
Parsing nucleic acid pseudoknotted secondary structure:

algorithm and applications

Baharak Rastegari, Anne Condon

The Department of Computer Science

University of British Columbia

Vancouver, B.C., V6T 1Z4, Canada

{baharak,condon}@cs.ubc.ca

August 2, 2006

Abstract

Accurate prediction of pseudoknotted nucleic acid secondary structure is an impor-
tant computational challenge. Prediction algorithms based on dynamic programming
aim to find a structure with minimum free energy according to some thermodynamic
(“sum of loop energies”) model that is implicit in the recurrences of the algorithm.
However, a clear definition of what exactly are the loops in pseudoknotted structures,
and their associated energies, has been lacking.

In this work, we present a complete classification of loops in pseudoknotted nucleic
secondary structures, and describe the Rivas and Eddy and other energy models as
sum-of-loops energy models. We give a linear time algorithm for parsing a pseudo-
knotted secondary structure into its component loops. We give two applications of
our parsing algorithm. The first is a linear time algorithm to calculate the free en-
ergy of a pseudoknotted secondary structure. This is useful for heuristic prediction
algorithms, which are widely used since (pseudoknotted) RNA secondary structure
prediction is NP-hard. The second application is a linear time algorithms to test
the generality of the dynamic programming algorithm of Akutsu for secondary struc-
ture prediction. Together with previous work, we use this algorithm to compare the
generality of state-of-the-art algorithms on real biological structures.

1 Introduction

Nucleic acids - that is, DNA and RNA molecules - play fundamental roles in the cell: in
translation and replication of the genetic code, as catalysts in cellular processes, and as
mediators in determining the expression level of genes [12]. Additionally, in vitro selection
methods have produced nucleic acids not found in the cell, which can function as enzymes
[19], or as aptamers with high binding specifity for target proteins [7, 14], with applications
in medical diagnosis or as biosensors. Designed DNA and RNA molecules further expand
the range of capabilities of nucleic acids. For example, rigid lattices constructed from
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DNA can be used to organize matter with nanoscale precision [31, 32, 39]. DNA has also
been used to build molecular devices that have mechanical properties [33].

Structure is key to the function of nucleic acids in their diverse roles. Thus, methods
for predicting nucleic acid structure from the base sequence are of great value, in order
to understand the principles of nucleic acid function, and also to aid in design of nucleic
acids with novel functions. Unfortunately, 3-dimensional nucleic acid structure prediction
from the base sequence of a nucleic acid is currently beyond our reach. However, there
has been significant success in predicting nucleic acid secondary structure, which already
can provide much useful insight as to the function of a molecule. The secondary structure
is the set of base pairs that form when the molecule folds (see Figure 1 and Section 2 for
details).

There has been significant investment in prediction of pseudoknot free secondary struc-
tures, that is, structures with no crossing base pairs. A pseudoknot free structure is
illustrated in Figure 1 (a). The figure also illustrates that the base pairs of a pseudo-
knot free structure naturally organize the structure into well-defined loops, and that the
structure can be unambiguously represented as a string in dot-parenthesis format - a gen-
eralization of a string of balanced parentheses in which matching parentheses denote base
pairs and dots denote unpaired bases. The premise underlying secondary structure pre-
diction algorithms is that a molecule folds into that secondary structure with minimum
free energy (mfe) [27], where the energy of a structure can be estimated as the sum of loop
energies. Nussinov and Jacobson [26] were the first to propose a dynamic programming
algorithm for mfe pseudoknot free secondary structure prediction. Since then, prediction
accuracy and efficiency has improved, due to better, experimentally determined energy
parameters as well as refined algorithms with O(n3) running time, where n is the number
of bases of the molecule [21, 24]. Moreover, it is straightforward to parse a pseudoknot
free secondary structure (represented in dot-parenthesis notation or any other standard
notation) in linear time, in order to determine its loops and calculate its free energy.

While many biological structures are pseudoknot free, pseudoknots are essential for the
function of several RNA molecules in the cell [35, 37], as well as in viral RNA [11]. For
example, pseudoknots form the catalytic core of some ribozymes (RNA enzymes) and self-
splicing introns (regions of messenger RNA which do not code for a protein). Pseudoknots
also induce ribosomal frameshifting – a process whereby the 3-nucleotide codon reading
frame is shifted, typically by ±1, thereby facilitating the synthesis of two proteins from
one coding sequence [4]. Figure 1 (b) illustrates one type of pseudoknotted structure,
often called a kissing hairpin, and Figure 2 includes another, called an H-type pseudoknot
(concatenated with a pseudoknot free structure). In contrast with pseudoknot free struc-
tures, there is as yet no widely-agreed-upon standard model for estimating the energy of
pseudoknotted structures, and little experimental data on the energy of pseudoknotted
structures. Some recent theoretical work has proposed detailed energy models for simple
types of pseudoknotted structures, such as H-type pseudoknots [1]. Xayaphoummine et
al. [38] have also proposed a general model, in which stems (contiguous base pairs) and
unpaired regions are modeled as rods and polymer chains, respectively. Pseudoknotted
secondary structure prediction is NP-hard [3, 22, 23] for a simple energy model that de-
pends on base pairs but not on unpaired bases. Lyngsø [22] shows that NP-hardness of the
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prediction problem is sensitive to the energy model, so it is not clear whether the problem
is hard for more realistic energy models.

Several polynomial-time dynamic programming algorithms for pseudoknotted structure
prediction have been proposed [3, 13, 28, 30, 36]. Underlying each of these algorithms is a
sum-of-loops energy model for pseudoknotted structures: given a sequence, each algorithm
reports the structure with the minimum free energy for that sequence, from a restricted
class of structures, according to a fixed energy model. We say that a structure R can
be handled by an algorithm if R is in the class of structures over which the algorithm
optimizes (according to the algorithm’s energy model). Algorithms for pseudoknotted
secondary structure prediction differ in their run-time complexity and their generality,
that is, the class of structures that they handle. For example, kissing hairpin structures
are not in the class of structures handled by the algorithms of Akutsu [3] and Dirks and
Pierce [13], but are in the class handled by Rivas and Eddy’s algorithm [30]. (We emphasize
that, even when the true structure R for a sequence is handled by an algorithm, this does
not necessarily mean that the algorithm correctly predicts R, because correctness depends
not only on the generality of the algorithm but also on the energy model and parameters
being used for the free energy calculation.)

The O(n6) algorithm of Rivas and Eddy [30] handles (that is, predicts a structure from)
the most general class of structures. However, the loop types and thermodynamic model
underlying the Rivas and Eddy algorithm are specified only implicitly in the recurrence
equations of the algorithms. There is not a one-to-one correspondence between loops and
terms in the recurrence equations, making it difficult to infer the loop types directly from
the recurrences. Prior to our work, there has been no algorithm that, given a sequence
and a pseudoknotted secondary structure for that sequence, calculates its free energy.

In this work we present the first comprehensive classification of loops that arise in pseu-
doknotted secondary structures. Previous classifications apply to a restricted range of
structures [18], and do not address the problems of defining and calculating the energy
of a structure. Our classification is inspired by the algorithm of Rivas and Eddy, and we
use it to describe the energy model of Rivas and Eddy and other algorithms as a sum-of-
loops model. Building on an algorithm of Bader et al. [5], we show how to parse a given
secondary structure into its component loops in linear time.

We present two applications of this parsing algorithm. First, we show how to calculate
the free energy of a pseudoknotted secondary structure in linear time. This can be useful
in heuristic algorithms, which are commonly used for pseudoknotted secondary structure
prediction [2, 17, 29], and which typically repeatedly estimate the energy of a candidate
structure.

The second application of our parsing algorithm is an assessment of the trade-off between
generality and efficiency of dynamic programming algorithms for RNA secondary structure
prediction. As noted above, each dynamic programming algorithm only predicts structures
from a restricted class. Let A, D&P, L&P and R&E denote the classes of structures
handled by the Akutsu [3], Dirks and Pierce [13], Lyngsø and Pedersen, [23], and Rivas
and Eddy [30] algorithms, respectively. For example, the algorithm of Rivas and Eddy
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handles kissing hairpin structures, but the other algorithms do not. In previous work [9],
we obtained linear time tests for membership in the L&P, D&P and R&E classes. In this
paper, we apply the parsing algorithm to give a linear time test for membership in Akutsu’s
class. We provide a comparison of all four algorithms on a set of several hundred biological
structures. The results show that the Dirks and Pierce class handles more or less the same
structures as does Akutsu’s class, so the extra level of generality provided by Akutsu’s
class is not significant, with respect to the structures found in biological organisms. We
also add to our comparison another class, called the density 2 structures. This class is
interesting because there is an O(n3) algorithm to predict stuctures in this class, based
on the principle of hierarchical folding [40]. We find that the density 2 structure class
contains many more biological structures than does Akutsu’s class, while still being a
little less general than the Rivas and Eddy class on our dataset.

The rest of paper is organized as follows. In Section 2, we define the components of a
pseudoknotted secondary structure. In Section 3 we present our linear-time parsing algo-
rithm. In Section 3.2 we present our algorithm for enumerating the loops of a secondary
structure, and describe how to calculate the free energy of a secondary structure in Section
4. Our algorithm for testing membership in Akutsu’s class is in Section 5, followed by
conclusions in Section 6.

2 Components of a Pseudoknotted Secondary Structure

We model an RNA molecule as a string, with distinct ends, called the 5′ (left) and 3′ (right)
ends, over a finite alphabet. (The alphabet symbols include A, C, G, and U which denote
the bases Adenine, Guanine, Cytosine, and Uracil, respectively, but may include other
symbols, such as those of the IUPAC code which express ambiguity at certain positions
[10].) Throughout, we use n to denote the length of the sequence. We index the bases
consecutively from 1 to n, starting from the 5′ end, and refer to a base by its index.

An RNA molecule folds into a functional structure by formation of bonds between pairs
of bases, where each base may pair with at most one other base. We use i.j to denote the
base pair involving bases i and j. A secondary structure is a set of base pairs. Figure 1
(a) and (b) give graphical depictions of RNA secondary structures. We let bp(i) denote
the base that is paired with base i, if any; otherwise if i is unpaired, bp(i) = 0. Two base
pairs i.j and i′.j′ cross if i < i′ < j < j′. We say that pair i.j is pseudoknotted if it crosses
some base pair.

In Section 2.3 we classify loops in a pseudoknotted structure, working from the Rivas and
Eddy algorithm [30]. We first introduce some other useful concepts, namely closed regions
and bands. In the rest of this section, definitions are with respect to a fixed secondary
structure R over a sequence with n bases.

4



2.1 Closed Regions

When 1 ≤ i ≤ j ≤ n, we use [i, j] to denote the set of bases {i, i + 1, . . . , j}, which we
call a region. We call i and j the left and right borders of the region [i, j]. We say that
a region is empty if no bases in the region are paired. Region [i′, j′] is nested in [i, j] if
i < i′ < j′ < j and the two regions are disjoint if j < i′ or j′ < i.

A region is weakly closed if no base pair connects a base in the region to a base outside the
region. A weakly closed region [i, j] with i < j is closed if [i, j] cannot be partitioned into
two smaller weakly closed regions. For example, for the structure of Figure 1 (a), [5,68] is
closed region. [6,66] is weakly closed but not closed, since it can be decomposed into two
weakly closed regions [6,6] and [7,66], and [10,65] is weakly closed but not closed, since it
can be decomposed into two weakly closed regions [10,25] and [26,65].

Let 1 ≤ i, j ≤ n. Formally, [i, j] is weakly closed iff for all base pairs i′.bp(i′) of R, i′ ∈ [i, j]
if and only if bp(i′) ∈ [i, j]. Also, [i, j] is closed iff i < j, [i, j] is weakly closed, and for
all l ∈ [i, j − 1], neither [i, l] nor [l + 1, j] is weakly closed. Note that if [i, j] is closed
then both i and j must be paired (although not necessarily with each other): if i were
unpaired, for example, then both [i, i] and [i + 1, j] would be weakly closed. To simplify
later definitions, we also declare [0, n+1] to be closed. In what follows, whenever we refer
to closed region [i, j], we mean a closed region with 1 ≤ i < j ≤ n. We will always handle
the special case [0, n + 1] explicitly.

Let [i, j] be a closed region. If bp(i) = j then we say that the region has one closing base
pair, namely i.j. Otherwise, we say that i.bp(i) and bp(j).j are the closing base pairs of
the region; in this case, we say that the closed region is pseudoknotted. The closed region
[0, n + 1] has no closing base pair.

Let [i, j] and [i′, j′] be closed regions. We say that [i′, j′] is a child of [i, j] if [i′, j′] is nested
in [i, j] and is not nested in any closed region [i′′, j′′] with i < i′′. If [i′, j′] is not a child of
any closed region [i, j] with 1 ≤ i < j ≤ n, then we say that [i′, j′] is a child of [0, n + 1].

Closed regions of a structure are organized hierarchically, as illustrated in Figure 2. That
is, two closed regions [i, j] and [i′, j′] with i < i′ are either nested or disjoint. The closed
regions tree of R is denoted by T (R), with the nodes of T (R) being the closed regions of
R. The root is [0, n + 1]. The children of node [i, j] or [0, n + 1] are the closed region
children of region [i, j] or [0, n + 1], respectively. The children of each node are ordered
(from left to right) by their left border.

We conclude this section with some simple facts about closed regions that will be useful
in a later proof.

Claim 2.1 Let R be a structure on n bases.

(a) Every base pair of R is in some closed region child of [0, n + 1].

(b) The rightmost paired base of R is the rightmost border of a closed region that is a child
of [0, n + 1].
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Figure 1: (a) Graphical depiction of the secondary structure of a transfer RNA molecule
from the Sprinzl database (RA7630) [34], and dot-parenthesis representation of the struc-
ture. A grey line links bases in order, and a black mark between two bases indicates a base
pair. (b) Graphical depiction of a pseudoknotted structure found in the coxsackie B virus.
This structure, called a kissing hairpin [25] or a HH-type pseudoknot [18], is essential for
replication of the virus [11, 25]. Figures generated using the Pseudoviewer web service
[18].
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Figure 2: Hierarchical representation of a secondary structure. (a) Secondary structure
fragment of turnip yellow mosaic virus (TYMV) [20] (generated using Pseudoviewer [18].
(b) Tree showing hierarchical organization of closed regions of the TYMV structure frag-
ment.

Proof (a) The smallest closed region containing a base pair must be a subset of [1, n].
This region is either a child of [0, n + 1] or a descendent of [0, n + 1]. In either case, the
base pair is in a child of [0, n + 1].

(b) If j is the rightmost paired base, and is paired with i (< j), then i.j is in some closed
region C in [1, n]. It must be that j is the rightmost border of C since there is no base
greater than j which could be the right border of C. C must be a child of [0, n + 1] since
it cannot be nested in any other closed region in [1, n], again since no base to the right of
j is paired.

2.2 Bands

Loosely speaking, a band is a “pseudoknotted stem”. For example, in Figure 1 (b), the
union of the paired regions [43,54] and [71,82] is a band. This structure has three bands
in total, the other two being [56,61] ∪ [97,102] and [88,95] ∪ [103,110].

Formally, let i.j and i′.j′ be pseudoknotted base pairs. We say that i′.j′ is directly banded
in i.j and write i′.j′ � i.j if
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1. i < i′ < j′ < j,

2. for all a.b ∈ R, a.b crosses i.j if and only if a.b crosses i′.j′, and

3. the regions [i + 1, i′ − 1] and [j′ + 1, j − 1] are weakly closed.

Let i′.j′ = i1.j1 � i2.j2 � . . . ik.jk = i.j be a maximal chain of base pairs with respect
to the � relation. (Note that k may equal 1, in which case i′ = i and j′ = j.) We call
[i, i′] ∪ [j′, j] a band. For each l, 1 ≤ l ≤ k − 1, we call [il, il+1] ∪ [jl+1, jl] a band segment.
Base pairs i′.j′, i.j are the band’s inner and outer closing pairs, respectively, and i and j
are the left and the right borders of the band, respectively. The base pairs il.jl, 1 ≤ l ≤ k
span the band.

2.3 Loops

For pseudoknot free structures, loops are most naturally seen in traditional graphical
diagrams - see Figure 1 (a). Every unpaired base is in one loop, and every base pair is in
exactly two loops.

Here, we extend definitions of loop to pseudoknotted structures. Our primary motivation
is to provide a framework for describing the energy models used by dynamic programming
algorithms for pseudoknotted secondary structure prediction. Our definitions have the
property that every unpaired base is in exactly one loop and every base pair is in at most
three loops. Our definitions of hairpin and interior loops are the same as for pseudoknot
free structures; we include them here for completeness. We then provide definitions of
multiloops and external loops, including cases in which pseudoknotted closed regions are
nested in such loops. Finally, we define a new type of loop, namely a pseudoloop, which
includes the unpaired bases of a pseudoknotted closed region, as well as the base pairs
that are adjacent to these unpaired bases.

We expect that our definition of pseudoloop will need to be refined in the future, to
further distinguish between the energy contributions of different pseudoloop subtypes, as
more understanding of pseudoknotted energies is gained. Currently, however, dynamic
programming algorithms use a single rule for estimating the energy of all pseudoloops
that are within the range of structures that the algorithms can handle.

We use the following notation. We say that band [i, i′] ∪ [j′, j] is associated with closed
region [i′′, j′′] if [i, i′], and thus [j′, j], are nested in [i′′, j′′] but not in any (closed region)
child of [i′′, j′′]. For example, in Figure 1 (b), the three bands [43,54] ∪ [71,82], [56,61] ∪
[97,102] and [88,95] ∪ [103,110] are associated with closed region [43,110]. No bands are
ever associated with [0, n + 1].

The unpaired bases associated with closed region [i, j] are the unpaired bases in [i, j] but
not in any closed region or band segment which is nested in [i, j]. For example, in the
structure of Figure 1 (b), the unpaired bases associated with closed region [43,110] are 55,
62-70, 83-87, and 96. If i′.j′ � i.j, then the unpaired bases associated with band segment
[i + 1, i′ − 1] ∪ [j′ + 1, j − 1] are the unpaired bases which are in regions [i + 1, i′ − 1] or

8



[j′ + 1, j − 1] but which are not in any closed region nested in these regions. For example,
unpaired bases 90 and 108 are associated with [89,91] ∪ [107,109]. Finally, the unpaired
bases associated with [0, n + 1] are the unpaired bases that are not associated with any
other closed region or band segment. For example, in the structure of Figure 1 (a), the
unpaired bases associated with closed region [0, 77] are 73-76. The following claim follows
easily from these definitions.

Claim 2.2 Any unpaired base is associated with exactly one band segment or closed region
(but not both).

The base pairs associated with closed region [i, j] are the closing base pairs of the region,
as well as the closing base pairs of any closed region children of [i, j] which are not in any
band associated with [i, j]. Similarly, the base pairs associated with closed region [0, n + 1]
are the closing base pairs of any closed region children of [0, n+1]. Let i′.j′ � i.j, let B be
the band spanned by i′.j′ and i.j (note that B may possibly also be spanned by other base
pairs), and let B be associated with closed region [i′′, j′′]. Then the base pairs associated
with band segment [i, i′] ∪ [j′, j] are the base pairs i.j, i′.j′, together with the closing base
pairs of closed region children of [i′′, j′′] which are in [i+, i′ − 1] or [j′ + 1, j − 1]. Note
that a base pair may not be associated with any closed region, specifically if it is not the
closing base pair of a region. In this case, the base pair spans a band. Also, a base pair
that is associated with one closed region must also be associated with a band segment,
and a base pair that is associated with two closed regions is not associated with a band
segment. The next claim summarizes these facts.

Claim 2.3 Any base pair is associated with zero, one, or two closed regions. A base pair
which is not associated with any closed region must span a band. A base pair which is
associated with one closed region is also associated with a band segment.

We are now ready to define loops. Each loop is a collection of base pairs and unpaired
bases, called the members of the loop.

Hairpin loop: Let i.j be a base pair such that all bases in [i + 1, j − 1] are unpaired.
Then i.j is the base pair of a hairpin loop, and the bases in [i + 1, j − 1] are the unpaired
bases of the loop.

Interior loop: Let i.j, i′.j′ be base pairs with i < i′ < j′ < i, such that regions [i+1, i′−1]
and [j′ + 1, j − 1] are empty. Then i.j, i′.j′ are base pairs of an internal loop, and the
bases in [i + 1, i′ − 1] and [j′ + 1, j − 1] are the unpaired bases of the loop. An internal
loop is called a stacked pair if i′ = i + 1 and j′ = j − 1, and is called a bulge loop if either
i′ = i + 1 or j′ = j − 1, but not both. The pair i.j is the closing base pair of the loop.

Note that there are two types of interior loops: those for which i.j is not pseudoknotted
(in which case i′.j′ is also not pseudoknotted) and those for which i.j is pseudoknotted
(in which case i′.j′ is also pseudoknotted) . In the latter case, i′.j′ � i.j and we say that
the interior loop spans a band.
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External loop: The external loop consists of all unpaired bases and base pairs associated
with closed region [0, n + 1].

Multiloop: As with interior loops, multiloops are of two types, depending on whether or
not they span a band. To define the first type, let [i, j] be a closed region which is not
pseudoknotted (that is, i.j ∈ R) and which either has at least two (closed region) children,
or one pseudoknotted child. Then the unpaired bases and base pairs associated with [i, j]
form a multiloop.

For the second type of multiloop, let i.j be a pseudoknotted base pair and let i′.j′ � i.j,
where at least one of the (weakly closed) regions [i+1, i′−1] and [j′+1, j−1] is not empty.
Then the unpaired bases and base pairs associated with band region [i, i′]∪ [j′, j] comprise
a multiloop. We say that the multiloop spans a band. For both types of multiloop, we say
that i.j is the closing base pair of the multiloop.

Pseudoloop: Let [i, j] be a pseudoknotted closed region. Then the unpaired bases and
base pairs associated with [i, j], together with the closing base pairs of the bands associated
with [i, j], are members of a pseudoloop. The base pairs i.bp(i) and bp(j).j are the closing
base pairs of the pseudoloop.

Claim 2.4 There is a 1-1 correspondence between the set of all closed regions and the set
of loops that do not span bands.

Proof The 1-1 correspondence is as follows. The external loop and the closed region
[0, n + 1] correspond to each other. Let [i, j] be a closed region, 1 ≤ i, j ≤ n. If [i, j] is
not pseudoknotted, then i.j closes either a hairpin, interior, or multiloop which does not
span a band, and i.j closes no other loop. The region [i, j] and the loop closed by i.j are
in 1-1 correspondance with each other. If [i.j] is pseudoknotted, then i.bp(i) and bp(j).j
close a pseudoloop, and close no other loop that does not span a band. Thus there is a
1-1 correspondence between pseudoknotted closed regions [i, j] and pseudoloops closed by
i.bp(i) and bp(j).j.

Claim 2.5 Each unpaired base is a member of exactly one loop and each base pair is a
member of at least one and at most three loops.

Proof First, consider the unpaired bases. By Claim 2.2, each unpaired base is associated
with at most one closed region or band. Unpaired bases associated with closed region
[i, j] are members of the loop that corresponds to closed region [i, j] (see Claim 2.4), and
members no other loop. Finally, the unpaired bases which are associated with a band
segment are members of either an interior loop or multiloop that spans the band, and are
members of no other loop.

Next, consider the base pairs. By Claim 2.3, each base pair is associated with zero, one,
or two closed regions. First, suppose that i.j is associated with two closed regions. Then
it is a member of the two loops that correspond to these closed regions. Additionally, if
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i.j spans a band and is not the only base pair spanning the band, then i.j is a member
of a single loop that spans the band, since i.j must be an outer closing base pair of the
band. Thus, i.j is a member of either two or three loops.

Next, suppose that i.j is associated with one closed region. Then it is a member of the
loop that corresponds to this closed region. By Claim 2.3, i.j must also be associated
with a band segment, in which case it is a member of a multiloop that spans a band.
Additionally, if i.j itself spans a band, then as for the previous case, it is a member of at
most one loop that spans the band. Overall, i.j is a member of at most three loops.

Finally, suppose that i.j is associated with no closed region. Then i.j surely spans a band.
If i.j is a closing base pair of the band, then it is a member of a pseudoloop. If additionally
i.j is not the only base pair spanning the band, then i.j is a member of one loop that
spans the band. Otherwise, i.j is not the closing base pair of a band, in which case it is
a member of at most two loops that span the band. In either case, i.j is a member of at
most two loops.

Claim 2.5 implies that any structure for a strand of length n has O(n) loops.

3 Parsing Algorithm

A structure can be parsed into its component loops in two steps. In the first (Section 3.1),
the tree of closed regions is built. In the second (Section 3.2), the tree is traversed and
the list of base pairs in each loop is output.

3.1 Building the tree of closed regions

The Build-Closed-Regions-Tree Algorithm (Algorithm 1) takes as input a description of
the base pairs of a secondary structure R, and outputs the closed regions tree for the
structure. The algorithm runs in linear time. The algorithm is adapted slightly from
an algorithm of Bader et al. [5], which constructs a forest of connected components in
an overlap graph. Bader et al. applied this algorithm to the problem of computing the
inversion distance between signed permutations.

Scanning the structure from left to right, and using a stack, the algorithm keeps track of
regions that might be closed. We call such regions potentially closed and give a formal
definition in the proof of Claim 3.1. When a new base is scanned, there are three possi-
bilities: a new potentially closed region is identified, and added to the stack (line 4); two
or more potentially closed regions are merged, when a base pair linking them is identified
(lines 6-8); or a potentially closed region is confirmed to indeed be closed, in which case
the region is added to the tree of closed regions (line 10). For a pseudoknot free structure,
potentially closed regions are never merged, and so nothing happens in lines 6-8.
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algorithm Build-Closed-Regions-Tree
input: the base pair function bp for a secondary structure R

(for example, as an array bp[1, . . . , n])
output: tree T of closed regions of R

1 initialize T to contain one (unlabeled) node;
2 initialize the stack to be empty;
3 for λ := 1 to n {
4 if (λ < bp(λ)) {Push([λ, bp(λ)])}

// note: lines 5-9 do nothing when bp(λ).λ is not pseudoknotted
5 elseif (0 < bp(λ) < λ) {
6 E := λ;
7 while (Top.B > bp(λ)) {E := max(E,Pop.E)}
8 Top.E := max(E,Top.E)
9 }

10 if (λ = Top.E) {Add-To-Tree(Pop)}
11 }
12 return T

procedure Add-To-Tree([i, j])
// Adds closed region [i, j] to tree T ; assumes regions are added in postfix order
// and that initially the tree consists of a single node, [0, n + 1].

1 create a new node and label it [i, j];
2 let [a, b] be the child of [0, n + 1] with largest left border,

or [0, 0] if T has no children
3 while (a > i) {
4 make [a, b] a child of [i, j];
5 update [a, b] to be the child of T with largest left border,

or [0, 0] if there are no more children
6 }
7 make [i, j] a child of [0, n + 1]

Algorithm 1: Building the tree of closed regions. In the algorithm, we use the notation
[Top.B, Top.E] to denote the contents of the top of the stack, which is always a region.
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Claim 3.1 The Build-Closed-Regions-Tree Algorithm adds closed regions to the tree in
postfix order and runs in linear time.

Proof To prove the claim, we explain how potentially closed regions are tracked by the
algorithm, as the structure is scanned from left to right. We need to first define what is a
potentially closed region.

Intuitively, at the λth iteration of the algorithm on input structure R, a potentially closed
region from the viewpoint of λ is a region that might possibly be closed (with respect to
structure R), based on information gathered while scanning bases up to λ, but it is not
possible yet to be sure that the region is closed. For example, in the structure of Figure
2, [1, 17] and [2, 16] are potentially closed from the view point of 10. Informally, this is
because when base 1 was scanned, since base 1 is paired with base 17, it’s plausible that
[1, 17] is a closed region. Similarly, when base 2 is scanned, it’s plausible that [2, 16] is a
closed region. As bases 3 through 10 are scanned, we find no evidence to contradict the
possibility that [1, 17] and [2, 16] are closed. Moreover, we still can’t be sure that [1, 17]
and [2, 16] are closed, because at the time we scan base 10 we know nothing about the
base pairs involving bases 11 through 15, and if one of these were paired with, say, base
18, then neither [1, 17] nor [2, 16] would be closed.

However, region [2, 16] is not potentially closed with respect to 16, since when base 16 is
scanned, we can be sure that [2, 16] is closed. However, we consider [1, 17] to be potentially
closed from the viewpoint of 16. (One could argue that in fact we can conclude that [1, 17]
is definitely closed once we scan base 16, since we also know that 1 is paired with 17 and
there are no bases between 16 and 17 that could cause [1, 17] not to be closed. However,
the algorithm does not make such inferences, and our formal definition of potentially closed
regions accounts for this.)

Definition 3.1 (Potentially closed regions) Let R be a secondary structure. Let R(λ)
be the set of base pairs i.j of R with j ≤ λ. For any i such that 1 ≤ i ≤ λ and i < bp(i),
let R(λ, i) = R(λ) ∪ {i.bp(i)}.

(a) We say that i is potentially the left border of a closed region, from the viewpoint of λ
iff i satisfies the following properties:

(i) i is the left border of a closed region, which we denote by Cλ,i, with respect to structure
R(λ, i), and

(ii) Cλ,i is a child of [0, n + 1] (with respect to R(λ, i)).

(b) We say that [i, j] is potentially closed from the viewpoint of λ iff

(i) i ≤ λ < j,

(ii) i is potentially the left border of a closed region, Cλ,i, from the viewpoint of λ, and
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(iii) either λ < bp(i) = j or bp(i) ≤ λ and j is the largest base such that bp(j) is in Cλ,i.

As another example, [18, 32], [19, 31] and [20, 30] are all of the potentially closed regions
from the viewpoint of 24. These three regions, plus [25, 40], [26, 39], [27, 38], [28, 37],
and [29, 36] are all of the potentially closed regions from the viewpoint of 29. From the
viewpoint of 30, however, the potentially closed regions are [18, 32], [19, 31] and [20, 40].

We first show that the algorithm maintains the following invariant. Every time that line
9 of the algorithm is reached, the stack contains all potentially closed regions from the
viewpoint of λ plus the closed region with λ as right border, if any, in increasing order of
left border from bottom to top of the stack. Furthermore the stack contains nothing else.
This is straightforward to prove by induction on λ. We give the argument for proving the
induction step.

Note first that if the induction hypothesis holds at line 9 for λ−1, then if there is a closed
region with right border λ − 1, it is removed in line 10. Now, consider when line 9 is
reached on λ. There are three cases.

The first case is when λ is unpaired. In this case, R(λ−1) = R(λ), and so the regions which
are potentially closed from the viewpoint of λ − 1 are exactly those which are potentially
closed from the viewpoint of λ. Also, the stack does not change in this case when lines
4-8 are executed on λ, so by induction, the stack must contain all of the potentially closed
regions from the viewpoint of λ.

The second case is when λ < bp(λ). In this case, [λ, bp(λ)] is a potentially closed region
from the viewpoint of λ but not λ − 1, and is added to the stack in line 4 on the λth
iteration of the for loop. Moreover, all other regions on the stack, which by induction
are potentially closed from the viewpoint of λ − 1, are also potentially closed from the
viewpoint of λ, again since R(λ − 1) = R(λ).

The third case is when 0 < bp(λ) < λ. In this case, R(λ − 1) ∪ {bp(λ).λ} = R(λ). The
base pair bp(λ).λ witnesses the fact that all regions [i, j] on the stack with bp(λ) < i are
not potentially closed from the viewpoint of λ. This is because i cannot be a potential
left border of a closed region from the viewpoint of λ. To see this, suppose that i satisfies
property (i) of Definition 3.1 (a), that is, i is the left border of closed region Cλ,i, with
respect to structure R(λ, i). Since bp(λ) < i, Cλ,i must be nested in [bp(λ), λ] – otherwise
the base pair bp(λ).λ would connect a base, namely bp(λ), outside region Cλ,i with a base,
namely λ, inside Cλ,i), contradicting the fact that Cλ,i is closed with respect to R(λ, i).
Since Cλ,i is nested in [bp(λ), λ], it cannot be the case that Cλ,i is a child of [0, n + 1],
and so i fails to satisfy property (ii) of Definition 3.1 (a). Therefore, i is not a potential
left border of a closed region from the viewpoint of λ. Regions [i, j] on the stack with
bp(λ) < i are removed from the stack in line 7.

Suppose that [i′, j′] is at the top of the stack at the end of line 7. We claim that i′ is
potentially the left border of a closed region, namely the region Cλ−1,i′∪[bp(λ), λ], from the
viewpoint of λ. This claim follows immediately from the following three facts, which we
show next: (i) Cλ−1,i′ ∪ [bp(λ), λ] is a region, (ii) region Cλ−1,i′ ∪ [bp(λ), λ] is in fact closed,
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and (iii) region Cλ−1,i′ ∪ [bp(λ), λ] is a child of [0, n + 1] (with respect to R(λ). Fact (i)
follows if we show that bp(λ) ∈ Cλ−1,i′ . If i′ = bp(λ), then (i) is trivially true. So, suppose
that i′ < bp(λ). Then, [bp(λ), λ] is not a potentially closed region with respect to R(λ−1)
– otherwise, [bp(λ), λ] would be above [i′, j′] on the stack. It must then be the case that
[bp(λ), λ] does not satisfy property (i) of Definition 3.1 (a) of the definition of potentially
closed region (Definition 3.1). (If [bp(λ), λ) satisfied part (i) (a), then it would satisfy the
rest of the definition. In particular, the fact that λ is the rightmost paired base of R(λ)
would imply that [bp(λ), λ] is a child of [0, n + 1] with respect to R(λ − 1, bp(λ)) = R(λ),
by Claim 2.1 (b). But if [bp(λ), λ] fails to satisfy part (i) (a) with respect to λ − 1, then
some base pair B in R(λ − 1) must cross bp(λ).λ. Let C be the child of [0, n + 1], with
respect to R(λ − 1), containing base pair B (C must exist, by Claim 2.1 (a)). Let i′′ be
the left endpoint of C. Then, bp(i′′) is also in C (since C is closed), and so bp(i′′) ≤ λ− 1.
Therefore, C is a closed region with respect to R(λ−1, i′′)(= R(λ−1)), and so i′′ is the left
border of a closed region with respect to R(λ− 1). Furthermore, C must be the rightmost
child of [0, n + 1] (with respect to R(λ − 1)) whose left endpoint is at most bp(λ), since it
includes bp(λ). Moreover, the maximum base j′′ > λ − 1 with bp(j′′) in C exists, since in
particular λ is such that bp(λ) is in C. Therefore, the top of the stack at the end of line
7 must be [i′′, j′′], and so i′ = i′′. Therefore, C = Cλ−1,i, and thus Cλ,i contains bp(λ).

Fact (ii), that region Cλ−1,i′ ∪ [bp(λ), λ] is closed with respect to R(λ), follows since Cλ−1,i′

is closed and there can be no base pair between a base less than i′ and a base in the range
[bp(λ), λ]. If such a base pair existed, then it would be contained in some closed region,
say C ′, in [1, n] (by Claim 2.1 (a)). Then, Cλ−1,i′ would necessarily be a descendent of C,
so Cλ−1,i′ would not be a child of [0, n+1]. Fact (iii), that closed region Cλ−1,i′ ∪ [bp(λ), λ]
must be a child of [0, n + 1] with respect to R(λ) follows from Claim 2.1 since the right
border of the region is λ and λ is the rightmost paired base of R(λ.

In line 8, j′ is replaced by jmax, where jmax is the maximum of j′ and the rightmost
borders of all of the removed regions. Thus, by construction, jmax is the largest base such
that bp(jmax) is in Cλ,i′ = [i′λ]. So, [i, jmax] is indeed potentially closed with respect to λ
or, if jmax = λ, is indeed closed.

Finally, all other regions below [i′, jmax] on the stack are still potentially closed with
respect to λ. To see this, let [i′′, j′′] be such a region. The right border of Cλ−1,i′′ must be
less than bp(λ), since [i′′, j′′] is not at the top of the stack in line 7. Furthermore, j′′ must
be greater than λ − 1, and thus must be greater than λ, since bp(j′′) is in Cλ−1,i′′ . From
this, it follows that [i′′, j′′] must satisfy all of the conditions of a potentially closed region
from the viewpoint of λ. This completes the proof of the invariant.

It follows from the invariant that at line 10, if there is a closed region with right border
λ, it is added to the tree on the λth iteration of the for loop. Finally, closed regions are
added to the tree in postfix order because regions are added in the order of their right
border.

The total number of steps per iteration of the for loop, excluding the while loop of step
7, is constant. Over all runs of for loop, the while loop is called at most n times. The
number of assignment statements over all executions of while loop is also bounded by at
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most n, since stack is popped at each assignment statement, and at most n tuples are
pushed onto the stack. Finally, the Add-To-Tree procedure takes O(n) time over all calls,
since the time taken to add a node to the tree is proportional to the number of its children.
The linear running time follows.

3.2 Enumerating Loops

Each loop is fully specified by its member base pairs: that is, the unpaired bases that
are members of the loop can be inferred from the base pairs. Thus it is sufficient for an
enumeration algorithm to list the base pairs of each loop, for example, with the closing
base pairs first and the remaining base pairs in ordered by left index.

From Claim 2.4, there is a 1-1 correspondence between closed regions and loops which do
not span a band. A traversal of the closed regions tree in prefix order suffices to enumerate
such loops: when visiting closed region [i, j], its closing base pairs and those of its children
(in order) are the needed base pairs.

To enumerate loops that span the bands associated with closed region [i, j], the following
steps are needed.

1. Create an ordered list, BL(i, j), of the bases k for which either k.bp(k) or bp(k).k
spans a band associated with region [i, j]. Let Succ(k) and Pred(k) denote k’s suc-
cessor and predecessor in the list, respectively (with Nil indicating that k has no
successor or predecessor).

2. Let nested(k) be the list of closed region children of [i, j] that are nested in region
[k,Succ(k)].

3. Scanning BL(i, j) from left to right, for each base k in BL(i, j), if k < bp(k) and
Succ(k) = bp(Pred(bp(k))), then k.bp(k) is the closing base pair of a loop that spans
a band. The loop is an interior loop if both nested(k) and nested(Pred(bp(k))) are
Nil. Otherwise, the loop is a multiloop, and the base pairs which are members of the
loop are the closing base pairs of the regions in nested(k) and nested(Pred(bp(k))),
as well as the base pair Succ(k).Pred(bp(k)).

All of the lists BL(i, j) can be constructed in linear time, by starting with a linked list L
of all paired bases between 1 to n in order, with pointers from an array to list elements
to allow direct access to any element of the list. From L, the lists BL(i, j) can be con-
structed by traversing the closed regions tree in postfix order, removing from list L the
part that is associated with each closed region. Once the lists BL(i, j) are constructed,
it is straightforward to then construct the nested(i) lists. Thus, the total running time is
again linear.
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4 Energy Model and Calculation

In the standard thermodynamic model for pseudoknot free secondary structures, the en-
ergy of a loop is a function of (i) loop type, (ii) an ordered list of its member base pairs,
(iii) the bases forming each member base pair, and (iv) the unpaired bases which are
members of the loop and are adjacent to each member base pair (if any). The energy of a
secondary structure is then calculated by summing the free energy of its component loops.

For pseudoknotted structures, the standard thermodynamic model is extended so that
the energy of a loop depends additionally on (v) the location status of the loop, which
indicates its position relative to pseudoloops in the structure. The location status can be
one of the following.

span-band : Interior or multiloops that span a band are called span-band loops.

in-band : A loop that corresponds to closed region [i, j] is an in-band loop if i.j is
associated with a band segment.

out-band : A loop that corresponds to closed region [i, j] is an out-band loop if it is a
child of a pseudoknotted closed region and is not an in-band loop.

standard : Loops that are not of the three types above are called standard loops. Such
loops do not span bands and are do not correspond to children of pseudoknotted
loops.

4.1 Energy Calculation

It is straightforward to extend the loop enumeration algorithm so that the loop’s type
and location status is output in addition to its list of tuples. For example, the type of a
loop corresponding to a closed region can be determined from the number and types of its
children (e.g. if the closed region is not pseudoknotted and has no children, it must be a
hairpin loop; if it has one child which is not a pseudoknotted closed region then it must be
an internal loop). The location status of a loop can be determined using additionally the
ordered list of band segments of its parent (if any). Then the free energy of the structure
can be calculated by adding up the free energy of all loops.

4.2 Discussion

In the Rivas and Eddy model [30], the energy of a loop is exactly as in the standard model
for pseudoknot free structures if the loop does not span a band. The standard model is
generalized in the case of multiloops, which may now contain pseudoknotted regions, as
follows: the energy is of the form a + bu + ch + dm, where a, b, c, and d are constants
independent of the loop, u is the number of unpaired bases of the loop, h is the number
of tuples (i, j) of the multiloop with i · j ∈ R, and m is the number of tuples (i, j) of
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the multiloop with i · j 6∈ R. For multiloops that span a band, the constants a, b, c, d are
replaced by distinct constants a′, b′, c′, d′. In contrast, in the D&P model [13], the energy
of a multiloop uses the same constants, regardless of whether or not it spans a band. In
both models, the energy of a pseudoloop is the sum of terms, with one term depending
on the total number of unpaired bases, one term per tuple of the pseudoloop, and one
term that depends on the location status of the pseudoloop; however the dependence on
the location status is different for both models. An interesting direction for future work
would be to establish which method is most biologically plausible (neither paper provides
justification for their choice of model).

We note that the notion of what is a multiloop in the Rivas and Eddy algorithm is perhaps
unnaturally restrictive. Consider the (artificially small) structure {1·4, 2·9, 3·5, 6·8, 7·10}.
Here, the base pairs 2 · 9, 3 · 5, and 6 · 8 could be considered to form a “multiloop”, but it
is not recognized as such by the Rivas and Eddy algorithm with its current parameters,
and thus also not by our classification. (The Dirks and Pierce model, being less general,
does not handle such loops.) We expect that the Rivas and Eddy algorithm could be
reformulated to assign multiloop energies to such loops.

5 On the generality of Akutsu’s Structure Class

Akutsu’s dynamic programming algorithm for RNA secondary structure prediction han-
dles a restricted class of pseudoknotted RNA structures, called secondary structures with
recursive pseudoknots [3]. In this section, we provide a linear-time algorithm to determine
whether a structure can be handled by Akutsu’s algorithm, and compare its generality
with other algorithms.

Here, we will represent secondary structures as patterns, in which information about
unpaired bases and consequently, the base indices, is lost. However, the pattern of nesting
or overlaps among base pairs is preserved. We use ǫ to denote the empty string and Nn to
denote the natural numbers between 1 and n (inclusive). A string P (of even length) over
some alphabet Σ is a pattern if every symbol of Σ occurs either exactly twice, or not at
all, in P . Let C be a closed region, and let R be the structure whose bases are in C. We
say that C, and R, correspond to pattern P if there exists a mapping m : Nn → Σ ∪ {ǫ}
with the following properties: (i) if i.j ∈ R then m(i) ∈ Σ and m(i) = m(j), (ii) if i.j
and j.i /∈ R for all j ∈ Nn, then m(i) = ǫ, and (iii) P = m(1)m(2) . . . m(n). We refer
to the index of the first and the second occurrence of any symbol σ in P by Left(P, σ)
and Right(P, σ) respectively. When P is understood, we use Left(σ) and Right(σ). For
example, pattern P = abcdefghcbahgfed corresponds to closed region [18, 40] in Figure 2
(ignoring unpaired bases), with Left(a) = 1 and Right(a) = 11. Finally, if P and P ′ are
patterns, P ↓ P ′ denotes P with all symbols in P ′ removed.

In what follows, let P be a pattern of size 2n over an alphabet Σ of size n > 0. The
following definition of the class of structures that Akutsu’s algorithm can handle is closely
adapted from the definition in his paper [3].
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Definition 5.1 (a) P is called a simple pseudoknot if there exist j0 = j0(P ) and j′0 =
j′0(P ), 1 ≤ j′0 ≤ j0 ≤ 2n, for which the following conditions are satisfied:

A1 For each a ∈ Σ, either (i) 1 ≤ Left(a) < j′0 ≤ Right(a) ≤ j0 or (ii) j′0 ≤ Left(a) ≤
j0 < Right(a) ≤ 2n.

A2 For each a, b ∈ Σ, if either Left(a) < Left(b) < j′0 or j′0 ≤ Left(a) ≤ Left(b), then
Right(a) > Right(b).

We say that j0 and j′0 witness the fact that P is a simple pseudoknot.

(b) Pattern P is a recursive pseudoknot if and only if P is a simple pseudoknot or P =
P1P2P

′

1 where P2 is a nonempty simple pseudoknot and P1P
′

1 is a recursive pseudoknot.

(c) An RNA secondary structure R is an Akutsu structure if its corresponding pattern P
is a recursive pseudoknot.

The following is a straightforward consequence of the definition.

Claim 5.1 If P is a simple pseudoknot according to Definition 5.1, |P | > 2, and a is a
symbol of P , then P ↓ aa is also a simple pseudoknot.

We now give our alternative definition of a simple pseudoknot. We first define what is a
simplest pseudoknot.

Definition 5.2 A pattern P is a simplest pseudoknot if and only if it admits either of
these two cases:

B1 P = aa, for some a.

B2 Either P = a1aiP1aia1P2 or P = a1P1aia1aiP2, where a1P1a1P2 is a simplest pseu-
doknot.

Definition 5.3 (a) P is a simple pseudoknot if and only if either P is a simplest pseudo-
knot or it is equal to a1P1a1aiai+1 . . . arar . . . ai+1aiP2, for some a1, ai, . . . , ar ∈ Σ, where
a1P1a1P2 is a simplest pseudoknot.

(b) P is a recursive pseudoknot if and only if P is a simplest pseudoknot or P = P1P2P
′

1

where P2 is a simplest pseudoknot and P1P
′

1 is a recursive pseudoknot.

Theorem 5.1 Definitions 5.1 (a) and 5.3 (a) of a simple pseudoknot are equivalent.
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Proof Let P be a pattern of length 2n that satisfies Definition 5.1 (a). We show, using
induction, that P also satisfies Definition 5.3 (a). The other direction is similar. The base
case, when n = 1 is easy, since then P = aa for some a.

Assume that n > 1, and that the first symbol of P is a1. Let j′0(P ) and j0(P ) be witnesses
for P . Let X be the set of symbols a for which Right(a1) < Left(a). First, suppose that X
is not empty. All of the symbols in X must satisfy property A1 part (ii) of Definition 5.1.
In order that A2 is also satisfied, P must be of the form a1P1a1aiai+1 . . . arar . . . ai+1aiP2,
where X = {ai, ai+1, . . . , ar} and the symbols in P2 are also in P1. If we let P ′ = a1P1a1P2,
j0(P

′) = Right(P ′, a1) and j′0(P
′) = j′0(P ) then both conditions A1 and A2 are still

satisfied for P ′ with j′0(P
′) and j0(P

′) as witnesses. By induction, P ′ = a1P1a1P2 satisfies
Definition 5.3 and in fact must be a simplest pseudoknot. Therefore P satisfies Definition
5.3.

Now consider the case where X is empty. Let ai be the symbol at position Right(a1)−1. If
ai satisfies property A1 (i), it must be that P = a1aiP1aia1P2; similarly if ai satisfies A1
(ii), it must be that P = a1P1aia1aiP2, where in both cases the symbols of P2 satisfy A1
(ii) and are also in P1. In both cases, j0(P ) = Right(P, a1). Also, j′0(P ) = Right(P, a1)− 1
if P1 = ǫ and j′0(P ) < Right(P, a1) − 1 otherwise. Let P ′ = P ↓ aiai, let j0(P

′) =
Right(P ′, a1), and let j′0(P

′) = (1) Right(P ′, a1) if P1 = ǫ, (2) j′0(P ) if P1 6= ǫ and ai

satisfies condition A1 (ii), and (3) j′0(P ) − 1 if P1 6= ǫ and ai satisfies A1 (i). Let
P ′ = P ↓ aiai, set j0(P

′) to Right(P ′, a1) and set j′0(P
′) to either (1) Right(P ′, a1) if

P1 = ǫ, (2) j′0(P ) if P1 6= ǫ and ai satisfies A1 (ii), or (3) j′0(P ) − 1 if P1 6= ǫ and ai

satisfies A1 (i). Then both conditions A1 and A2 are still satisfied for P ′ with j′0(P
′)

and j0(P
′) as witnesses. By induction, P ′ = a1P1a1P2 satisfies Definition 5.3 and in fact

must be a simplest pseudoknot. Therefore P satisfies Definition 5.3.

Theorem 5.2 Definitions 5.1 (b) and 5.3 (b) of a recursive pseudoknot are equivalent.

Proof The proof is a straightforward exercise in induction. The main observation needed
is that if P is a recursive pseudoknot according to Definition 5.1 (b), and P contains a
substring of the form arar, then this substring is a simplest pseudoknot, and P ↓ arar is
also a recursive pseudoknot according to Definition 5.1 (b).

Let C be a closed region and let C1, . . ., Cm be the closed region children of C. Let P
be the pattern corresponding to C, and Pi the pattern corresponding to Ci, 1 ≤ i ≤ m.
Then P ↓ P1P2 . . . Pm is is called the private pattern corresponding to C.

Theorem 5.3 R is an Akutsu structure if and only if all of the private patterns corre-
sponding to the closed regions of R are simplest pseudoknots.

Proof The proof is a straightforward induction on the number of closed regions of R.
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5.1 Akutsu Test

We define two simplify operations according to B2: (i) a1aiS1aia1S2 is converted to
a1S1a1S2, and (ii) a1S1aia1aiS2 is converted to a1S1a1S2. We define one more operation,
final operation, according to B1: (iii) a1a1 is converted to ǫ. In these cases we say that a
simplify/final operation is applicable to a1.

To test whether the pattern P is a simplest pseudoknot performs the following steps. First,
repeatedly apply simplify operations (i) or (ii) on the first symbol, a1 of P , if applicable.
Then, apply the final operation (iii) on a1 if applicable. Return true if the resulting
pattern is empty and false otherwise. This can be done in linear time.

By Theorem 5.3, to test whether a secondary structure R is an Akutsu structure, it is
sufficient to check whether the private pattern corresponding to each closed region of R
is a simplest pseudoknot. It is straightforward to generate the private pattern for all
closed regions of structure R in linear time, by traversing the closed regions tree T (R)
and converting the structure represented by each list BL (as defined in Section 3.2) to the
corresponding pattern. Thus the overall algorithm runs in linear time.

5.2 Classification of Biological Structures

Condon et al. [9] provide linear time algorithms to test if an input structure is in the class
of structures handled by the algorithms of Lyngsø and Pedersen (L&P), [23], Dirks and
Pierce (D&P) [13], and Rivas and Eddy (R&E) [30]. To compare the generality of Akutus’s
algorithm with those of R&E and D&P, we applied our algorithms for membership in
Akutsu’s recursive class along with those of Condon et al.[9] to classify biological structures
from several sources: the Pseudobase Database (PBase) [37], Pseudoviewer [18], the Gutell
ribosomal RNA database [8], the RCSB database [6], and the tmRNA database [41].
Details of our tests, including all structures tested, test results, and source code, are
available at http://www.cs.ubc.ca/labs/beta/Software/RnaParser/.

For each structure considered, we tested whether it could be handled by each algorithm
both before and after removing isolated base pairs, where an isolated base pair is defined
to be a base pair that spans a band and is the only base pair spanning the band. Such
base pairs are often considered to represent tertiary interactions, rather than secondary
structure, which is why we removed them. Table 1 (a) shows results when isolated base
pairs are not removed, and Table 1 (b) shows results when isolated base pairs are removed.
We note that, although Akutsu’s algorithm is more general than that of Dirks and Pierce,
it can handle only two structures that cannot be handled by the algorithm of Dirks and
Pierce (out of a total of hundreds of structures considered). These two are in Table (a),
and so involve isolated base pairs.

We also compare with the class of so-called density 2 structures, for which Zhao [40]
has an efficient O(n3) prediction algorithm based on the principle of hierarchical folding.
A structure for a sequence of length n is density 2 if, for all closed regions [i, j] and
bases k with i ≤ k ≤ j, the number of bands [i′, j′] ∪ [bp(j′), bp(i′)] associated with [i, j]
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with i′ < k < j′ is at most 2. It is straightforward to test, using the closed regions
tree and band lists BL (defined in Section 3.2), that a structure is density 2. Table 1
shows that the density 2 (D2) structures encompass significantly more biological structures
in our dataset than the Akutsu structures, primarily kissing hairpin structures, which
arise commonly. Pseudobase contains two important structures which are not density 2
structures. One structure, with pattern abcdcadb, is the self-cleaving ribozyme of the
hepatitis delta virus (HDV) [15]. The second structure, with pattern abcabc, is found
at the first ribosome initiation site in the E. coli mRNA, and mediates regulation of the
ribosome [16]. Structures from the Gutell database which were not density 2 structures
all involved non-canonical base pairs, that is, base pairs other than CG, GC, AU , UA,
and GU , which also are often considered to be tertiary rather than secondary structure.
Thus, it appears that the density 2 class is quite general.

6 Conclusions

In this work we present a precise definition of the structural elements in a secondary
structure, and a comprehensive way to classify the type of loops that arise in pseudoknotted
structure. Based on an algorithm of Bader et al. [5], we also introduced a linear time
algorithm to parse a pseudoknotted secondary structure to its component loops, and to
calculate its the free energy. Finally, we applied our algorithm to compare the generality
of Akutsu’s algorithm with those of Lyngsø and Pedersen, Dirks and Pierce, and Rivas
and Eddy, on a large test set of biological structures.

Our work can be continued in future in several directions. First, heuristic algorithms
commonly use a procedure to calculate the free energy for a given sequence and structure.
Incorporating our linear time free energy calculation algorithm into heuristic algorithms
may improve their efficiency [29]. Also, it would be useful to refine the thermodynamic
model presented in this paper, to obtain mfe predictions of better quality.
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