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ABSTRACT

Algorithms for prediction of RNA secondary structure—the set of base pairs that form when

an RNA molecule folds—are valuable to biologists who aim to understand RNA structure

and function. Improving the accuracy and efficiency of prediction methods is an ongoing

challenge, particularly for pseudoknotted secondary structures, in which base pairs overlap.

This challenge is biologically important, since pseudoknotted structures play essential roles

in functions of many RNA molecules, such as splicing and ribosomal frameshifting. State-

of-the-art methods, which are based on free energy minimization, have high run-time

complexity (typically ‚.n5/ or worse), and can handle (minimize over) only limited types

of pseudoknotted structures. We propose a new approach for prediction of pseudoknot-

ted structures, motivated by the hypothesis that RNA structures fold hierarchically, with

pseudoknot-free (non-overlapping) base pairs forming first, and pseudoknots forming later

so as to minimize energy relative to the folded pseudoknot-free structure. Our HFold

algorithm uses two-phase energy minimization to predict hierarchically formed secondary

structures in O.n3/ time, matching the complexity of the best algorithms for pseudoknot-

free secondary structure prediction via energy minimization. Our algorithm can handle a

wide range of biological structures, including kissing hairpins and nested kissing hairpins,

which have previously required ‚.n6/ time.

Key words: computational molecular biology, RNA, secondary structure.

1. INTRODUCTION

THE RNA MOLECULES aid in translation and replication of the genetic code, catalyze cellular processes,

and regulate the expression level of genes (Dennis, 2002). Structure is key to the function of RNA

molecules, and so methods for predicting RNA structure from the base sequence are of great value.

Currently, prediction methods focus on secondary structure—the set of base pairs that form when the RNA

molecule folds. There has been significant success in prediction of pseudoknot-free secondary structures,

which have no crossing base pairs (for an example of a pseudoknot-free structure, see Fig. 1). State-of-

the-art prediction algorithms, such as Mfold (Mathews et al., 1999) or RNAfold (Hofacker et al., 1994)

find the structure with minimum free energy (MFE) from the set of all possible pseudoknot-free secondary
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140 JABBARI ET AL.

structures. The energy of a structure is estimated as the sum of energies of loops that form when the

molecule folds, where the loop energy values are provided by biologists.

While many small RNA secondary structures are pseudoknot free, pseudoknots do arise frequently in

biologically important RNA molecules, both in the cell (Staple and Butcher, 2005; van Batenburg et al.,

2001), and in viral RNA (Deiman and Pleij, 1997). Examples include simple H-type pseudoknots, with

two interleaved stems, which are essential for certain catalytic functions and for ribosomal frameshifting

(Alam et al., 1999), as well as kissing hairpins, which are essential for replication in the coxsackie B virus

(Melchers et al., 1997).

Unfortunately, MFE pseudoknotted secondary structure prediction is NP-hard (Akutsu, 2000; Lyngsø,

2004; Lyngsø and Pedersen, 2000), even for a simple energy model that depends on base pairs but

not on unpaired bases. Polynomial-time MFE-based approaches to pseudoknotted structure prediction

have been proposed (Akutsu, 2000; Dirks and Pierce, 2003; Reeder and Giegerich, 2004; Rivas and

Eddy, 1999; Uemura et al., 1999), with respect to various sum-of-loops energy models for pseudoknotted

structures, which find the MFE structure for a given input sequence, from a restricted class of structures.

A class of structures can be defined by specifying allowable patterns of interleaving among base pairs.

For example, Mfold and RNAfold handle the class of pseudoknot-free secondary structures; we provide

more examples later. We say that a structure R can be handled by a given algorithm if R is in the class

of structures over which the algorithm optimizes.

Algorithms for MFE pseudoknotted secondary structure prediction trade off run-time complexity and

generality—that is, the class of structures over which the algorithms optimize. For example, kissing hairpins

are not in the class of structures handled by the ‚.n5/ algorithms of Akutsu (2000) and Dirks and Pierce

(2003) but are in the class handled by the ‚.n6/ algorithm of Rivas and Eddy (1999). (We note that, even

when the true structure R for a sequence is handled by an algorithm, the algorithm still may not correctly

predict R, because correctness depends not only on the generality of the algorithm but also on the energy

model and energy parameters.)

Our work is motivated by two limitations of MFE-based algorithms for pseudoknotted secondary

structure prediction: they have high time complexity and ignore the folding pathway from unfolded

sequence to stable structure. Several experts have provided evidence for, and support, the hierarchical

folding hypothesis (Mathews, 2006; Tinoco and Bustamante, 1999), which is succinctly stated by Tinoco

and Bustamante as follows: “An RNA molecule [has] a hierarchical structure in which the primary sequence

determines the secondary structure which, in turn, determines its tertiary folding, whose formation alters

only minimally the secondary structure.” (These and other authors consider the initially-formed secondary

structure to be pseudoknot-free, and refer to base pairs that form pseudoknots as part of the tertiary structure.

However, here we refer to all canonical base pairs, namely A-U , C -G, and G-U , as secondary structure.)

We note that while the hierarchical folding hypothesis is a common assumption, some counter examples

have been reported, notably formation of the structure of a subdomain of the Tetrahymena thermophila

group I intron ribozyme (Wu and Tinoco, 1998). However, even in this case, 15 of the 19 base pairs in

the initially-formed pseudoknot-free secondary structure are retained upon formation of tertiary structure,

and the 4 missing base pairs lie at the ends of stems.

In this paper, we present a novel and efficient algorithm to predict RNA secondary structures, in a manner

consistent with a natural formalization of the hierarchical folding hypothesis. We consider the problem

of predicting the secondary structure as follows: given a sequence S and a pseudoknot-free secondary

structure G (a set of base pairs), find a pseudoknot-free secondary structure G0 (a set of base pairs disjoint

from G) for S , such that the free energy of G [ G0 is less than or equal to the free energy of G [ G00 for

all pseudoknot-free structures G00 ¤ G0.

As with algorithms for MFE pseudoknotted secondary structure prediction, algorithms for hierarchical-

MFE secondary structure prediction may handle a restricted class of structures. That is, the type of structure

formed by G [ G0 may have restricted patterns of interleaving among base pairs. Since both G and G0 are

pseudoknot-free, the most general class of structures that could be handled by an algorithm for hierarchical-

MFE secondary structure prediction would be the bi-secondary structures of Witwer et al. (2004)—those

structures which can be partitioned into two pseudoknot-free secondary structures G and G0. There is no

known efficient method to solve the hierarchical-MFE prediction for the class of bi-secondary structures.

Instead, we suggest a solution with respect to a subclass of the bi-secondary structures, which we call

density-2 structures, explained in Section 2.
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NOVEL AND EFFICIENT RNA SECONDARY STRUCTURE PREDICTION 141

FIG. 1. A pseudoknot-free structure (top), an H-type pseudoknotted structure (center) and a kissing hairpin (bottom).

Figures were generated by PseudoViewer (Han et al., 2002).
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142 JABBARI ET AL.

The class of density-2 structures is quite general, including H-type pseudoknots and kissing hairpins,

as well as structures containing nested instances of these structural motifs. The only known algorithm

for predicting MFE nested kissing hairpins, that of Rivas and Eddy, requires �.n6/ time. Rastegari and

Condon (2007) showed that, out of a set of over 1100 biological structures, all but nine are density-2

(when isolated base pairs are removed), and six of these nine are also not in the class handled by Rivas

and Eddy’s algorithm.

In Section 2, we present some useful background information and notations pertaining to RNA structure

prediction. In Section 3, we provide a theoretical basis for the correctness of our HFold algorithm. In

Section 4, we present HFold, a dynamic programming algorithm that solves the hierarchical-MFE secondary

structure prediction problem for the class of density-2 secondary structures in O.n3/ time and O.n2/ space.

We start by a high level description of HFold and proceed with details of different recurrences in our

dynamic programming approach. We then present our conclusion and future work in Section 5.

2. BACKGROUND ON RNA SECONDARY STRUCTURE

An RNA molecule is a sequence of nucleotides, or bases, of which there are four types: Adenine (A),

Guanine (G), Cytosine (C ), and Uracil (U ). The molecule has chemically distinct ends, called the 50 and

30 ends. We model an RNA molecule as a sequence over the alphabet fA; C; G; U g, with the left end of

the sequence being the 50 end. Throughout, n denotes the length of an RNA sequence. We index the bases

consecutively from the 50 end starting from 1, and refer to a base by its index.

When an RNA molecule folds, bonds may form between canonical pairs of bases, where each base may

pair with at most one other base. The canonical base pairs, which form the secondary structure, are the

Watson-Crick pairs A-U and C -G, as well as the wobble pair G-U (Fig. 2). A secondary structure R is a

set of pairs i:j , 1 � i < j � n, such that no index occurs in more than one pair and pair of bases indexed

i and j are canonical. The pair i:j denotes that the base indexed i is paired with the base indexed j .

FIG. 2. An H-type pseudoknotted structure (left) and a pseudoknot-free structure (right), in graphical (top) and arc

diagram (bottom) formats.
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NOVEL AND EFFICIENT RNA SECONDARY STRUCTURE PREDICTION 143

We use the following notation when describing our algorithms. These definitions are mostly taken from

and illustrated in the work of Rastegari and Condon (2007). Throughout, definitions are with respect to a

fixed secondary structure R. Generally we use R to refer to a structure that may be pseudoknotted (that

is, contains at least one pseudoknotted base pair), and use G to refer to a structure that we know to be

pseudoknot-free.

2.1. Notation

Notation is as follows:

� bpR.i/: We let bpR.i/ denote the index of the base that is paired with base i in R, if any; otherwise

bpR.i/ D 0.
� paired.R; i/: true if and only if i is paired in the structure R.
� cross: if i:j and i 0:j 0 are in R, and i < i 0 < j < j 0, we say that pair i:j crosses pair i 0:j 0 from the

left (and i 0:j 0 crosses i:j from the right).
� pseudoknotted base pair: We say that i:j is a pseudoknotted base pair if for some other base pair i 0:j 0

in structure R, i:j crosses i 0:j 0. We also refer to i and j as pseudoknotted base indices.
� pseudoknot-free secondary structure: If there are no pseudoknotted base pairs in a given structure, it

is a pseudoknot-free secondary structure.
� cover: Base pair i:j covers base k if i < k < j and there is no other base pair i 0:j 0 2 G with

i < i 0 < k < j 0 < j . In this case, we denote i:j by cover.G; k/. Otherwise cover.G; k/ D .�1; �1/.
� isCovered.G; k/: true if and only if some base pair of G covers k.

2.2. Region and loop classification and related definitions

� region Œi; j �: Sequence of indices between i and j inclusive, where i and j are called the left and right

borders of the region respectively.
� Gi;j : The set of base pairs of G contained in region Œi; j �, i.e., G [ Œi; j � � Œi; j �.
� disjoint regions: Two regions Œi; j � and Œi 0; j 0� are disjoint if no index is in both regions, i.e., j < i 0 or

j 0 < i .
� empty.R; Œi; j �/: true if region Œi; j � contains no base pair in R. Formally, 8k; i � k � j; paired.R; k/.
� weakly closed region: A region is weakly closed if no base pair connects a base in the region to a base

outside the region. Formally, Œi; j � is weakly closed if and only if for all k 2 Œi; j �, either bpR.k/ 2 Œi; j �

or bpR.k/ D 0. Weakly closed.R; Œi; j �/ is true if and only if Œi; j � is a weakly closed region of R.
� closed region: A weakly closed region Œi; j �, with at least two bases, is closed if it cannot be partitioned

into two smaller weakly closed regions. Formally, Œi; j � is closed if and only if i < j , Œi; j � is weakly

closed, and for all l 2 Œi; j � 1�, neither Œi; l � nor Œl C 1; j � is weakly closed. Note that if Œi; j � is closed

then both i and j must be paired (although not necessarily with each other).
� pseudoknot-free closed region: A closed region Œi; j � that does not contain any pseudoknotted base

pairs.
� pseudoknotted closed region: A closed region Œi; j � of a structure R such that i:bpR.i/ and bpR.j /:j

are pseudoknotted base pairs. We refer to indices i and j as the left and right borders of the pseudoknotted

region Œi; j �.

Note: closed regions must be either pseudoknot-free or pseudoknotted.
� directly banded in: For a pseudoknotted base pair i:j , we say i:j is directly banded in base pair i 0:j 0

and write i:j � i 0:j 0 if:

(1) i 0 < i < j < j 0, and

(2) Œi 0 C 1; i � 1� and Œj C 1; j 0 � 1� are weakly closed regions.
� band: Let i:j and i 0:j 0 be the first and the last base pairs in a maximal chain of �. Then, Œi; i 0�[Œj 0; j � is

a band. We call Œi; i 0� and Œj 0; j � the band regions, and call i 0:j 0 and i:j the inner and outer base pairs of

the band respectively. For example, there are three bands in Figure 3: Œ1; 2� [ Œ22; 23�, Œ18; 19� [ Œ33; 34�

and Œ27; 27� [ Œ39; 39�.

We refer to i and j as the left and the right borders of the band respectively.
� inside a band: A region Œi; j � is inside a band Œi1; i 0

1� [ Œj 0
1; j1�, if either i1 < i � j < i 0

1 or j 0
1 < i �

j < j1 is true.

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

B
R

IT
IS

H
 C

O
L

U
M

B
IA

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 1
0/

06
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



144 JABBARI ET AL.

FIG. 3. Pseudoknot.

� band associated with closed region: We say that band Œi; i 0� [ Œj 0; j � is associated with closed region

Œi 00; j 00� if Œi; i 0�, and thus Œj 0; j �, are subregions of Œi 00; j 00� but are not subregions of any closed subregions

of Œi 00; j 00�. For example, in Figure 3, the three bands Œ1; 2� [ Œ22; 23�, Œ18; 19� [ Œ33; 34� and Œ27; 27� [

Œ39; 39� are associated with closed region Œ1; 39�, whereas Œ3; 3� [ Œ6; 6� and Œ5; 5� [ Œ9; 9� are associated

with closed region Œ3; 9�.
� unpaired bases associated with closed region Œi; j �: These are the unpaired bases in Œi; j � but not

in any closed region or band region which are subregions of Œi; j �. For example, in the structure of

Figure 3, the unpaired bases associated with closed region Œ1; 39� are 17, 20, 21, 24-26, 28-32, and

35-38.
� base pairs associated with closed region Œi; j �: These are the base pairs in Œi; j � but not in any closed

region or band region which are subregions of Œi; j �.
� hairpin loop (or hairpin): A hairpin loop contains a base pair i:j and the bases in Œi C 1; j � 1� that

are all unpaired. Formally, the tuple .i; j / defines a hairpin loop in a secondary structure if i and j are

paired and Œi C 1; j � 1� is an empty region. i:j is called the closing base pair of the hairpin loop. The

hairpin marked in Figure 2 contains four unpaired bases.
� internal loop: An internal loop, sometimes called interior loop, contains two base pairs i:j and i 0:j 0, and

the bases in Œi; i 0� [ Œj 0; j � that are all unpaired. Formally, the tuple .i; i 0; j 0; j /, with i < i 0 < j 0 < j ,

defines an internal loop if i:j and i 0:j 0, and Œi C 1; i 0 � 1� and Œj 0 C 1; j � 1� are empty regions. i:j

and i 0:j 0 are called the closing base pairs of the internal loop.
� stacked loop: A stacked loop, also called stacked pair, contains two consecutive base pairs. The tuple

.i; i C 1; j � 1; j / defines a stacked pair if i:j and .i C 1/:.j � 1/ are in R. A stem or helix is made

of consecutive stacked loops.

Note that, in fact, a stacked loop is also a special case of an internal loop, with no unpaired bases on

either side.
� bulge loop: A bulge loop, or simply bulge, is a special case of an internal loop, which has no unpaired

base on one side, and at least one unpaired base on the other side. Formally, the tuple .i; i 0; j 0; j /, with

i < i 0 < j 0 < j , defines a bulge loop if i:j and i 0:j 0, and either i 0 D i C 1 and Œj 0 C 1; j � 1� is an

empty region or Œi C 1; i 0 � 1� is an empty region and j 0 D j � 1.
� spans a band: There are two types of internal loops, stacked loops and bulge loops; those for which

the closing base pair, i:j , is not pseudoknotted and those for which i:j is pseudoknotted. In the latter

case, we say that the loop spans a band.
� multi-branched loop: There are two types of multi-branched loops, or multiloops, depending on whether

or not they span a band:

(1) Let Œi; j � be a closed region which is not pseudoknotted, and has at least two closed subregions,

or a pseudoknotted subregion. Then the unpaired bases and base pairs associated with Œi; j � form a

multiloop.

(2) Let i:j be a pseudoknotted base pair and i 0:j 0 � i:j , where at least one of the (weakly closed)

regions Œi C 1; i 0 � 1� and Œj 0 C 1; j � 1� is not empty. Then the unpaired bases and base pairs in

the band region Œi; i 0� [ Œj 0; j � comprise a multiloop that spans a band.

For both types of multiloop, we say that i:j is the closing base pair of the multiloop. Each closed

subregion of Œi; j � is called a branch of the corresponding multiloop.
� pseudoloop: Let Œi; j � be a pseudoknotted closed region. Then the unpaired bases and base pairs

associated with Œi; j �, together with the inner and outer base pairs of the bands associated with Œi; j �,
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NOVEL AND EFFICIENT RNA SECONDARY STRUCTURE PREDICTION 145

form a pseudoloop of region Œi; j �. The base pairs i:bp.i/ and bp.j /:j are the closing base pairs of the

pseudoloop. The pseudoloop is an exterior pseudoloop if region Œi; j � is not a subregion of any other

region.
� closed region associated with pseudoloop: We say that closed region Œi 0; j 0� is associated with pseu-

doloop of region Œi; j �, if Œi 0; j 0� is a closed proper subregion of Œi; j � but not a subregion of any closed

subregion of Œi; j �. For example, in Figure 3, closed regions Œ3; 9� and Œ10; 16� are associated with

pseudoloop Œ1; 39� but closed region Œ11; 15� is not associated with pseudoloop Œ1; 39�.
� inside a pseudoloop: We say that the structure Ri;j is inside a pseudoloop if Œi; j � is a proper weakly

closed subregion of a pseudoloop but not a subregion of any closed subregion of the pseudoloop.

2.3. Bi-secondary and density-2 structures

The bi-secondary and density-2 structures are as follows:

� bi-secondary structures: Witwer et al. (2004) introduced a definition of “bi-secondary structure,” which

is a union of two disjoint pseudoknot-free secondary structures. The pseudoknotted secondary structures

we can handle in our algorithm are a subset of the bi-secondary structures.
� density: We define density as follows: Let L be a pseudoloop and i:bp.i/ and bp.j /:j be the closing

base pairs of L. We say a band Œi1; i 0
1� [ Œj 0

1; j1� crosses k if i1 � k � j1. Let #B.L; k/ be the number

of bands associated with L that cross k. Then the density of L is:

density.L/ D max
i�k�j

.#B.L; k// (1)

The density of a structure, R, is the maximum density of L over all pseudoloops L of R. We say R is

a density-2 structure if the density of R is at most 2. Figure 4 illustrates density-2 secondary structures.

Figure 5 shows a bi-secondary structure that is not a density-2 structure.
� prefix: Let Gij be a pseudoknot-free structure over region Œi; j �. Let Rij be a density-2 structure over

region Œi; j � containing Gij . We say that Rij is a prefix of a density-2 pseudoloop with respect to Gij ,

if i is the left border of the first (leftmost) band associated with a pseudoloop of Rij , and j is either

1. the right border of a closed region associated with the pseudoloop,

2. the right border of the pseudoloop starting at i ,

FIG. 4. Density-2 structures.
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146 JABBARI ET AL.

FIG. 5. Bi-secondary structure that is not density-2.

3. the rightmost border of any band of Rij � Gij except the first band, or

4. an unpaired base associated with the pseudoloop that is not inside the first two bands (and not inside

any closed subregion).

See Figure 6 for an example of a pseudoloop and indications of prefixes of pseudoloop.

2.4. Energy model

Computational methods for predicting the secondary structure of an RNA or DNA molecule are based

on models of the free energy of loops. The parameters of these models are driven in part by current

understanding of experimentally determined free energies, and in part by what can be incorporated into

an efficient algorithm. The free energy of a loop depends on temperature; throughout we assume that the

temperature is fixed.

2.4.1. Pseudoknot-free energy model. We first summarize the notation used to refer to the free energy

of pseudoknot-free loops, along with some standard assumptions that are incorporated into loop free energy

models. We refer to a model that satisfies all of our assumptions as a standard free energy model. This

model is somewhat simpler than that underlying Mfold and Simfold, but our algorithm can be extended to

their more detailed model.

� eH .i; j /: gives the free energy of a hairpin loop closed by i:j .
� eS .i; i C 1; j � 1; j /: gives the free energy of a stacked pair that consists of i:j and .i C 1/:.j � 1/.
� eint .i; i 0; j 0; j /: gives the free energy of an internal loop or bulge with exterior pair i:j and interior pair

i 0:j 0.

The free energy of a multiloop with k branches and u unpaired bases is a C bk C cu, where a, b, c are

constants.

The free energy of a sequence S with respect to a fixed secondary structure R is the sum of the free

energies of the loops of R. Sometimes when the strand S is fixed, it is convenient to refer simply to the

free energy of the structure R.

FIG. 6. A density-2 secondary structure for a sequence of length n. Recall that for i < j � n, Rij is the structure

restricted to the region Œi; j �, and Gij is that part of Rij above the horizontal line. The black circle dots show positions

of j where Rij is a prefix of a density-2 pseudoloop with respect to G, and the crosses show positions of j where

Rij is not a prefix of a density-2 pseudoloop with respect to G.
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NOVEL AND EFFICIENT RNA SECONDARY STRUCTURE PREDICTION 147

TABLE 1. ENERGY PARAMETERS

Name Description

Ps Exterior pseudoloop initiation penalty

Psm Penalty for introducing pseudoknot inside a multiloop

Psp Penalty for introducing pseudoknot inside a pseudoloop

Pb Band penalty

Pup Penalty for unpaired base in a pseudoloop

Pps Penalty for closed subregion inside a pseudoloop

eH .i; j / Energy of a hairpin loop closed by i:j

eS .i; i C 1; j � 1; j / Energy of stacked pair closed by i:j

estP .i; i C 1; j � 1; j / Energy of stacked pair that spans a band

eint .i; r; r 0; j / Energy of a pseudoknot-free internal loop

eintP .i; r; r 0; j / Energy of internal loop that spans a band

a Multiloop initiation penalty

b Multiloop base pair penalty

c Penalty for unpaired base in a multiloop

a0 Penalty for introducing a multiloop that spans a band

b0 Base pair penalty for a multiloop that spans a band

c0 Penalty for unpaired base in a multiloop that spans a band

2.4.2. Pseudoknotted energy model. The pseudoknotted energy model is as follows:

� BE i;i 0 : The total energy of band Œi; i 0� [ Œbp.i 0/; bp.i/� is the sum of the energies of its loops. If a band

has no loops, i.e., consists of just one base pair, we define its energy to be 0.
� estP .i; i C 1; j � 1; j /: defines the energy of stacked pairs in a band.
� eintP .i; r; r 0; j /: defines the energy of internal loop that spans a band.

We define energy of multiloops that span a band to be the same as pseudoknot-free multiloops.

The energy of an exterior pseudoloop is the energy of bands plus Pb � m C Pps � k C Pup � u C Ps ,

where m is the number of the bands, k is the number of closed subregions, and u is the number of unpaired

bases. If the pseudoknot is inside a multiloop or a pseudoloop, Ps is replaced by Psm or Psp, respectively.

Let Ri;j be a prefix of a pseudoloop. The energy of Ri;j is the sum of the energies of all loops within

Ri;j plus a penalty for each band and each unpaired base in Œi; j � associated with the pseudoloop of which

Ri;j is a prefix.

Table 1 summarizes the energy constants and functions used in our energy model for pseudoknotted

structure.

3. PROPERTIES OF DENSITY-2 STRUCTURES

As will become clearer later, the reason that the HFold algorithm works for density-2 structures is

because of the following lemmas, which are key for efficient decomposition of energies in the recurrences.

In this section we first present six lemmas which are used in showing correctness of our algorithm. The

lemmas are admittedly technical. The reader may want to skip this section until the recurrences in Section 4

are fully absorbed. The lemmas identify the borders of the band for a given region for each case in the

recurrences.

Lemma 1. Let G and G0 be disjoint, pseudoknot-free, secondary structures, such that G [ G0 is a

density-2 secondary structure, and let i , j be the start and end of a pseudoloop of G [ G0. Let l 2 Œi; j �

be such that

1. l is paired in G0 (but not in G), and

2. bpG0.l/ < bpG.j / < l < j .
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Let

b.i;l / D minfkji � k < l < bpG.k/g; and

b0

.i;l / D maxfkji � k < l < bpG.k/g:

Then, the structure G [ G0 contains a band with outer base pair b.i;l /:bpG.b.i;l // and inner base pair

b0

.i;l /
:bpG.b0

.i;l /
/.

The bottom left part of Figure 2 illustrates Lemma 1, showing the borders of the band whose arcs cross

the base pair involving base l D 14. If Œi; j � is the region Œ2; 30�, then b.2;14/ D 2 and b0
.2;14/ D 6.

Proof. Since i is the start of a pseudoloop and j is the end of the pseudoloop, Œi; j � must be a

pseudoknotted closed region of G [ G0. Restriction (1) implies that bpG0.l/ 2 Œi; j �, since if it is not, then

Œi; j � is not a closed region of G [ G0.

Based on restriction (2) and the definition of crossing base pairs, we have bpG0.l/:l crosses bpG.j /:j .

Let b1:bpG.b1/, and b2:bpG.b2/ be the outer and the inner base pairs of the band containing bpG.j /:j ,

respectively. We have i � b1 � b2 < l < bpG.b2/ � bpG.b1/ � j .

Now we prove that b.i;l / D b1. Since i � b1 < l < bpG.b1/ it must be that b.i;l / � b1, by the definition

of b.i;l /. If b.i;l / < b1, then we have b.i;l / < b1 < bpG.b1/ < bpG.b.i;l //, since G is pseudoknot-free. We

show that bpG0.l/:l crosses b.i;l /:bpG.b.i;l //. If bpG0.l/:l does not cross b.i;l /:bpG.b.i;l //, then it must be

that i � b.i;l / < bpG0.l/ < l < bpG.b.i;l //. Based on restriction (2) and that G is pseudoknot-free we

must have i � b.i;l / < bpG0.l/ < bpG.j / < l < j < bpG.b.i;l //. But this contradicts the fact that j is

the right border of the closed region Œi; j �. Therefore, our assumption is incorrect and bpG0.l/:l crosses

b.i;l /:bpG.b.i;l //.

Since G [ G0 is a density-2 structure, there can be no other band, except the band containing bpG.j /:j ,

that crosses bpG0.l/:l from the right. If there is another band, say B 0, different from the band containing

bpG.j /:j crossing bpG0.l/:l from the right then a vertical line drawn at position l crosses 3 bands, and

thus, G [ G0 has density at least 3, which is a contradiction. Thus our assumption of b.i;l / ¤ b1 does not

hold, and b.i;l / D b1. Similarly we can show that b0
.i;l / D b2.

Lemma 2. Let G and G0 be disjoint, pseudoknot-free, secondary structures, such that G [ G0 is a

density-2 secondary structure. Let l be paired in G0 (but not in G) and let Œi; l � be a region such that

l < bpG0.l/. Let

b.i;l / D minfkji � k < l < bpG.k/ < bpG0.l/g [ f1g; and

b0

.i;l / D maxfkji � k < l < bpG.k/ < bpG0.l/g [ f�1g:

Then, either both or neither of b.i;l / and b0
.i;l / have finite positive values. In the former case b.i;l /:bpG.b.i;l //

and b0

.i;l /:bpG.b0

.i;l // are the outer and the inner base pairs of a band that crosses l:bpG0.l/ from the left

in structure G [ G0, respectively.

Figure 7 illustrates the notation used in Lemma 2.

For example, for region Œ1; 18� in Figure 3, we have b.1;18/ D 1, b0
.1;18/ D 2.

Proof. If there is no base pair, k:bpG.k/ in G such that we have i � k < l < bpG.k/ < bpG0.l/, then

there is no base pair crossing l:bpG0.l/ from the left, and thus, there is no band in G that crosses l:bpG.l/.

Therefore, b.i;l / D 1 and b0
.i;l / D �1. It is easy to show that we cannot have the case in which b.i;l / ¤ 1

but b0
.i;l / D �1 (or similarly b.i;l / D 1 but b0

.i;l / ¤ �1), since if we did, we must have at least one base

pair, k:bpG.k/ in G such that i � k < l < bpG.k/ < bpG0.l/ and thus, both b.i;l / and b0

.i;l / must have

positive values, which is a contradiction. Thus, either both or neither of b.i;l / and b0

.i;l /
have finite positive

values.

Otherwise, let b1:bpG.b1/ and b2:bpG.b2/ be the outer and the inner base pair of the band that crosses

l:bpG0.l/ from the left, respectively. We have i � b1 � b2 < l < bpG.b2/ � bpG.b1/. By definition
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FIG. 7. Illustration of band borders in Lemmas 2 and 4.

of b.i;l /, we must have b.i;l / � b1. We claim b.i;l / D b1. If b.i;l / < b1, then since G is pseudoknot-

free, we must have b.i;l / < b1 < bpG.b1/ < bpG.b.i;l //. By definition, b.i;l / must cross l:bpG0.l/. Since

G [ G0 is a density-2 structure, we cannot have more than one band crossing l:bpG0.l/ from the left.

Therefore b.i;l /:bpG.bi;l / is in the same band as b1:bpG.b1/, so b.i;l /:bpG.b.i;l // must be the outer base

pair of the band, which is a contradiction. Thus, we must have b.i;l / D b1. Similarly, we can prove that

b0
.i;l / D b2.

Lemma 3. Let G and G0 be disjoint, pseudoknot-free, secondary structures, such that G [ G0 is a

density-2 secondary structure. Let i be paired in G0 (but not in G) and let i < bpG0.i/. Let

b.i;bpG0 .i// D minfkji � k < bpG0.i/ < bpG.k/g [ f1g; and

b0
.i;bpG0 .i// D maxfkji � k < bpG0.i/ < bpG.k/g [ f�1g:

Then, either both or neither of b.i;bpG0 .i// and b0
.i;bpG0 .i// have finite positive values. In the former case,

b.i;bpG0 .i//:bpG.b.i;bpG0 .i/// and b0

.i;bpG0 .i//
:bpG.b0

.i;bpG0 .i//
/ are the outer and the inner base pairs, respectively

of a band that crosses i:bpG0.i/ from the right in structure G [ G0.

Proof. If there is no base pair, k:bpG.k/ in G such that we have i � k < bpG0.i/ < bpG.k/, then

there is no base pair crossing i:bpG0.i/, and thus, there is no band in G that crosses i:bpG0.i/ from the

right. Therefore, b.i;bpG0 .i// D 1 and b0
.i;bpG0 .i// D �1. As in the proof of Lemma 1 we can argue that

either both or neither of b.i;bpG0 .i// and b0

.i;bpG0 .i//
have finite positive values.

Otherwise, let b1:bpG.b1/ and b2:bpG.b2/ be the outer and the inner base pairs of the band that crosses

i:bpG0.i/ from the right, respectively. We have i � b1 � b2 < bpG0.i/ < bpG.b2/ � bpG.b1/. By

definition of b.i;bpG0 .i//, we must have b.i;bpG0 .i// � b1. We claim b.i;bpG0 .i// D b1. If b.i;bpG0 .i// < b1, then

since G is pseudoknot-free, we must have b.i;bpG0 .i// < b1 < bpG.b1/ < bpG.b.i;bpG0 .i///. By definition,

b.i;bpG0 .i// crosses i:bpG0.i/. Since G [ G0 is a density-2 structure, we cannot have more than one band

crossing i:bpG0.i/ from the right. Therefore b.i;bpG0 .i//:bpG.bi;l / is in the same band as b1:bpG.b1/, so

b.i;bpG0 .i//:bpG.b.i;bpG0 .i/// must be the outer base pair of the band, which is a contradiction. Thus, we must

have b.i;bpG0 .i// D b1. Similarly we can prove that b0

.i;bpG0 .i//
D b2.

Lemma 4. Let G and G0 be disjoint, pseudoknot-free, secondary structures, such that G [ G0 is a

density-2 secondary structure. Let j be paired in G0 (but not in G) and let bpG0.j / < j . Let

B.bpG0 .j /;j / D maxfbpG.k/jk < bpG0.j / < bpG.k/ � j g [ f�1g; and

B 0

.bpG0 .j /;j / D minfbpG.k/jk < bpG0.j / < bpG.k/ � j g [ f1g:

Then, either both or neither of B.bpG0 .j /;j / and B 0
.bpG0 .j /;j / have finite positive values. In the former case,

bpG.B.bpG0 .j /;j //:B.bpG0 .j /;j / and bpG.B 0

.bpG0 .j /;j /
/:B 0

.bpG0 .j /;j /
are the outer and the inner base pairs of a

band that crosses bpG0.j /:j from the left in structure G [ G0, respectively.
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Figure 7 illustrates the notation used in Lemma 4.

For example, for region Œ18; 34� in Figure 3, we have B 0
.18;34/ D 22, B.18;34/ D 23.

Proof. The proof is very similar to the proof of Lemma 3.

Lemma 5. Let G and G0 be disjoint, pseudoknot-free, secondary structures, such that G [ G0 is

a density-2 secondary structure. Let i be paired in G0 (but not in G) and let i < j such that region

ŒbpG0.i/ C 1; j � is weakly closed. Let

b.i;j / D minfkji � k < j < bpG.k/g [ f1g;

b0
.i;j / D maxfkji � k < j < bpG.k/g [ f�1g;

Then, either both or neither of b.i;j / and b0
.i;j / have finite positive values. In the former case, b.i;j /:

bpG.b.i;j // and b0
.i;j /:bpG.b0

.i;j // are the outer and the inner base pairs of a band in G [ G0 that crosses

i:bpG0.i/ from the right.

Note that each term may be either infinity or �1 to account for the cases when there is no such band

border.

For region Œi; j � D Œ1; 26� in Figure 3, we have b.1;26/ D 1, b0
.1;26/ D 2.

Proof. Since region ŒbpG0.i/ C 1; j � is weakly closed, there are no base pairs in the region ŒbpG0.i/ C

1; j � crossing i:bpG0.i/, thus, b.i;bpG0 .i// D b.i;j / and b0
.i;bpG0 .i// D b0

.i;j /. The rest of the proof is similar to

the proof of Lemma 3.

Lemma 6. Let G and G0 be disjoint, pseudoknot-free, secondary structures, such that G [ G0 is a

density-2 secondary structure. Let j be paired in G0 (but not in G) and let i < j be such that region

Œi; bpG0.j / � 1� is weakly closed. Let

B.i;j / D maxfbpG.k/jk < i < bpG.k/ � j g [ f�1g; and

B 0
.i;j / D minfbpG.k/jk < i < bpG.k/ � j g [ f1g:

Then, either both or neither of B.i;j / and B 0

.i;j /
have finite positive values. In the latter case, bpG.B.i;j //:

B.i;j / and bpG.B 0

.i;j /
/:B 0

.i;j /
are the outer and the inner base pairs of a band in G [ G0 that crosses

bpG0.j /:j from the left.

Note that each term may be either infinity or �1 to account for the cases when there is no such band

border.

For region Œi; j � D Œ17; 34� in Figure 3, we have B 0

.17;34/
D 22 and B.17;34/ D 23.

Proof. The proof is very similar to the proof of Lemma 5.

4. THE HFold ALGORITHM

HFold is a method for prediction of pseudoknotted RNA secondary structure that integrates MFE-

based prediction with folding pathway considerations in a novel way. The method is motivated by the

hypothesis that pseudoknotted RNA secondary structures form in a hierarchical fashion, with a pseudoknot-

free structure forming first and additional pseudoknot-forming base pairs that are added later (possi-

bly with minor rearrangements of the initial pseudoknot-free structure) (Mathews, 2004; Tinoco and

Bustamante, 1999). HFold works by taking as input a sequence of bases, S , and a pseudoknot-free

secondary structure G, and finding a second pseudoknot-free structure G0 which minimizes the energy

of G [ G0 (i.e., HFold.S; G/ D G [ G0). Like MFE methods, HFold handles only a restricted class of

structures, but this class is quite general (density-2 structures). The method has two potential advantages
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over MFE-based secondary structure predication. First, HFold’s hierarchical folding principle may model

biological folding just as well, or better, than does the MFE structure formation hypothesis, at least on

biological structures. Second, HFold has O.n3/ running time, making it significantly more efficient than

MFE-based methods that require �.n5/ time or more to predict biologically-important pseudoknotted

structures.

4.1. High level description of HFold

Before providing the detailed recurrences for HFold, we first give a high level overview of the algorithm.

We start by briefly reviewing key ideas of the dynamic programming algorithm which predicts the energy of

the MFE pseudoknot-free secondary structure for a fixed sequence S D s1s2 : : : sn (Mathews et al., 1999).

Let Wi;j be the energy of the MFE pseudoknot-free secondary structure for the subsequence si siC1 : : : sj .

If i � j , Wi;j D 0, since the subsequence is empty. Otherwise, it must either be that i:j is a base pair

in the MFE structure for si : : : sj , or that the MFE structure can be decomposed into two independent

subparts. These two cases correspond to the two rows of the following recurrence for Wi;j .

Wi;j D min

(

Vi;j ;

mini�r<j Wi;r C W.rC1/;j ;

where Vi;j is the free energy of the MFE structure for si : : : sj that contains i:j . If i � j , Vi;j is set to

be 1. Otherwise, i:j closes a hairpin, an internal loop, or a multiloop in the MFE structure for si : : : sj .

Thus, Vi;j can be expressed as the minimum of the free energies attainable in three cases:

Vi;j D min

8

ˆ

ˆ

<

ˆ

ˆ

:

eH .i; j /;

minr;r 0 eint .i; r; r 0; j / C Vr;r 0 ;

VMi;j

where eH .i; j / and eint .i; r; r 0; j / are as given in Table 1, and VMi;j is the energy of a MFE structure for

si : : : sj in which i:j closes a multiloop.

We extend the definition of Wi;j for the hierarchical folding algorithm as follows. Let G be a given

pseudoknot-free structure for S . If some arc of G covers i or j , then Wi;j D 1. If i � j , then Wi;j D 0.

Otherwise we define Wi;j to be the energy of the MFE secondary structure Gij [ G0
ij for the strand

si : : : sj , taken over all choices of G0
ij which is pseudoknot-free, disjoint from Gij , and such that Gij [ G0

ij

is density-2. In this case, Wi;j satisfies the following recurrence:

Wi;j D min

8

ˆ

ˆ

<

ˆ

ˆ

:

Vi;j ;

mini�r<j Wi;r C W.rC1/;j ;

WMB i;j C Ps

where the first two cases are the same as for pseudoknot-free cases and the last case is specific to

pseudoknotted structures. Ps is the pseudoknot initiation penalty, given in Table 1.

The third row of this recurrence accounts for the case when the optimal secondary structure Gij [

G0
ij includes pseudoknotted base pairs and cannot be partitioned into two independent substructures

for two regions Œi; r � and Œr C 1; j �, for some r . Such a structure must contain a chain of two or

more successively-overlapping bands, which must alternate between Gij and G0
ij , possibly with nested

substructures interspersed throughout. Figure 8 provides an example, and shows how the recurrence for

WMB, given below, unwinds when the example structure is the MFE structure.

In order to calculate the energies of substructures in such a structure in the recurrences, we use three

additional terms: BE , VP , and WI . Roughly, these account for energies of bands spanned by base pairs of

Gij , regions enclosed by pseudoknotted base pairs of G0
ij (excluding part of those regions that are within

a band of Gij ), and weakly closed subregions, respectively.

We now give the recurrence for WMB i;j . Figure 9 illustrates different cases of WMB recurrence. As

the base case, we set WMB i;j D C1 if i � j , since if i � j the structure is empty, and thus cannot be
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FIG. 8. Illustration of how the WMB recurrence unwinds, to calculate WMB i;j . Arcs above the horizontal line

from i to j represent base pairs of Gij , and arcs below the line represent base pairs of G0
ij . Case (1) of the WMB

recurrence handles the overall structure whose energy is WMB i;j , with l D l1, with terms to account for energies of

the right upper band (BE ) and right lower closed subregion (WI .l1C1/;.bpG .b0

i;l1
/�1/) as well as the remaining prefix

(WMB 0
i;l1

). The term WMB 0
i;l1

is handled by case (1) of the WMB 0 recurrence, with l D l2 and terms to account for the

lower right substructure labelled VP l2;l1 , the upper left band (BE ), and the remaining “prefix” of the overall structure

(WMB 0
i;.l2�1/

). WMB 0
i;.l2�1/

is then handled by case (2) of the WMB 0 recurrence, with l D l3, and terms to account

for WI .l3C1/;.l2�1/ and WMB 0
i;l3

. Finally, the WMB 0
i;l3

term is handled by end case (3) of the WMB 0 recurrence.

pseudoknotted. Otherwise, there are two cases, depending on whether j is paired in G or not. In case (1),

j is paired in G. Then, in the MFE structure, some base l with bp.j / < l < j must be paired in G0,

causing bp.j /:j to be pseudoknotted. We minimize the energy over all possible choices of l (note that l

must be unpaired in G, since it will be paired in G0, which is disjoint from G).

By Lemma 1, once l is fixed, the inner base pair of the band whose outer base pair is bp.j /:j is also

determined. The Pb C BE term in case (1) of the recurrence accounts for the energy of the band, a WI

term accounts for a weakly closed region that is in the band, and the remaining energy is represented by

the WMB 0 term. In case (2), j is not paired in G, and the recurrence is unwound by moving directly to a

WMB 0 term. Thus, we have:

WMB i;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

.1/ Pb C min
bpG .j /<l<j

bpG .l/D0

.BEb.i;l/ ;b
0

.i;l/
C WMB 0

i;l C WI .lC1/;.bpG.b0

.i;l//�1//; if 0 < bp.j / < j

.2/ WMB 0
i;j

FIG. 9. Illustration of cases for WMB i;j .
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FIG. 10. Illustration of cases for WMB 0
i;j .

Complementing case (1) of the WMB recurrence, WMB 0 handles the case that the rightmost band is

not in G, but is part of the structure G0. Figure 10 illustrates different cases of WMB 0 recurrence. In the

recurrence for WMB 0, case (1) is the complex case, accounting for the energy of the region spanned by the

rightmost two bands using the 2Pb , VP , and BE terms, and recursively calling WMB 0. The band borders in

the WMB 0 cases are determined using Lemmas 2 and 4. Case (2) is called when one iteration of WMB i;j

or WMB 0
i;j case (1) is done and the rightmost substructure of the overall “prefix” up to position j is a

weakly closed region. Note that WI i;j D C1 when cover.i/ ¤ cover.j /, ensures that case (2) is not

entered as the first iteration of WMB 0. Cases (3) and (4) are end cases, where only one or two bands need

to be accounted for, respectively and so no recursive call to WMB 0 is made. Thus we have:

WMB 0
i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ 2Pb C min
i<l<b.i;j /

isCovered.Gij ;l/

.BEb.i;l/ ;b
0

.i;l/
C WMB 0

i;.l�1/ C VP l;j /; if bpG.j / D 0

.2/ min
i<l<j

cover.l/Dcover.j /

.WMB 0

i;l C WI .lC1/;j /; if bpG.j / < j

.3/ Pb C VP i;j ;

.4/ 2Pb C min
i<l<bpG.i/

.BE b.i;l/;b
0

.i;l/
C WI .b0

.i;l/
C1/;.l�1/ C VP l;j /; if 0 D bpG.j / < bpG.i/

Figure 11 shows how all the recurrences call each other.

4.2. Recurrences

In this section, we present the details of the HFold recurrences. Throughout this work, we will use the

following notation:

� G: a pseudoknot-free structure.
� G0: a pseudoknot-free structure that HFold adds to G.
� R: the complete pseudoknotted structure: R D G [ G0.

Let Ri;j be a minimum free energy (MFE) secondary structure for Œi; j �, given a pseudoknot-free

secondary structure Gi;j .
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154 JABBARI ET AL.

FIG. 11. Visual illustration of recurrences in HFold.

The energy value of each substructure type, for a given input sequence S D s1s2; : : : ; sn and the given

pseudoknot-free secondary structure G, is stored in an array. In the next subsections, we describe how each

is calculated. We illustrate each case with a figure, where we use the following notations in our figures:

� The normal black lines can be any arcs in Ri;j .
� The solid lines are for base pairs.
� The dotted lines connect bases that don’t have to be paired.
� The clear shade within the arcs indicate that there are no additional base pairs within the arc.
� The shade within the arcs are unknown structures.

4.2.1. W i;j . W i;j is the MFE of all structures Ri;j over region Œi; j �, if i and j are not covered in G,

i.e. isCovered.G; i/ and isCovered.G; j /. Otherwise, W i;j is C1. Figure 12 illustrates different cases of

W recurrence.

The base cases are as follows: W i;j D 0, if i � j , since then the only possibility for structure Ri;j is

the empty structure; and W i;j D C1, if isCovered.G; i/, or isCovered.G; j /.

FIG. 12. Illustration of cases for W i;j .
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Otherwise, W i;j is given by the following recurrence:

W i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ V i;j

.2/ min
i�r<j

isCovered.r/

.W i;r C W .rC1/;j /

.3/ WMB i;j C Ps

(2)

The base cases indicate that W is being used only when the structure is an exterior structure and that

there is no penalty for having unpaired bases at either end of the structure.

Case (1) handles the case that i pairs with j , i.e., bpRi;j .i/ D j .

Case (2) handles the cases that 9r , i � r < j , bpRi;j .i/ � r (i.e., i is either unpaired or paired with

another base inside region Œi; r �), and bpRi;j .j / > r or bpRi;j .j / D 0 (i.e., j is either unpaired or paired

with a base inside region Œr C 1; j �).

If Ri;j does not fall into case (1) or (2), it must be that Œi; j � is a pseudoknotted closed region. This is

an exterior pseudoknot because of the premise that i and j are not covered in G. In this case, we add a

Ps penalty for introducing an exterior pseudoknot.

4.2.2. WI i;j . WI i;j is the minimum free energy of all structures Ri;j , given that Œi; j � is weakly

closed, and Ri;j is inside a pseudoloop. Otherwise, WI i;j is C1. Figure 13 illustrates different cases of

WI recurrence.

The base cases are as follows:

WI i;j D C1, if cover.i/ ¤ cover.j /, since Œi; j � is not weakly closed.

WI i;j D Pup , if i D j and bpG.i/ D 0, since Œi; j � is an empty region, thus we give it the value for an

unpaired base in a pseudoloop.

WI i;j D 0, if i > j .

Otherwise, WI i;j is given by the following recurrence:

WI i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ V i;j C Pps if i:j 2 G, or .bpG.i/ D 0 and bpG.j / D 0/

.2/ min
i�t<j

.WI i;t C WI .tC1/;j /

.3/ WMB i;j C Psp C Pps

(3)

FIG. 13. Illustration of cases for WI i;j . In case (3), the plotted structure from i to j could contain more than 2

bands (not illustrated).
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Similar to W i;j , case (1) handles the case that i pairs with j , i.e., bpGi;j .i/ D j or the case that neither

is paired in G but they are paired in G0.

Case (2) handles the case that 9t , i � t < j , bpRi;j .i/ � t , and bpRi;j .j / > t or bp.Rij ; j / D 0.

If Ri;j does not fall into case (1) or (2), it must be that paired.Ri;j ; i / and paired.Ri;j ; j /, and bpRi;j .i/ >

bpRi;j .j /, where Œi; j � is a pseudoknotted closed region in Ri;j . In this case, Ri;j will be covered by case (3).

Since WI i;j is a structure inside a pseudoknot, but not inside a band, we add a Pps penalty to case (1)

and (3), and a Psp penalty to case (3) for introducing a new pseudoknot inside a pseudoloop.

4.2.3. WI 0
i;j . WI 0

i;j is the minimum free energy of all nonempty structures Ri;j , if Œi; j � is weakly

closed with respect to G, given that Ri;j is inside a band. Otherwise, WI 0
i;j is C1. Figure 14 illustrates

different cases of WI 0 recurrence.

The base cases are as follows:

WI 0
i;j D C1, if Œi; j � is not weakly closed with respect to G.

WI 0
i;j D C1, if i � j , since empty.Ri;j ; Œi; j �/.

Otherwise, WI 0
i;j is given by the following recurrence:

WI 0
i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ V i;j C b0 if i:j 2 G, or .bpG.i/ D 0 and bpG.j / D 0/

.2/ WI 0

.iC1/;j C c0 if bpG.i/ D 0

.3/ WI 0

i;.j �1/ C c0 if bpG.j / D 0

.4/ min
i�t<j

.WI 0

i;t C WI 0

.tC1/;j /

.5/ WMB i;j C Psm C b0

(4)

Cases (2) and (3) handle free bases on each side of the sequence. The rest of the cases are similar to

WI , with the only difference being that here in cases (1) and (5) we use b0 as the penalty for introducing

FIG. 14. Illustration of cases for WI 0
i;j . In case (5), the plotted structure from i to j could contain more than 2

bands (not illustrated).
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NOVEL AND EFFICIENT RNA SECONDARY STRUCTURE PREDICTION 157

a new base pair in the structure instead of Pps , since the base pair is not inside a pseudoloop, but rather

in a multiloop that spans a band; for the same reason we used Psm penalty instead of Psp in case (5) for

introducing a new pseudoknot inside a multiloop.

4.2.4. VP i;j . VP i;j is the minimum free energy of all structures Ri;j , in which bpG.i/ D bpG.j / D 0,

bases i and j are paired in G0, i.e., bpG0.i/ D j , and i:j crosses a base pair of G. Here the energy of

Ri;j is the energy of all loops within Ri;j that are not inside a band whose base pairs are in G and which

crosses i:j . Otherwise, VP i;j is C1. Figure 15 illustrates different cases of VP recurrence.

The base case is as follows:

VP i;j D C1 , if

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

i � j;

i:j does not cross any base pair of G,

bpG.i/ > 0; or bpG.j / > 0

(5)

Otherwise, VP i;j is given by the following recurrences:

VP i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ WI .iC1/;.B0

.i;j /
�1/ C WI .B.i;j /C1/;.j �1/ if isCovered.G; i/; and isCovered.G; j /

.2/ WI .iC1/;.b.i;j /�1/ C WI .b0

.i;j /C1/;.j �1/ if isCovered.G; i/; and isCovered.G; j /

.3/ WI .iC1/;.B0

.i;j /
�1/ C WI .B.i;j /C1/;.b.i;j /�1/ if isCovered.G; i/; and isCovered.G; j /

C WI .b0

.i;j /C1/;.j �1/

.4/ estP .i; i C 1; j � 1; j / C VP .iC1/.j �1/ if .bpG.i C 1/ D 0; and bpG.j � 1/ D 0/

.5/ min
i<r<min.B0

.i;j /
;b.i;j //

max.b0

.i;j / ;B.i;j //<r 0<j

.eintP .i; r; r 0; j / C VP r;r 0/ if cover.G; i/ D cover.G; r/

and cover.G; j / D cover.G; r 0/

and empty.G; Œi C 1; r � 1�/

and empty.G; Œr 0 C 1; j � 1�/

.6/ min
i<r<min.B0

.i;j /
;j /

bpG .r/D0

.WI 0
.iC1/;.r�1/ C VP 0

r;.j �1/ C a0 C 2b0/

.7/ min
max.i;b0

.i;j /
/<r<j

bpG .r/D0

.VP 0

.iC1/;r C WI 0

.rC1/;.j �1/ C a0 C 2b0/

(6)

Cases (1), (2), and (3) handle the cases that there are no other base pairs in Œi; j � that cross the same

band(s) that i:j crosses. In these cases, we compute the energy between band borders. In these cases, the

band borders B.i;j / and B 0
.i;j / are determined by Lemma 4 and b.i;j / and b0

.i;j / are determined by Lemma 3.

Case (4) handles the case that base pairs i:j and .i C 1/:.j � 1/ form a stacked pair in Ri;j .

Case (5) handles the case that i:j and r:r 0 close an internal loop of Ri;j . In this case the band borders

B.i;j / and B 0

.i;j / are determined by Lemma 4 and b.i;j / and b0

.i;j / are determined by Lemma 3.

Cases (6) and (7) handle the similar condition to case (5) except that case (6) allows closed regions in

the gap region Œi; r � 1� and case (7) allows closed regions in the gap region Œr C 1; j �. In those cases i:j

does not close an internal loop, but rather closes a multiloop that spans a band. In these cases, the band

border B 0
.i;j / is determined by Lemma 4 and b0

.i;j / is determined by Lemma 3.
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158 JABBARI ET AL.

FIG. 15. Illustration of cases for VP i;j .

Cases (6) and (7) can be combined into the following case:

min
i<r<min.B0

.i;j /;b.i;j //

�max.b0

.i;j /;B.i;j //<r 0<j

.WI 0
.iC1/;.r�1/ C VP r;r 0 C WI 0

.r 0C1/;.j �1/ C Pps C a0 C 2b0/ (7)

Since the minimization is done over two parameters r and r 0, we should limit the size of region Œr; r 0� to

keep the complexity of our algorithm to O.n3/.

If Ri;j does not fall into any case from (1) to (7), then there must exist r:r 0 in G0, with i < r < r 0 < j ,

and one base r (or r 0) inside the band region ŒB 0
.i;j /; B.i;j /� (or Œb.i 0;j /; b0

.i;j /�) and the other base r 0 (or r )

outside the band region ŒB 0
.i;j /; B.i;j /� (or Œb.i;j /; b0

.i;j /�). Then G [ G0 must have density at least 3, which

is not allowed in our algorithm.

4.2.5. VP 0
i;j . VP 0

i;j is the minimum free energy of all structures Ri;j over region Œi; j �, such that for

some r , i < r < j , either bpG0.i/ D r or bpG0.j / D r , and either i:r or r:j crosses a base pair of G.

Otherwise, VP 0
i;j is C1. Figure 16 illustrates different cases of VP 0 recurrence.

FIG. 16. Illustration of cases for VP 0
i;j .
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The base case is as follows:

VP 0
i;j D C1; if i � j (8)

Otherwise, VP 0
i;j is given by the following recurrences:

VP 0

i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ min
max.i;b0

.i;j //<r<j
.VP i;r C WI 0

.rC1/;j /

.2/ min
i<r<min.B0

.i;j /;j /
.WI 0

i;.r�1/ C VP r;j /

.3/ min
max.i;b0

.i;j //<r<j
.VP i;r C c0.j � r// if empty.G; Œr C 1; j �/

.4/ min
i<r<min.B0

.i;j /;j /
.c0.r � i/ C VP r;j / if empty.G; Œi; r � 1�/

(9)

In both cases (1) and (2), the energy of Ri;j is the energy of all loops within Ri;j . In case (1), we have

two components: the energy given by base pair i:r which is covered by VP , and the energy given by the

structure from base r C 1 to base j , which is covered by WI 0. Since only VP i;j uses VP 0
i;j , the structure

from r C1 to j is within a band (see case (6) of VP i;j ) and so is covered by WI 0. Case (2) can be reasoned

similarly, with reference to case (7) of VP i;j for use of WI 0. Cases (3) and (4) are similar to cases (1)

and (2) with the only difference that there is no base pairs in regions Œr C 1; j � and Œi; r � 1�, respectively.

The band borders for cases (1) and (3) are determined by Lemma 5 and the band borders for cases (2)

and (4) are determined by Lemma 6.

4.2.6. V i;j . V i;j is the minimum free energy of all structures Ri;j over region Œi; j �, if Œi; j � is weakly

closed or empty and i:j forms a base pair of Ri;j . Otherwise, V i;j is C1.

This recurrence is identical to that used in pseudoknot-free algorithms (Mathews et al., 1999), so we

omit the details here and for VBI in the next section.

4.2.7. VBI i;j . VBI i;j is the minimum free energy of all structures Ri;j over region Œi; j �, if Œi; j � is

weakly closed or empty, assuming i:j closes a bulge or internal loop of Ri;j . Otherwise, VBI i;j is C1

(Mathews et al., 1999).

4.2.8. VM ij . VM ij is the minimum free energy of all structures Rij over region Œi; j �, if Œi; j � is

weakly closed or empty and i:j closes a multiloop of Rij . Otherwise, VM ij is C1. Figure 17 illustrates

different cases of VM recurrence. We can obtain a recurrence that calculates the loop cost as the sum of

two subparts.

VM ij D min

8

ˆ

<

ˆ

:

.1/ min
iC1<h�j �1

.WM .iC1/.h�1/ C WM h.j �1/ C a C b/

.2/ WMB .iC1/.j �1/ C a C Psm C b

(10)

FIG. 17. Illustration of cases for VM ij .
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Case (1) is similar to recurrence for W i;j , and case (2) handles the case that there is one pseudoknotted

loops in the multiloop.

4.2.9. WM ij . WM ij is the minimum free energy of all structures Rij , if Œi; j � is weakly closed, not

empty, and i and j are on a multibranched loop.

The base case is as follows:

WM ij D C1 , if i � j .

Otherwise, WM ij is given by the following recurrences:

WM i;j D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ V i;j C b;

.2/ WM .iC1/;j C c bpG.i/ D 0

.3/ WM i;.j �1/ C c bpG.j / D 0

.4/ min
1�t�j

.WM i;t C WM .tC1/;j /

.5/ WMB i;j C Psm C b

(11)

Cases (1) to (4) are the same as in a pseudoknot-free structure, and case (5) handles the case of a

pseudoknotted loop in the multiloop.

4.2.10. BE i;i 0 . BE i;i 0 is the minimum free energy of the band Œi; i 0� [ ŒbpG.i 0/; bpG.i/�, if i � i 0 <

bpG.i 0/ � bpG.i/. Figure 18 illustrates different cases of BE recurrence.

The base cases are as follows:

BE i;i 0 D C1, if it is not the case that i � i 0 < bpG.i 0/ � bpG.i/.

BE i;i D 0, if i < bpG.i/.

FIG. 18. Illustration of cases for BE i;i 0 .
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Otherwise,

BE i;i 0 D min

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.1/ estP .i; bpG.i// C BE .iC1/;i 0 if bpG.i C 1/ D .bpG.i/ � 1/

.2/ eintP .i; l; bpG.l/; bpG.i// C BE l;i 0 if bpG.l/ > 0; empty.G; Œi C 1; l � 1�;

and empty.G; ŒbpG.l/ C 1; bpG.i/ � 1�//;

i < l � i 0; and .bpG.i 0/ � bpG.l/ < bpG.i//

.3/ WI 0

.iC1/;.l�1/ C BE l;i 0 if bpG.l/ > 0; weakly closed.G; Œi C 1; l � 1�/

C WI 0

.bpG .l/C1/;.bpG.i/�1/ C a0 C 3b0 and weakly closed.G; ŒbpG.l/ C 1; bpG.i/ � 1�/

and i < l � i 0; and bpG.i 0/ � bpG.l/ < bpG.i/

.4/ WI 0
.iC1/.l�1/ C BE l;i 0 if bpG.l/ > 0; weakly closed.G; Œi C 1; l � 1�/

C a0 C 2b0 C c0.bpG.i/ � bpG.l/ C 1/ and empty.G; ŒbpG.l/ C 1; bpG.i/ � 1�/

and i < l � i 0; and bpG.i 0/ � bpG.l/ < bpG.i/

.5/ BE l;i 0 C WI 0

.bpG.l/C1/;.bpG.i/�1/ if bpG.l/ > 0

C a0 C 2b0 C c0.l � i C 1/ weakly closed.G; ŒbpG.l/ C 1; bpG.i/ � 1�/; and

empty.G; Œi C 1; l � 1�/ and

i < l � i 0 and bpG.i 0/ � bpG.l/ < bpG.i/

(12)

Case (1) handles the case that base pairs i:bpG.i/ and .i C 1/:.bpG .i/ � 1/ of G form a stacked loop

in the band.

Case (2) handles the case that i:bpG.i/ and l:bpG.l/ are the base pairs of an internal loop of G.

Case (3) handles a similar situation as in case (2) except that there are other closed regions in both of

the regions Œi; l � and ŒbpG.l/; bpG.i/�.

Case (4) handles the case that the region ŒbpG.l/; bpG.i/� is empty, and so we must pay the unpaired

base penalty c0 for each unpaired base. In this case, the left side, Œi; l � must not be empty.

Case (5) is the same as case (4) except the left side is empty and the right is not empty.

5. CONCLUSIONS

In this work, we presented HFold, a new dynamic programming algorithm that efficiently predicts RNA

secondary structure including pseudoknots in O.n3/ time, based on the hierarchical folding hypothesis.

HFold can predict kissing hairpins and pseudoloops with arbitrary number of bands.

In the conference version of this paper (Jabbari et al., 2007), we presented preliminary results on the

accuracy obtained by HFold. Using parameters for pseudoknotted structures obtained from Dirks and Pierce

(2003), HFold did not predict the desired results. However, we believe that it is still premature to draw

conclusions since the parameters are poor. For this reason, we defer discussion of experimental results to

future work.

Specifically, a short-term goal is to tune the parameters of the current energy model to improve the

accuracy of the prediction for wider sets of structures. One possible approach is using Andronescu’s tuning
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method (Andronescu et al., 2007). Another future work is to use a better energy model for pseudoknotted

structures, such as that of Cao and Chen (2006), and obtain better energy parameters. This is also of great

interest to us to evaluate the hierarchical folding hypothesis using computational methods in future.

We are not yet able to do a sound comparison of the prediction accuracy of HFold with MFE-based

methods, since it would be important to ensure that the same energy model is used by both methods.

Therefore, one of the main goals for our future work is to compare hierarchical and MFE algorithms

implemented using the same energy model, at least for H-type pseudoknots.

Finally, we plan to incorporate other techniques to produce better input structures to HFold, such as

information obtained from chemical modification data (Mathews et al., 2004).
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