the lock paired with
i G’s in region 3 of the switch and the j A’s of the lock
paired with the at most k U’s in region 2 of the switch.
By expression 9, the total number of arcs is at most

MAC − 3k − i + max{k, j} + i = MAC − 3k − i

+ k + i = MAC − 2k.

• q = 2, c = 4 and j ≤ k The number of trans-arcs is
at most i + j + k; this bound is attained when the two
regions of the lock that are involved in trans-arcs contain
A’s followed by C’s, with the j C’s of the lock paired
withG’s in region 1 of the switch and the A’s of the lock
paired with the at most k + i U’s in regions 2 and 4 of
the switch. By expression 9, the total number of arcs is
at most

MAC − 4k − i + max{k, j} + i

+ k = MAC − 4k + k + k = MAC − 2k.

• q = 2, c = 4 and j > k The number of trans-arcs is at
most i + j ; this bound is attained when the two regions
of the lock that are involved in trans-arcs contain A’s
followed by C’s, with the j C’s of the lock paired with
G’s in regions 1 and 3 of the switch and the A’s of the
lock paired with the i U’s in region 4 of the switch. By
expression 9, the total number of arcs is at most

MAC − 4k − i + max{k, j} + i = MAC − 4k + 2k

= MAC − 2k.

• q = 2, c = 5 and j ≤ k The number of trans-arcs is at
most 2k + j (the total number of lock positions involved
in trans-arcs). By expression 9, the total number of arcs
is at most

MAC − 5k − i + max{k, j} + 2k = MAC − 5k − i

+ k + 2k ≤ MAC − 2k.

• q = 2, c = 5 and j > k The number of trans-arcs is at
most i + j ; this bound is attained when the two regions
of the lock that are involved in trans-arcs contain C’s
followed by A’s, with the j A’s of the lock paired with
U’s in regions 2 and 4 of the switch and the C’s of the
lock paired with the i G’s in region 5 of the switch. By
expression 9, the total number of arcs is at most

MAC − 5k − i + max{k, j} + i = MAC − 5k + j

≤ MAC − 2k.
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• q = 2 and c ≥ 6 The number of trans-arcs is at most
2k + j where j ≤ 2k, and so the total number of arcs is
at most

MAC − 6k − i + max{k, j} + 2k ≤ MAC − 6k + 2k

+ 2k = MAC − 2k.

• q = 3 and c ≥ 2 Applying Claims 15 and 16, we have
the following bound on the number of arcs

MAC switch(k, A) + t + MAC lock(k, B) − qk

+max{k − j, 0} = MAC − 3k + max{k − j + t, t}

Since t ≤ k, if j ≥ t then the above expression can be
bounded by MAC − 2k. Now, assume that j < t ≤ k.
Then region 1 of the switch must form arcs with both
regions lb−2 and lb of the lock. Since lb−2 forms arcs
also with Lc, c must be odd. Consider two subcases:

• c = 3 The number of trans-arcs is at most k + i
(since L2 can form any arcs). By expression 9, the
total number of arcs is at most

MAC − 4k − i + max{k − j, 0} + k + i

≤ MAC − 4k + k + k = MAC − 2k.

• c ≥ 5 The number of trans-arcs is at most 2k + j
(since lb−1 can form any arcs). By expression 9, the
total number of arcs is at most

MAC − 6k − i + max{k, j} + 2k

≤ MAC − 6k + k + 2k < MAC − 2k.

• q ≥ 4: Applying Claim 15 while noting that t ≤ k, and
applying also Claim 16, we have that the total number of
arcs is at most

MAC switch(k, A) + k + MAC lock(k, B) − qk

+max{k − j, 0} ≤ MAC + k − 4k + k

= MAC − 2k.

��
Corollary 7 Let S be a structure of switch-lock(k, A, B). If
AC(S) > MAC (k, A, B)−2k, then the number of trans-arcs
in S is at most k + t .

Proof By Claim 5, at most the first three left or the first three
right regions of the switch are involved in trans-arcs. If this
number less than three, the claim follows easily.

If this number is three, then by Claim 5, the number of
regions in the lock involved in trans-arcs is one, hence, only
the first and third regions of the switch can be involved in
trans-arcs and the claim follows. ��

If not all intra-switch arcs are in the left or all in the right
position,we canprove a slightly stronger version ofClaim15.

Claim 17 Consider a structure S of switch-lock(k, A, B)

such that AC(S) > MAC (k, A, B) − 2k. If there are left–
left trans-arcs and in addition, not all intra-switch arcs are
in the right position, then the number of arcs involving bases
of the switch is at mostMAC switch(k, A).

Similarly, if there are right–right trans-arcs and in addi-
tion, not all intra-switch arcs are in the left position, then
the number of arcs involving bases of the switch is at most
MAC switch(k, A).

Proof We consider the case where there are left–left trans-
arcs. The right–right case is symmetric. In this case the bases
of the right part of the switch can be involved only in the
intra-switch arcs, hence, the number of arcs involving bases
of the switch equals the number of paired bases of the left
part of the switch. The claim follows if we show that there are
at least k bases in the left part of the switch that are unpaired.
Let the outermost switch arc that is not in the right position
go from region Lσ to region Rσ ′ , where σ �= σ ′ + 1. We
must have σ ≥ σ ′ + 3 or σ ≤ σ ′ − 1.

First suppose that σ ≥ σ ′ +3 ≥ 4. Consider arcs with one
endpoint to the left of region Lσ . Consider two subcases. The
first is when all such arcs are trans-arcs. By Corollary 7, there
are at most 2k trans-arcs. Hence, at least k bases in regions
between L1 and Lσ−1 are unpaired. The second subcase is
when there is an intra-switch arcwith an endpoint to the left of
region Lσ . Consider the innermost such an arc. Suppose that
this arc goes from region Lρ to region Rρ′ , where ρ = ρ′ +1
(since the arc is in the right position), and clearly ρ′ ≤ σ ′.
Thus, ρ = ρ′ +1 ≤ σ ′ +1 ≤ σ −2. It follows that k bases of
region Lσ−1 are unpaired, because the structure cannot have
pseudoknots.

Next suppose that σ ≤ σ ′ − 1. Again we will show that
there exists a region between Lσ+1 and L A, having all bases
are unpaired. Suppose that at least one base in each region
from Lσ+1 to L A−1 is paired. These must be paired to bases
in regions Rσ ′+1 to RA respectively, in which case no base
in region L A can paired and we are done. ��

6.1 Bounding the arc count in structures with off-center
arcs

Claim 18 Consider a structure S of switch-lock(k, A, B)

with an on-center arc α from the i-th leftmost base of left
region σ of the lock to the j-th rightmost base of the right
region σ . Then the number of arcs of S that lie outside α (i.e.,
that α does not cover) is at most X := MAC switch(k, A) +
(σ − 1)2k + max{i, j} − 1.

Proof Assume that there are more than X such arcs. Con-
sider structure S′ constructed from S by replacing all arcs
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inside α with all possible on-center arcs. The number of
these arcs is MAC lock(k, B)−2kσ +min{2k− i, 2k− j} =
MAC lock(k, B) + (1 − σ)2k − max{i, j}. Hence, the total
number of arcs of S′ is more than MAC switch(k, A) + (σ −
1)2k +max{i, j} − 1+ 1+MAC lock(k, B) + (1− σ)2k −
max{i, j} = MAC , a contradiction with Claim 3. ��
Claim (6) Let S be a structure for switch-lock(k, A, B),
in which an on-center arc covers an off-center arc. Then
AC(S) ≤ MAC (k, A, B) − 2k.

Proof Let α be an on-center arc from the i-th leftmost base
of left region σ of the lock to the j-th rightmost base of the
right region σ that covers an off-center arc. Let α′ be the
outermost such off-center arc, extending from left region τ

to right region τ ′ of the lock. Without loss of generality, we
can assume τ < τ ′, i.e., τ ≤ τ ′ − 2. Note that σ ≤ τ . We
count the number of arcs of S as follows.

1. The number of arcs that lie between left region τ and right
region τ ′ inclusive is atmostMAC lock(k, B)+(1−τ ′)2k.
All other arcs that are covered by α are on-center arcs.

2. The number of on-center arcs that are covered by α and
not covered by α′ is at most (τ −σ)2k+min{2k−i, 2k−
j} = (τ −σ + 1)2k +min{−i,− j} ≤ (τ ′ −σ − 1)2k −
max{i, j} (since τ ≤ τ ′ − 2).

3. The number of arcs that are not covered by α (includ-
ing α itself) is at most MAC switch(k, A) + (σ − 1)2k +
max{i, j}, by Claim 18.

Thus the total number of arcs of S is atmostMAC (k, A, B)+
2k((1−τ ′)+(τ ′−σ −1)+(σ −1)) = MAC (k, A, B)−2k.

Corollary (1) Let S be a structure for switch and lock
sequence switch-lock(k, A, B)withAC(S)>MAC (k, A, B)

− 2k, such that S has an on-center arc α between regions lσ
and rσ of the lock. Then for every σ ′, σ < σ ′ ≤ B, there is
at least one on-center arc from lock region lσ ′ to lock region
rσ ′ .

Proof Assume α connects the i-th leftmost base of region
lσ with the j-th rightmost base of region rσ . Assume that
for some σ ′ ∈ {σ + 1, . . . , B}, there are no on-center arcs
from lσ ′ to rσ ′ . Since by the contrapositive of Claim 6,
all arcs covered by α are on-center arcs, bases in regions
lσ ′ and rσ ′ are not involved in any arcs. Hence, the num-
ber of arcs of S covered by α is at most MAC lock(k, B) −
2kσ −max{i, j}. This contradicts Claim 18 and the fact that
AC(S) > MAC (k, A, B) − 2k. ��

6.2 The main proof

Claim (8) Suppose that i is such that AC(Spi ) >

MAC (k, A, B) − 2k. If i is odd, then all intra-switch arcs

must be in the right position and if i is even, all intra-switch
arcs must be in the left position.

Proof Suppose that i is odd (the case where i is even is simi-
lar), not all intra-switch arcs are in the right position and that
AC(Spi−1),AC(Spi ) > MAC (k, A, B) − 2k. We obtain a
contradiction by showing how to construct a structure S with
more than MAC (k, A, B) arcs. There are several cases:

• Spi has an off-center arc from li By Claim 6, this off-
center arc must have its endpoint in a region r j where
j ≤ i − 2, since otherwise structure Spi−1 would have
an off-center arc covered by an on-center arc. This also
implies that in structure Spi , region ri is not involved in
arcs: by definition of Spi there are no on-center arcs to
bases in ri , and there cannot be off-center arcs either since
these would be covered by an on-center arc in Spi−1,
again contradicting Claim 6. Additionally, in structure
Spi , region ri−1 is not involved in arcs, since in Spi−1,
any such arc would create a pseudoknot either with the
off-center arc from li or with the on-center arc from li .
Then to obtain S we “shift” center arcs and trans-arcs of
Spi that have a right endpoint to the right of region ri−1

of the lock. That is, we remove any arc u · ra, j where
a < i − 1 and replace it by u · ra+2, j . We can then add
2k P · Q-arcs to obtain structure S.

• Spi has an off-center arc from ri In a manner that is
symmetric to the previous case, we can shift center and
trans-arcs of Spi that have a left endpoint to the left of
region li−1 of the lock and add 2k X · Y-arcs to obtain
structure S.

• Spi has no off-center arcs and no trans-arcs to li or ri . We
can simply add 2k arcs from li to ri to obtain S.

• Spi has no off-center arcs to either li or ri and has left–left
trans-arcs to li Since not all intra-switch arcs are in the
right position, by Claim 17, the total number of intra-
switch plus trans-arcs is at most MAC switch(k, A). To
obtain S we can remove the trans-arcs from Spi , replace
the switch structure with one that has MAC switch(k, A)

arcs, and add 2k arcs from li to ri to obtain S.
• Spi has no off-center arcs to either li or ri and has right–
right trans-arcs to ri Then the bases in the rightmost
region of the switch (region R1) cannot form intra-switch
arcs, nor can they form a trans-arc with a base in some
right lock region, say r j , since then j > i (recall i is odd,
hence, no base in ri can pair with a base in R1), and this
trans-arc would create a pseudoknot with the on-center
arc from li to ri in Spi−1. Hence, all bases in the rightmost
switch region are unpaired (t = 0) and the number of arcs
involving bases of the switch is atmostMAC switch(k, A),
by Claim 15. To obtain S we can remove the trans-arcs
and proceed as in the previous case. ��
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Corollary 8 For every odd (even) i, if AC(Spi−1),AC(Spi )
> MAC (k, A, B) − 2k, at least (A − 4)k intra-switch arcs
are in the right (left) position and no intra-switch arcs are in
the left (right) position.

Proof Without loss of generality assume i is odd. Recall that
t is the number of bases in the first left or first right switch
regions involved in trans-arcs. By Corollary 7, the number
of trans-arcs is at most k + t . Assume to the contrary that
less than (A − 4)k intra-switch arcs are in the right posi-
tion. By Claim 8, there are less than (A − 4)k intra-switch
arcs. Hence, the total number of arcs involving bases of the
switch is less than (A − 4)k + k + t . Consider a structure S
constructed from Spi by removing all arcs involving bases in
all switch regions other than the first left and the first right,
and adding arcs under the following two conditions: (1) if
Spi contains right–right trans-arcs, add the arcs of the ini-
tial structure of the switch, or (2) otherwise, add the arcs
of the target structure of the switch. It is easy to see that S
is a valid structure, hence, AC(S) ≤ MAC (k, A, B). Since
S was constructed by removing less than (A − 4)k + k =
MAC switch(k, A) − 2k arcs and adding MAC switch(k, A)

arcs,we haveAC(S) > AC(Spi )−(MAC switch(k, A)−2k)+
MAC switch(k, A) = AC(Spi )+2k. It follows byClaim 3 that
AC(Spi ) < MAC (k, A, B) − 2k, which is a contradiction.

��
Corollary (2) If AC(Spi−1),AC(Spi ),AC(Spi+1−1),AC
(Spi+1) > MAC (k, A, B) − 2k, the number of steps (i.e.,
structures in the pathway P) from Spi to Spi+1 is at least
2(A − 4)k.

Proof By Corollary 8, at least (A − 4)k arcs needs to be
removed and at least (A−4)k arcs needs to be added. Hence,
the number of steps is at least 2(A − 4)k. ��

7 The 4-letter alphabet design using the stacked
base pair energy model

7.1 General results

Claim (9) Let s be a sequence over the 8-letter alphabet. Let
S′ be a structure for s′ = map(s). For any eccentric stacked
arc pair of S′ between positions i and j, and i + 1 and j − 1,
either pair i, i + 1 or pair j − 1, j is a boundary.

Proof Consider an eccentric stacked arc pair between posi-
tions i and j, and i +1 and j −1. Assume that neither i, i +1
or j − 1, j is a boundary, i.e., positions i and i + 1 (respec-
tively, j − 1 and j) lie in the same region. It is easy to check
that these two regions must be complementary, as two con-
secutive bases of any region identify the type of region. For

instance, AC orCA lie only inside anX-region. Hence, these
two stacked arcs are not eccentric, a proof by contrapositive.

��
Theorem (2) Let s be a sequence over the 8-letter alphabet
and let s′ = map(s). Assume that any structure for s′ with at
least MAC (s) − (K − E) stacked arc pairs has at most E
eccentric stacked arc pairs. Let S′

1 and S
′
2 be two structures of

s′, and let S1 = Map′(S′
1) and S2 = Map′(S′

2) be structures
of s. Let D = SAC(S′

1)−MAC (s). Suppose that any pathway
between S1 and S2 with barrier at most K has length at least
L. Then any pathway between S′

1 and S′
2 with barrier at most

K + D − E has length at least L/2.

Proof Assume to the contrary that there is a pathway P ′ from
S′
1 to S′

2 with barrier at most K + D − E of length less than
L/2. We will construct a pathway P from S1 to S2 of length
at most twice the length of P ′ with barrier at most K . We
will do so in two steps. First, map each structure S′ in P ′ to
the structure for s using the mapping Map′(), thus obtaining
a sequence of structures P. Second, we transform P to a
proper pathway betweenMap′(S′

1) andMap′(S′
2), so that any

consecutive structures inP differ by exactly one arc.Consider
two consecutive structures of the sequence P. They differ by
at most two arcs. This is because, each added (removed)
arc in P ′ can create (remove) at most two stacked arc pairs.
Consequently, we need to insert at most one intermediate
structure between these two consecutive structures to make
P a proper pathway, thus increasing the length ofP by atmost
|P ′| − 1, i.e., |P| < 2|P ′|. Some consecutive structures of P
might be identical (for instance, if an eccentric arc was added
in P ′). In this case we omit one of the repeated structures in
P.

Since P ′ has barrier atmost K+D−E , for any structure S′
of P ′, SAC(S′

1)−SAC(S′) ≤ K+D−E . Hence, SAC(S′) ≥
SAC(S′

1) − (K + D − E) = MAC (s) − (K − E). Thus, by
the assumption in the theorem statement, S′ has at most E
eccentric stacked arc pairs. Hence by Claim 10, we have for
the corresponding structure S = Map′(S′) that MAC (s) −
AC(S) ≤ MAC (s) − (SAC(S′) − E) ≤ K . Clearly, this
bound also applies to the structures which were inserted to
P. Hence,P has a barrier atmostK and length atmost 2|P ′|−
1 < L , a contradiction. ��
Corollary (5) Let B be even. Let s′ = map
(switch-lock(k, A, B)). Then there exists a pathway from the
initial to the target structure of s′ with barrier k+3 and with
length (2(k+1)(A+2)−3)B+2(k+1)(A−1). The length
of any pathway from the initial to the target structure with
barrier at most 2k− A−6B−2 is at least k(A−4)(B−1).

Proof To prove the first part of the corollary we construct a
pathway between the initial structure S′

1 and target struc-
ture S′

2 by reusing the pathway for the 8-letter alphabet
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described in the proof of Theorem 1. However, we have
one more base in each region. Consequently, switching the
switch will require 2(k + 1)(A − 1) steps. While unlocking
the lock, in phases (iii), (iv) and (vi) one additional arc will
be removed/added, hence, the number of steps to unlock each
band of the lock is 2(k+1)(A−1)+6k+3. The total length
of the pathway is (2(k+1)(A+2)−3)B+2(k+1)(A−1).
For any structure S′ on this pathway, we have SAC(S′

1) ≥
SAC(S′) ≥ SAC(S′

1) − (k + 3), since in S′ either arcs of
the switch are split two to stacked blocks of arcs (one block
in the left position and the other block in the right position),
in which case, the count of stacked arc pairs is decreased by
k+3, or the switch is in the initial or target position and lock
is unlocked in phases (i)-(vi), in which the count of stacked
arc pairs is decreased by at most k. Hence, the barrier of this
pathway is k + 3.

Let S′
1 and S′

2 be the initial and target structures for s′
respectively. Note that Map′(S′

1) and Map′(S′
2) are the initial

and target structures for switch-lock(k, A, B). Since s′ has
2A + 6B regions, by Corollary 4, any structure for s′ has
at most 2A + 6B − 1 eccentric stacked arc pairs. Structure
S′
1 has exactly A − 2 eccentric stacked arc pairs. Hence, by

Claim 10, D = SAC(S′
1) − MAC (s) = AC(S1) + A − 2 −

MAC (s) = A − 2, since S1 is an MFE structure for s. The
second part of the claim thus follows by Theorems 1 and 2
by setting K = 2k − 1, E = 2A + 6B − 1, D = A − 2 and
L = 2k(A − 4)(B − 1). ��

7.2 The switch and lock sequence

We will need the following terminology. A stacked arc pair
that connects a boundary between regions r and r ′ to a region
r ′′ will be called an “(r, r ′) · r ′′-stacked arc pair”.

Claim (11) Consider a structure S′ for lock′(k, B). Then the
number of non-eccentric stacked arc pairs in S′ is at most
(2k + 1)B.

Proof Since we are only counting non-eccentric stacked arc
pairs, we only need to consider non-eccentric arcs. To count
the number of non-eccentric arcs, we can use the argument
in the proof of Claim 2. Considering the different sizes of
regions (k+1 forp, q, x, y-regions and2k+1 for l, r-regions),
Bound (8) on the number of non-eccentric arcs becomes

(k + 1)i + (k + 1) j + (2k + 1)(B − max{i, j})
≤ (2k + 1)B + (i + j)/2 ≤ (2k + 2)B,

where the last inequality follows since i, j ≤ B. Since the
longest possible stacked run of arcs in the lock has length
2k + 1, the maximum number of non-eccentric stacked arc
pairs these arcs can create is at most 2k

2k+1 (2k+2)B < (2k+
1)B. ��

Claim (12) For any structure S′ of switch-lock′(k, A, B)

with at least MAC (k, A, B) − 2k + 8B + 4 stacked arc
pairs, the number of its eccentric stacked arc pairs is at most
8B + 2.

Proof Let S′ be a structure for switch-lock′(k, A, B) with
at least MAC (k, A, B) − 2k + 8B + 4 stacked arc pairs.
Without loss of generality we can assume that S′ does not
contain any arcs that are not stacked. First note that there
are no intra-switch eccentric stacked arc pairs in S′. Second,
the number of eccentric stacked arc pairs in S′ that involve
a boundary that contains at least one base of the lock is at
most 6B. It remains to show that the number of eccentric
stacked arc pairs that do not involve a boundary in the lock
is at most 2B+2. Assume to the contrary that the number of
such eccentric stacked arc pairs is at least 2B + 3. Note that
all these eccentric stacked arc pairs must involve a boundary
in the switch. There are only three types of such stacked arc
pairs since they are only three types of boundaries in the
switch and each of them can form a base pair with only one
type of regions in the lock (recall that two consecutive bases
determine the type of a region):

1. (Li , Li+1) · x j -stacked arc pairs,
2. (L A, RA) · p j -stacked arc pair, and
3. (Ri , Ri−1) · y j -stacked arc pairs.

The stacked arc pairs of type 1. cross stacked arc pairs of type
2. and 3. and there is at most one stacked arc pair of type 2.

Consider the case when S′ contains stacked arc pairs of
type 1 (and hence, none of type 2 and 3). Let d be themaximal
index such that (Ld , Ld+1) · x j is in S′ for some index j. We
must have d ≥ 2B + 3. Note that the bases of L1, . . . , Ld

and the first base of Ld+1 can only form trans-arcs and the
remaining bases of the switch can only form intra-switch arcs
or eccentric stacked arc pairs of type (Li ·(x j ′, x j ′+1))which
are already counted (in 6B). Consider trans-arcs involving
bases of L1, . . . , Ld and the first base of Ld+1 that do not
involve boundaries between x-regions, i.e., are not parts of
stacked arc pairs of type 1. These trans-arcs must involve
bases of l-regions of the lock, hence, their number is at most
(2k + 1)B. Since the longest possible stacked run of such
trans-arcs has length at most k, the number of stacked arc
pairs that do not involve boundaries in the lock is at most
k−1
k (2k + 1)B ≤ 2kB.
The number of intra-switch stacked arc pairs is at most

k(A − d) − 2. Hence, the total number of stacked arc pairs
involving bases of the switch and not involving boundaries
in the lock is at most

2kB+k(A−d)−2 ≤ 2kB+k(A−2B−3)−2 = k(A−3)−2.
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Since any stacked arc pair in S′ involves a boundary in the
lock (at most 6B of them), or involves bases of the switch and
does not involve a boundary in the lock (at most k(A−3)−2
of them), or is intra-lock and does not involve a boundary in
the lock, i.e., is non-eccentric intra-lock (at most (2k + 1)B
of them by Claim 11). It follows that

SAC(S′) ≤ 6B + k(A − 3) − 2 + (2k + 1)B

= MAC (k, A, B) − 2k + 7B − 2

≤ MAC (k, A, B) − 2k + 8B + 3 ,

a contradiction. Hence, the number of eccentric stacked arc
pairs is at most 8B + 2.

The proof in the case when S′ contains stacked arc pairs
of type 2. and 3. is analogous. ��

Theorem (3) Consider the sequence switch-lock′(k, A, B).
There is a pathway from the initial to the target structure
with barrier k + 2 and with length (2k(A− 1)+ 6k + 3)B +
2k(A − 1). Moreover, any pathway from the initial to the
target structure of switch-lock′(k, A, B)with barrier at most
2k − 8B − 5 has length at least k(A − 4)(B − 1) − 1.

Proof The first part of the claim can be proved in a similar
way as the first part of Corollary 5 (the barrier decreases by
one, since the regions in the switch are shorter by one arc).

Consider a pathway P from Map′(S′
1) to Map′(S′

2) with
barrier atmost 2k−2. NoteMap′(S′

1) (Map′(S′
2)) is the initial

(target) structure for s = switch-lock(k, A, B) without the
innermost arc. Appending the initial (target) structure for S to
the beginning (end) of P we obtain a pathway from the initial
to the target structure of s with barrier at most 2k − 1. By
Theorem 1, this pathway has length at least 2k(A−4)(B−1).
Hence, P has length at least 2k(A − 4)(B − 1) − 2.

Since S′
1 has no eccentric stacked arc pairs, SAC(S′

1) =
AC(Map′(S′

1)), and hence, D = SAC(S′
1) − MAC (s) =

AC(Map′(S′
1)) − MAC (s) = −1. Now, the second part of

the claim follows by Theorem 2 and Claim 12 by setting D =
−1, K = 2k−2, E = 8B+2 and L = 2k(A−4)(B−1)−2.

��
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