Probabilistically Checkable Debate Systems and
Nonapproximability of PSPACE-Hard Functions*

Anne Condonf Joan Feigenbaum?! Carsten Lund?

Peter Shor?

May 12, 1995

Abstract

We initiate an investigation of probabilistically checkable debate sys-
tems (PCDS’s), a natural generalization of probabilistically checkable
proof systems. A PCDS for a language L consists of a probabilistic
polynomial-time verifier V and a debate between player 1, who claims
that the input z is in L, and player 0, who claims that the input z is
not in L. We show that there is a PCDS for L in which V flips O(log n)
random coins and reads O(1) bits of the debate if and only if L is in
PSPACE. This characterization of PSPACE is used to show that certain
PSPACE-hard functions are as hard to approximate closely as they are to
compute exactly.

1 Introduction

Suppose that two candidates, B and C, agree to a debate format. Voter V is
too busy to catch more than a very small number of bits of the debate. How
does V decide which of B or C won the debate? In this paper, we show that if

*These results first appeared in our Technical Memorandum [8]. They were presented in
preliminary form at the 25th Annual ACM Symposium on Theory of Computing, San Diego
CA, May 1993, under the title “Probabilistically Checkable Debate Systems and Approxima-
tion Algorithms for PSPACE-Hard Functions” [9].

T University of Wisconsin, Computer Sciences Department, 1210 West Dayton Street, Madi-
son, WI 57306 USA, condon@cs.wisc.edu. Supported in part by NSF grants CCR-9100886
and CCR-9257241.

fAT&T Bell Laboratories, Room 2C473, 600 Mountain Avenue, P. O. Box 636, Murray
Hill, NJ 07974-0636 USA, jf@research.att.com.

§ AT&T Bell Laboratories, Room 2C324, 600 Mountain Avenue, P. O. Box 636, Murray
Hill, NJ 07974-0636 USA, lund@research.att.com.

YAT&T Bell Laboratories, Room 2D149, 600 Mountain Avenue, P. O. Box 636, Murray
Hill, NJ 07974-0636 USA, shor@research.att.com.

B and C choose the right debate format, V’s problem is solved. By listening to
a few, randomly chosen, sound bites of the debate, V can with near certainty
figure out who won.

Similarly, suppose that B or C is giving a speech to a set of voters Vi, -- -, Vp,
represented by finite automata. He would like to give the speech that results in
acceptance (votes) by the greatest number of V;’s. We show that not only can
he not compute this maximum exactly, but he cannot come within an arbitrary
constant factor, unless he has access to an oracle (political consultant) with the
full power of PSPACE.

Our work builds on the recent progress that has been made in the the-
ory of probabilistically checkable proof systems (PCPS’s). Results about the
language-recognition power of PCPS’s have led to lower bounds on the dif-
ficulty of approximating NP-hard functions. In this paper, we define proba-
bilistically checkable debate systems (PCDS’s). We prove several results about
the language-recognition power of PCDS’s and then use them to obtain lower
bounds on the difficulty of approximating PSPACE-hard functions.

Let us describe the background for this work in more detail. Loosely speak-
ing, a language L has a PCPS if, for every x € L, there is a string 7 such that
a probabilistic verifier V' can be convinced with high probability that z € L.
The class PCP(r(n),q(n)) consists of those languages recognizable by PCPS’s
in which the verifier uses O(r(n)) coin flips and looks at O(g(n)) bits. It is
known that PCP(logn,1) = NP (cf. [1, 2]).

Results on the power of classes PCP(r(n), ¢(n)) can be used to show that
many approximation problems are hard, unless there is some unexpected col-
lapse of complexity classes. The first result along these lines was proven by
Condon [7]. In a seminal paper, Feige et al. [11] showed that MAX-CLIQUE
is difficult to approximate. The result of [11] has been improved several times,
and it is now known that there is an e such that approximating MAX-CLIQUE
within a factor of n€ is as difficult as solving NP-complete problems exactly [1].
Furthermore, there is a large class of natural optimization problems, those hard
for the class MAX-SNP defined in [21], that do not have polynomial-time ap-
proximation schemes unless P = NP; that is, for each of these problems, there
is an € such that approximating the optimal solution within ratio € is as hard
as solving NP-complete problems exactly [1]. This result on MAX-SNP shows
that many well-known optimization problems are hard to approximate closely,
including Traveling Salesman with Triangle Inequality, MAX-SAT, and MAX-
CUT.

A PCDS is a generalization of a PCPS. In a PCDS for L, there are two
computationally powerful players, 1 and 0 (called B and C at the beginning
of this section) and a probabilistic polynomial-time verifier V. Players 1 and
0 play a game in which they alternately write out strings on a debate tape 7.
Player 1’s goal is to convince V that an input z € L, and player 0’s goal is
to convince V that z € L. When the debate is over, V' looks at z and 7 and
decides whether x € L (player 1 wins the debate) or z ¢ L (player 0 wins the

debate). Suppose V flips O(r(n)) random coins and reads O(g(n)) bits of «. If,
under the best strategies of players 1 and 0, V’s decision is correct with high
probability, then we say that L is in PCD(r(n), g(n)).

Specifically, we say that a language L is in PCD(r(n), g(n)) if it has a non-
adaptive PCDS with one-sided error in which players 1 and 0 write on a debate
tape, and then V makes O(r(n)) coin flips and queries O(g(n)) bits based on
these coin flips. By nonadaptive, we mean that the choice of bits queried by V
is based solely on the input and the coin flips. By one-sided error, we mean that
whenever € L, V must correctly decide that x € L, no matter which sequence
of O(r(n)) coins are flipped (assuming correct play on the part of player 1).
When z ¢ L, V is allowed to conclude incorrectly that z € L with probability
at most €, for some fixed € < 1.

Note that we defined PCDS’s so that the two players must be determin-
istic, whereas the verifier can use randomization. Allowing the players to use
randomization would not change the class PCD(r(n),q(n)); this follows from
the standard game-theoretic result that, in perfect information games, players
always have deterministic strategies that are optimal [3].

With the above definition in hand, we can state our main results about the
language-recognition power of PCDS’s.

Theorem: PSPACE = PCD(logn, 1).

This result is best possible, because one can show that PCD(logn, g(n)) is
contained in PSPACE, for any function q.

The following is a technical building block, interesting in its own right, that
is used in the proof that PSPACE = PCD(logn,1): If r(n) = Q(logn), then
PCD(r(n), g(n)) contains the same languages if the verifier reads O(g(n)) rounds
of the debate as it does if the verifier reads O(g(n)) bits of the debate.

We use our main result about the language-recognition power of PCDS’s
to prove lower bounds on the difficulty of approximating PSPACE-hard func-
tions. Let MAX Q3SAT be the following natural optimization version of the
canonical PSPACE-complete language QBF. Suppose ® = Q121Q222 - - - Qnxy
¢(z1,22,...,2,) is a quantified boolean formula, with @Q; € {3,V}, and ¢ in
3CNF. Suppose that the variables of the formula are chosen, in order of quantifi-
cation, by two players 0 and 1, where player 0 chooses the universally quantified
variables and player 1 chooses the existentially quantified variables. If player 1
can guarantee that k clauses of ¢ will be satisfied by the resulting assignment,
regardless of what player 0 chooses, we say that k clauses of ® are simultane-
ously satisfiable. We let MAX Q3SAT be the function that maps a quantified
3CNF formula @ to the maximum number of simultaneously satisfiable clauses.

Theorem: There is a constant 0 < € < 1 such that approximating MAX
Q3SAT within ratio € is PSPACE-hard. Thus MAX Q3SAT is as hard to ap-
proximate closely as it is to compute exactly.

We use reductions to prove that certain other PSPACE-hard functions are
PSPACE-hard to approximate in a stronger sense. These include maximization
versions of the Finite Automata Intersection problem, shown PSPACE-complete

by Kozen [17], and the Generalized Geography problem, shown PSPACE-com-
plete by Schaefer [22]. We show that there is a constant e such that approxi-
mating these problems within ratio n® is PSPACE-hard.

The rest of this paper is organized as follows. We define PCDS’s, and all of
our other terms, precisely in Section 2. Our results on the language-recognition
power of PCDS’s are given in Section 3. Those on approximation of PSPACE-
hard functions are given in Section 4. Section 5 contains open questions and a
discussion of subsequent related results.

2 Preliminaries

We first review the definition of a PCPS. A verifier is a probabilistic polynomial-
time Turing machine that takes as input a pair z, w, where = € {0,1}*, and either
accepts or rejects. A language L has a probabilistically checkable proof system,
or PCPS, with error probability € if there is a verifier V' with the following
properties.

e For all z in L, there is a string m such that V' accepts with probability 1
on input z, 7.

e For all z not in L, on all strings m, V accepts with probability at most e
on input x, .

We say that the verifier makes g(n) queries if the number of bits of 7 read
by the verifier is at most g(n), when the input is of size n. PCP(r(n), g(n)) is
the class of languages that have probabilistically checkable proof systems with
error probability 1/2 in which the verifier uses O(r(n)) random bits and makes
0(q(n)) queries.

We next extend this to define PCDS’s. A probabilistically checkable debate
system, or PCDS, consists of a verifier V and a debate format D. As before, the
verifier is a probablistic polynomial-time Turing machine that takes as input a
pair z, 7, where 7 € {0,1}*, and outputs 1 or 0. We interpret these outputs to
mean “player 1 won the debate” and “player 0 won the debate,” respectively.

A debate format is a pair of functions f(n), g(n). Informally, for a fixed n, a
debate between two players, 0 and 1, consistent with format f(n), g(n), contains
g(n) rounds. At round ¢ > 1, player ¢ mod 2 chooses a string of length f(n).

For each n, corresponding to the debate format D is a debate tree. This is a
complete binary tree of depth f(n)g(n) such that, from any node, one edge is
labeled 0 and the other is labeled 1. A debate is any string of length f(n)g(n).
Thus, there is a one-to-one correspondence between debates and the paths in
the debate tree. Moreover, a debate is the concatenation of g(n) substrings of
length f(n). Each substring is called a round of the debate, and each debate of
this debate tree has g(n) rounds.

Again for a fixed n, a debate subtree is a subtree of the debate tree of depth
f(n)g(n) such that each node at level i (the root is at level 0) has one child

if ¢ div f(n) is even, and it has two children if ¢ div f(n) is odd. Informally,
the debate subtree corresponds to a list of “responses” of player 1, against all
possible “arguments” of player 0 in the debate. For this reason, we also refer to
a debate subtree as a strategy of player 1. A strategy of player O can be defined
in a similar way, (where the definition of debate subtree is modified so that each
node at level 4 has one child if ¢ div f(n) is odd, and two children if 7 div f(n)
is even). Thus, a pair of strategies, one for each player, defines a unique debate
— namely the unique path in the intersection of the strategies (represented as
trees) of the players.

A strategy of player 1 could also be defined as a function from nodes of the
complete binary tree on levels ¢ where i div f(n) is even into {0,1}, i.e., into
responses of player 1. The debate subtree corresponding to such a function is
simply the subtree of the complete binary tree that is reachable from the root via
paths of the following form: At nodes on level ¢ where 4 div f(n) is even, follow
the outgoing edge selected by the strategy function; at nodes on level 5 where
j div f(n) is odd, follow either outgoing edge. However, representing a strategy
as a function requires determining responses for many nodes of the game tree
that can never be reached with that strategy. Furthermore, the proof of our
main result is more naturally expressed in terms of subtrees than functions. For
these reasons, we define strategies as subtrees.

A language L has a PCDS with error probability € if there is a pair (D =
(f(n),g(n)),V) with the following properties.

e For all z in L, there is a debate subtree such that, for all debates 7 labeling
a path of this subtree, V' outputs 1 with probability 1 on input z,7. In
this case, we say that z is accepted by (D, V).

e For all z not in L, on all debate subtrees, there exists a debate 7 labeling
some path of the subtree such that V outputs 1 with probability at most
€ on input z, 7. In this case, we say that z is rejected by (D, V).

Equivalently, the first condition states that on all z in L, player 1 has a
strategy such that, for any strategy of player 0, V' outputs 1 with probability
1 on the debate defined by the pair of strategies. The second condition states
that on all not in L, player 0 has a strategy such that, on any strategy of
player 1, V outputs 1 with probability at most € on the debate defined by the
pair of strategies.

This definition allows “one-sided error,” analogous to the type of errors that
are allowed in the complexity class coRP. We could also define a class of PCDS’s
with “zero-sided error,” with three possible outputs, 1, 0, and A, for “player 1
won,” “player 0 won,” and “I don’t know who won,” respectively. In this case,
the verifier must never declare the losing player to be a winner, but it may, both
in the case that z € L and in the case that x € L, say that it doesn’t know
who won. We will see in Corollary 3.6 that this definition also gives the class
PSPACE.

As in the theory of PCPS’s, we say that the verifier makes ¢(n) queries if
the number of bits of = read by the verifier is at most g(n) when the input is
of size n. The verifier V in a PCDS is required to be nonadaptive, by which we
mean that the bits of © read by V' depend solely on the input and the coin flips.
If L has a PCDS with error probability 1/2 in which V flips O(r(n)) coins and
reads O(g(n)) bits of m, we say that L € PCD(r(n), g(n)).

It will be convenient in later proofs to reason about a generalized class,
GPCD(r(n),q(n)). GPCD(r(n),q(n)) is defined exactly as PCD(r(n),q(n)),
except that the verifier of a GPCDS nonadaptively queries O(g(n)) rounds of
the debate 7 (rather than O(g(n)) bits of the debate). Thus, in a GPCDS, there
is no restriction on the number of bits queried by the verifier in each round.

Next, we give some definitions relating to approximability of PSPACE-hard
functions. Let f be any real-valued function with domain D C {0,1}*. Let
A be an algorithm that, on input z € {0,1}*, produces an output A(z). We
say that A approzimates f within ratio e(n), 0 < e(n) < 1, if for all z € D,
e(Jz]) < A(z)/f(z) < 1/e(|z]). If €(n) > 1, then “A approximates f within
ratio €(n)” means that 1/e(|z|) < A(z)/f(z) < e(|z|). If algorithm A computes
the function g, we also say that g approximates f within ratio e.

The function f has a polynomial-time approximation scheme, or PTAS, if
for each €,0 < € < 1, there is a polynomial-time algorithm A that approximates
f within ratio € [12].

We say that a function g is PSPACE-hard if PSPACE C PY, i.e., if every
language in PSPACE is polynomial-time reducible to g. By “approximating f
within ratio e(n) is PSPACE-hard,” we mean that, if g approximates f within
ratio €(n), then g is PSPACE-hard.

Finally, we review some facts about algebraic techniques for encoding strings.
We will use them to prove that PCD(logn, ¢(n)) = GPCD(logn, g(n)), which is
Theorem 3.2 below. Let z be an element of {0,1}". The robust encoding Er(zx)
of 2 is an element of {0,1}?", indexed by elements v of {0,1}", such that the
v bit of Eg(z)is Y., v;z; mod 2. Let I be [logn/loglogn] and p be a prime
in [log®n, 21log® n], where ¢ is a constant determined in the proof of Lemma 3.3.
Let I = {1,2,...[logn]} C Z,. Since |I'| > n, we can fix an injective map
from {0,1}" to the set of functions that map I' to {0,1}. Regard z as one of
these functions I' — {0,1}. There exists a I-variable polynomial X over Z,,
of degree at most I(|I| — 1), that agrees with z on all a € I'. The low-degree
encoding Ep(z) of z is any such function X : Z) — Z,. Let (y1,y2,---,yp)
denote Ep(x).

The encoding E that is used in the proof of Theorem 3.2 is given by the
formula

E(z) = (Er(y1), Er(y2), - - -, Er(yp))-
Note that |E(x)| = poly(|z|).
The following expression Ag is defined for any function E' : S — X", any
set S, and any alphabet Y. Typically, E’ will be an error-correcting code, and

Apg: (y) measures the fraction of symbols of y that have to be changed in order
to transform y into a codeword. Let y be an element of ¥ . Then

minges(Ham(y, E'(x)))

12 3

Agp =
240)) -
where, if y; = 041 -+ - 04, 1 <0 < 2, 045 € X, then Ham(yy,y2) is the Hamming
distance between y; and yo, i.e., the number of j for which o1; # o2;.

3 Complexity-Theoretic Results

Our first theorem on the language-recognition power of PCDS’s addresses the
question of whether verifiers that read O(g(n)) rounds of the debate tape have
more power than verifiers that read O(g(n)) bits of the debate tape. Surprisingly,
for r(n) = Q(logn), the answer is no. This result relies heavily on the following
fact about probabilistically checkable proofs.

Theorem 3.1 (Arora et al. [1]) Let k, n1, no, ..., and ny be integers and
o(x1,%a,...,2) be an NP predicate, where |x;| = n;, for i = 1,2,...,k. Let
n = Zle n;. Then there exists a verifier V that uses O(logn) random bits
and reads O(k) bits of a proof 7 = (w1, 2, ..., Tk, y) of length poly(n) with the
following properties:

o Ifp(x1,22,...,2,) = 1, there is a y such that, with probability 1, V accepts
™= (E(xl)aE(m2)7 s ;E(mk);y)'

o Foranym = (m1,...,mk,y), if V accepts with probability greater than 1/2,
then p(E~Y(m), E~Y(m2),...,E7 (7)) = 1.

In the next theorem, given an NP-predicate ¢ of arity ©(g(n)), we will need
to refer to the string y whose existence is guaranteed by the first bullet above.
Thus, we say y is a PCP(logn, q(n)) proof for the predicate p(x1, 2, - . ., Tog(n)))
and we refer to E(z1), E(z2), . .., E(ze(q(n))) as the inputs to the PCP(log n, q(n))
proof y.

Theorem 3.2 For every g(n), PCD(logn,¢(n)) = GPCD(logn, g(n)).

Proof: The direction PCD(logn, g(n)) C GPCD(logn, ¢(n)) is immediate;
we consider the other direction. Given a GPCDS (D, V) with players 1 and 0,
we construct an equivalent PCDS (D', V') with players 1’ and 0’. Suppose that
D has N rounds on a given input and assume without loss of generality that
N is even. Then D’ has N + 1 rounds. Roughly, the idea is that in rounds
1 through N, the players 0’ and 1’ play as in debate D, except they encode
their moves using the encoding E defined in Section 2. In round N + 1, player
1" writes additional information, in order to convince V' that V would have

accepted on the decoded debate in rounds 1 through N, or that player 0’ has
not properly encoded some of its moves.

We first describe a strategy of player 1’ on input x € L that causes V' to
accept with probability 1. Since z € L, there exists a strategy for 1 on z such
that V' accepts with probability 1. This induces the following strategy for 1’ in
D’ in the first N rounds. When at the ith round, player 1’ first “decodes” each
of the previous rounds 1 through ¢ — 1. Then, with respect to this sequence
of moves, 1’ finds the move m that 1 would write in round 4 according to its
winning strategy in D. Player 1’ plays E(m) in round ¢. Here, by “decoding” a
given move, we mean finding the move M that minimizes the Hamming distance
from E(M) to the given move.

The string written by 1’ in round N + 1 is constructed so that V' can check
that, for each random string R of V, either V outputs 1 if it is given this
random string and the decoded debate of rounds 1,..., N or that some move of
0’ read by V on random string R is a bad encoding. We say that a string y is
a bad encoding if Ag(y) > €, where € > 0 is a parameter that is determined in
Lemma 3.3 below, and Ag(y) is as defined at the end of Section 2. Let V(R)
denote the execution of verifier V' with random string R.

More precisely, the move of 1’ in round N + 1 contains the following strings.
First, it contains the encoding of each of player 0"’s moves. Let z; be the
encoding of the move player 0/ in the i** round. Note that if, in round ¢, player
0" writes an encoding of a move of debate system D, then x; is the encoding of the
encoding of a move in the debate system D. Second, it contains a PCP(logn, 1)
proof m;; for each bit of each move that 0’ played. The (i,)" of these proofs
proves that the string encoded by 1’ has the same value as the j* bit of the
it move played by 0’. (These proofs enable the verifier V' to check that 1’
properly encoded 0’s moves.) Note that all these proofs have as input only one
string encoded by 1’ and one bit played by player 0'; therefore PCP(logn, 1)
proofs exist, by Theorem 3.1. Lastly, for each random seed R, the move of 1’ in
round N + 1 contains a PCP(logn, ¢(n)) proof mg that has one of the following
properties

e when the moves played by 1’ and 0’ are decoded and used as the debate
tape in D, V(R) outputs 1

e at least one of the moves corresponding to moves of player 0 that V(R)
reads is a bad encoding.

The inputs to the above statement are O(g) moves by 1’, corresponding to the
O(q) moves of player 1 read by V(R), and also the encoding of the moves of
player 0’ that are in the last move of player 1’. Observe that all the inputs
are encoded by 1’. Lemma 3.3 shows that the problem of recognizing a bad
encoding is in NP. Thus, by Theorem 3.1, the PCP(logn, g(n)) proof needed in
the second case exists.

To summarize, in the last round player 1’ writes a string of the form

((#:)i> (mi5)is (TR) R),

where R ranges over random seeds of V., i € {2,4,...,N} and j € {1,2,...,1;},
where [; is the number of bits in the i** move of player 0’. See Figure 1.

Now we can describe the verifier V'. First V' chooses a random seed R and
computes the indices i1, %2, .. .,i4(n) Of rounds that V' queries using the random
seed R. It then probabilistically checks mr with encoded inputs m;, for any even
iy and x;, for any odd iz, where m; is the move in round . Additionally, for all
odd iy, V' choosesa j € {1,2,...,1;, } uniformly at random and probabilistically
checks m;, ; with input z;, and the j* bit of m;, .

Let us show that the debate system (D',V') is a PCDS for L with error
probability 1 — €/2. (Note that this implies the theorem since the error proba-
bility can be made less than 1/2 by repeating the verification a constant number
of times in parallel.)

In the case that = € L, it follows easily from the construction that V' accepts
with probability 1, on the strategy for player 1’ described above.

If x ¢ L, then 0 has a strategy such that V rejects with probability at least
1/2. Consider the strategy for 0’ induced by this strategy of player 0 (defined in
the same way as player 1”’s induced strategy was defined for rounds 1 through
N). Note that player 0 is declared the winner on input z for at least half of the
random seeds R. Fix some such R. Then, one of two events must be true. The
first is that the proof mg causes the verifier V' to reject with probability at least
1/2 (by Theorem 3.1). The second is that, for some ¢ such that round i is read
by V(R), the string z; written by player 1 in round N + 1 is not the encoding
of the string m actually played by 0’ in round 4, but of another string, say =z,
where A(xz,m) > e. Thus, with probability at least €, V' chooses a j such that
z; # m;, and the proof m;; causes V' to accept with probability at most 1/2.
Thus V' rejects in the second event with probability at least €/2. |}

We now prove a technical lemma that was used in the previous argument.
Lemma 3.3 For some € > 0, there exists a polynomial-time predicate F with

the following property. For any y, there exists a z such that F(y,z) = 1 if and
only if Ap(y) > €.

Proof: The code FE is efficiently decodable in the following sense: There
exists a polynomial-time computable function G such that, for any z, z:

Agp(z,E(z)) <1/12= G(z) = x.

Let F(2) be the polynomial-time computable predicate Ag(z, E(G(2))) > 1/12.
The decoding function G is constructed from the decoding functions for the
two codes that E is composed of. Let z = (z1,22,...,%,). First note that,

D D’

[T S ——

23

TRy

Figure 1: The debate transformation. Everything within the dashed contour is

part of move N + 1 of 1’.

10

-~
N e e e e = = e

T4

TN

for each i € {1,2,...,p'}, we can find, by exhaustive search, y; that minimizes
A(z;, Er(y:)), with ties broken arbitraily. This defines a function g : Z) — Z,.
It is easy to see that the multivariate polynomial self-corrector due to Gem-
mell and Sudan [13] can be used to construct a decoding function H such that,

for any g, z:
Alg, Ep(x)) <1/3= H(g) = a. (1)

The self-corrector in [13] is randomized, but in our context it uses O(logn) ran-
dom bits and can therefore be made deterministic at the expense of a polynomial
factor in running time.

Assume that Ag(z) < 1/12. Thus there exists z such that A(z, E(z)) <
1/12. Let f be the multivariate polynomial Ep(z). Note that, for any a # a’,
A(Eg(a), Eg(a’)) = 1/2. This implies that, for any ¢ such that g(a;) # f(a,),
A(zi, Er(f(ay)) > 1/4. Hence Ag(z) > 1/4-A(f,g). Thus A(f,g) <1/3, and
(1) implies that H(g) =z. 1

If r(n) = o(logn), then it is not necessarily true that GPCD(r(n), g(n))
C PCD(r(n),q(n)). For example, it is clear that GPCD(0,1) is the entire
polynomial-time hierarchy, whereas PCD(0,1) is just P.

We now turn to the proof of our main theorem: Every language in PSPACE
is recognized by a debate system in which the verifier uses O(logn) random bits
and reads O(1) rounds (equivalently, by Theorem 3.2, O(1) bits) of the debate.
The following notation is used is the proof. Let ® = 3z, Vo ...z, d(z1,-. -, Tn)
be an instance of QBF; without loss of generality, we assume that quantifiers
alternate strictly. This instance ® of QBF can be thought of as a game between
two players, an “existential” player (player 1) who sets the odd-numbered vari-
ables, and a “universal” player (player 0) who sets the even-numbered variables.
This view of QBF as a game motivates the following definitions. The assign-
ment tree A for ® is the complete binary tree of depth n, where one edge from
every internal node is labeled “true” and the other “false.” Each path P in the
tree corresponds to an assignment of the variables; we say P satisfies ¢ if this
assignment, satisfies ¢. Call edges at odd-numbered levels (that is, correspond-
ing to existentially quantified variables) 1-edges and edges at even-numbered
levels 0-edges. An J-strategy subtree A; is a subtree of A that has two 0-edges
from each node at each even level and one 1-edge from each node at each odd
level. Similarly, a V-strategy subtree Ag is a subtree of A that has two 1-edges
from each node at each odd level and one 0-edge from each node at each even
level. An 3-strategy subtree A; is optimal if it maximizes (over all -strategy
subtrees) the number of paths that satisfy ¢. Similarly, a V-strategy subtree
Ao is optimal if it maximizes (over all V-strategy subtrees) the number of paths
that do not satisfy ¢. Note that if & € QBF, all paths of an optimal 3-strategy
subtree satisfy ¢, whereas if ® ¢ QBF, then no path of an optimal V-strategy
subtree satisfies ¢.

Theorem 3.4 PSPACE = GPCD(logn,1).

11

Proof: The direction GPCD(logn,1) C PSPACE is straightforward. To
prove the other direction, we show that QBF € GPCD(logn,l). Let & =
dz1Vzy ... 3z, ¢(21,. .., 2,) be an instance of QBF in which quantifiers alternate
strictly. Let Ap, A; be optimal V- and 3- strategy subtrees of ®, respectively.
Note that @ is a true QBF if and only if the unique path P of length n that is
in both Ay and A; satisfies ¢.

We give a debate format and a protocol of players 0 and 1 that enable the
players to record parts of the strategy subtrees Ag and A; in such as way that
a verifier can efficiently check whether or not path P satisfies ¢.

In the debate, the players alternately play rounds, starting with player 1.
Roughly, in one round, player ¢ does two things: presents a challenge to player
1—14 and responds to previous challenges written by player 1 —i. A challenge by
player 1 —i to player 4 is simply a path of the strategy subtree A; that ends in a
(1 —4)-edge. The response of player ¢ to this challenge is the edge that extends
this path in A; (if the path is not already of length n).

Note that a challenge to player 1 (resp. 0) has to be a path of A; (resp. Ap).
How can player 0 write down such a path without knowing A;? FEssentially, in
round ¢, player 0 must present paths that are consistent with what player 1
wrote in rounds 1 through ¢t — 1. We will elaborate on this point below.

Play proceeds as follows: In round ¢, one of the players writes a tree 7;.
If player ¢ is honest, then in round ¢ = ¢ mod 2, player ¢ writes the (unique)
smallest subtree T; of A; such that 7} contains all challenges by player 1 — i at
rounds j < t. The debate format is thus (f(n), g(n)), where g(n) is chosen to
make the error probability small enough and f(n) is chosen to allow encoding
of binary trees of the appropriate form; we will explain in detail how to choose
f and g when we prove correctness of the protocol.

Before specifying the algorithm of the verifier V, we give some examples of
debates in which player 1 is honest. The values assigned to the variables depend
on the input formula and are unimportant for the purposes of this discussion.

Example 1: Suppose that player 0 is honest as well (see Figure 2). In round
t, 1 <t < n, player ¢ =t mod 2 assigns a value to z; by writing down a path
of length t that extends the path written in round ¢ — 1. The path written in
round n is P, the intersection of A; and Ag. In rounds n+1 through g, the path
P is repeated in each round. V will declare player 1 the winner (i.e., accept the
input) if and only if P satisfies ¢.

Example 2: Suppose that @ is a true QBF and that player 0 cheats in an
effort to convince V to reject (see Figure 3). One way player 0 may do this is
to play a move that is not a subtree of A; — that is, to lie about player 1’s
previous moves.

Note that, in round 3, the honest player 1 need only extend the FF path of
the tree played by 0 in round 2. Because the TT path that appears in round 2
is not in Ay, i.e., because it is not consistent with player 1’s move in round 1,
it does not satisfy the definition of a challenge.

12

Round 1:
"

Round 2:
xr1 = T
To = T
Round 3:
[]
[]
Round n:
Round n + 1: Same as round n.
[]
[]
[]
Round g: Same as round n.

Figure 2: Both Player 1 and Player 0 are honest.

13

Round 1:

Round 2:

Round 3:

Figure 3: Player 1 is honest and Player 0 is lying about Player 1’s moves.

14

Example 3: Once again, suppose that & is true and that player 0 cheats.
This time, player 0 does so by lying about player 0’s own moves rather than
those of player 1 (see Figure 4).

In this example, both the FF path of round 4 and the FT path of round 2
require a response by player 1 in round 5, because both are legitimate challenges,
i.e., neither is inconsistent with player 1’s previous moves.

A move T; by an honest player ¢ must have the following properties: (i)
at most one edge from every node is an i-edge (because T is a subtree of A;)
and (ii) the edge to every leaf of depth < n + 1 is an i-edge (because player 4
responds to any recorded challenge by player 1 —1). A tree T} satisfying these
two properties is valid. (In Example 3 above, player 0 should choose which of
the paths FTT or FFF of round 5 to extend in round 6, because extending both
of them would result in an invalid move Tg.) Also, we define a walid challenge
by player 1 — ¢ to player 4 at round j to be the (unique) longest challenge that
lies in Tj, if T} is valid.

Note that if player ¢ is honest, then T;_o is a subtree of T;. This is because
both T;_2 and T} respond to all valid challenges from rounds j < t—2. Also, T}
has at most one more leaf than 7}_o, namely the leaf of the path that contains
the valid challenge at round ¢ — 1, if it lies on a different path from previous
valid challenges.

We take the number of rounds to be g = g(n) > 4n; this will ensure that
the error probability is no more than 2(n — 1)/(g — 3), as explained below. We
let f(n), the length of a round, be such that any binary tree of depth at most
n with at most g(n) leaves can be described using f(n) bits, via some simple
encoding of trees to strings. This is sufficient, since the number of leaves of
Ty(n) is at most g(n).

Below we state Vs algorithm formally and prove it correct, but first we
explain intuitively how V can catch a cheating player by examining only a
constant number of rounds of the debate. Suppose that the input formula is
true and hence that player 1 follows the protocol honestly. If they are valid,
the trees T, (player 1’s last move) and T,_; (player 0’s last move) intersect in
a unique path, say P(g). If it is of length n, then P(g) satisfies ¢, and V' will
certainly declare player 1 the winner. Thus player 0 must try to “stall” and
prevent P(g) from growing to length n. Consider a move T}, where t < g — 1
is even. T} contains a (unique) longest prefix of P(g), say P(t). Informally, we
say that player 0 “cooperates” if |P(t)| > |P(t — 1)|. Player 0 can cooperate in
fewer than n rounds, or else P(g) is of length n. Essentially, our formal proof
shows that, if player 0 indeed cooperates in fewer than n rounds, then many
intermediate moves T} are either invalid or not subtrees of the final move T,_;.
Either way, V' can detect with constant probability that player 0 is cheating by
examining only a constant number of randomly chosen moves.

We now give a formal statement of V’s algorithm and a proof of its correct-
ness. V first examines the last subtrees, 7,1 and T}, written by players 0 and
1 respectively. If T,_; is not valid, V accepts. If T, is not valid, V rejects.

15

Round 1:
M _F

Round 2:

xry = F

To = T

Round 3:
Round 4:

1 = F

T2 = F

Round 5:

Figure 4: Player 1 is honest and Player 0 is lying about Player 0’s own moves.

16

Otherwise, let P(g) be the (unique) path in both T;_; and Ty. If the length of
P(g) is n and P(g) satisfies ¢, V accepts. If the length of P(g) is n and P(g)
does not satisfy ¢, then V rejects.

Otherwise, the length of P(g) is less than n. In this case, V' chooses a random
round ¢,1 < t < g, in which player 1 plays, and examines rounds ¢ and ¢ — 1.
If T} is not valid or is not a subtree of Ty, V rejects. Similarly, if T;_; is not
valid or is not a subtree of T;_q, V accepts. Otherwise, let P’ be the longest
path in both T;_; and T;. If the last edge of P’ is not a 0-edge, then V rejects.
Otherwise, V' accepts. This completes the statement of V’s algorithm.

Now, suppose that & € QBF and that player 1 is honest. We show that V'
accepts with probability 1. This is true if the length of P(g) is n, since in this
case P(g) is a path in A; and hence satisfies ¢. If the length of P(g) is less than
n, then for all rounds ¢ in which player 1 plays, T} is valid and a subtree of T,.
Suppose that T;_; is also valid and a subtree of T;,_;. It remains to show that
the longest path P’ in both T;_; and T} must end in a 0-edge.

First, note that the length of P’ must be < n; otherwise P’ is contained in
both T,_, and T, and therefore P’ = P(g), which contradicts our assumption
that the length of P(g) is < m. Also, since T;_; is valid, all paths of T;_; of
length < n that end in a 1-edge are followed by a 0-edge. Furthermore, if P’
ends in a 1-edge, the 0-edge following P’ in T;_; must also be in T}, since the
path formed by P’ and this 0-edge is a prefix of the valid challenge of player 0
to player 1 at round ¢ — 1, and player 1 is honest. This contradicts the fact that
P’ is the longest path in both T;_; and T;. Hence P’ must end in a 0-edge.

We next show that if & ¢ QBF and player 0 is honest, then V' accepts with
probability at most 2(n —1)/(g — 3). If the length of P(g) is n, V rejects, since
in this case P(g) is a path in Ap and hence does not satisfy ¢. Hence suppose
that the length of P(g) is less than n; thus player 1 cannot be honest. We claim
that in this case, there can only be n — 1 values of ¢ such that V' accepts when
rounds ¢t and ¢t — 1 are examined. Since V' chooses ¢t randomly and uniformly
from (g — 3)/2 choices, the error probability is at most 2(n — 1)/(g — 3). The
number of choices for ¢ is (g — 3)/2, because V never chooses player 1’s first
move, since it is not preceded by a move of player 0.

If T; is valid, let p(t) be the length of P(t), where P(t) is the longest prefix
of P(g) in T;. For any t such that player 1 plays in round ¢, we show that, if V'
accepts on examining rounds ¢ and ¢ — 1, then p(t) > p(j) for all j < ¢ such that
T} is valid. This implies the claim, since then V' accepts only the first round
for which p(i) = 1,p(:) = 2,...,p(7) = n — 1, and there are at most n — 1 such
rounds.

Suppose, then, that V' accepts on examining rounds ¢ and ¢+ — 1. Suppose
that j < t is a round of player 1, where Tj is valid. We need to show p(j) < p(t).
We first show that P(j) is a prefix of P(t—1), which implies that p(j) < p(t—1).
This is because P(j), with the last edge removed if it is a 0-edge, is the prefix of
a valid challenge of player 1 to player 0 at round j, and since player 0 is honest,
player O responds to this challenge at round ¢ — 1. To complete the proof, we

17

show that p(t — 1) < p(t). Note that it must be the case that P’, the longest
path in both T;_; and T3, ends in a O-edge, since V accepts. Also, this path
must be a prefix of P(t — 1) and P(t). In fact, this path must equal P(t — 1).
(Otherwise, the 1-edge following P’ in P(t — 1) must be in T,. Since T} is a
subtree of T, this 1-edge must be the 1-edge of T} following P’, contradicting
the fact that P’ is the longest path in both T;_; and T}.) Finally, the 1-edge
following P’ in T} must be in T, (since V checks for this) and also in T, (since
player 0 is honest). Thus P(t) contains P(t — 1) as a prefix, and it also contains
an additional 1-edge. This implies that p(t) > p(t — 1) > p(j), as required. [

Combining this theorem with Theorem 3.2, we obtain the following result.
Corollary 3.5 PSPACE = PCD(logn, 1).

We can also obtain a characterization of debate systems that allow “zero-
sided” error. Let a ZPCDS be a PCDS for which the verifier returns one of the
three possibilities “player 1 wins,” “player 0 wins,” and “I don’t know who wins,”
in which the verifier is always right in the first two cases, and the probability of
the third case is at most € < 1/2.

Corollary 3.6 PSPACE = ZPCD(logn, 1).

Proof: This follows from the fact that PSPACE is closed under complement.
Given an L € PSPACE, our main result shows that L and the complement of L
have one-sided PCDS’s (D, V) and (D, V), respectively, with error probability
1/2. Now consider the debate in which both D and D are performed, and the
verifier declares 0 the winner if V rejects, declares 1 the winner if V rejects,
and otherwise says that it does not know the winner. It is easy to see that this
verifier will have zero-sided error and will declare a winner with probability at
least 1/2. |

4 Nonapproximability of PSPACE-hard Func-
tions

In this section, we give many examples of PSPACE-hard functions that are hard
to approximate. We consider maximization versions of the problem of decid-
ing whether a quantified Boolean formula is true and show that one version
can be approximated within ratio 1/2, yet there is some constant € < 1 such
that approximating the function within ratio e is PSPACE-hard. We prove
even stronger results for the maximization versions of several other PSPACE-
complete problems. For example, there is a constant € > 0 such that approxi-
mating Finite Automata Intersection (cf. Kozen [17]) and Generalized Geogra-
phy (cf. Schaefer [22]) within ratio n¢ is PSPACE-hard.

We first consider variants of a well-known PSPACE-complete problem, that
of deciding whether a quantified Boolean formula is true. In what follows, we

18

consider quantified (Boolean) formulas in CNF (conjunctive normal form); that
is, quantified formulas of the form

® = Q1210222 - .. Qn$n¢($1,if27 .- '7zn)7

where each @; € {3,V}, each z; is a Boolean variable, and ¢ is in conjunctive
normal form. If each clause of ¢ has exactly 3 literals, we say the quantified for-
mula is in 3CNF. Let QSAT and Q3SAT be the sets of true quantified formulas
in CNF and 3CNF, respectively.

Suppose that the variables of the formula are chosen, in order of quantifica-
tion, by two players 0 and 1, where player 0 chooses the universally quantified
variables and player 1 chooses the existentially quantified variables. If player 1
can guarantee that k clauses of ¢ will be satisfied by the resulting assignment,
regardless of what player 0 chooses, we say that k clauses of ® are simulta-
neously satisfiable. We let MAX QSAT (resp. MAX Q3SAT) be the function
whose domain is the set of quantified formulas that maps a quantified formula
(resp. quantified 3CNF formula) ® to the maximum number of simultaneously
satisfiable clauses. The results in [1, 2] shows that MAX QSAT is NP-hard to
approximate within certain ratios.

Theorem 4.1 There is a constant 0 < € < 1 such that approrimating MAX
Q3SAT within ratio € is PSPACE-hard.

Proof: Let L be a language in PSPACE. We showed in Section 3 that L
is in PCD(logn, 1). We reduce the problem of deciding whether a string z is
in L to the problem of approximating the number of simultaneously satisfiable
assignments of a quantified 3CNF formula.

Let (D,V) be a PCDS for L, where V is polynomial-time bounded and uses
r(n) = O(logn) random bits and O(1) queries. Let D = (f(n), g(n)). Without
loss of generality, we can assume that f(n) and g(n) are polynomials.

Given an instance x of L, say of length n, we construct a quantified formula
from (D,V) as follows. There are f(n)g(n) ordered variables, one for each bit
of a debate corresponding to the debate format. The first f(n) variables, which
correspond to the first round of a debate, are existentially quantified, the next
f(n) variables, which correspond to the second round, are universally quantified,
and so on.

For each sequence of random bits R of length r(n), there is a subformula
with s = O(1) clauses, with variables corresponding to the bits of a debate
that are queried on random sequence R. The subformula is satisfied by a truth
assignment to the variables if and only if the verifier outputs 1, when the query
bits are as in the truth assignment.

If x is accepted by (D, V), then there exists a debate subtree such that, on
each debate (or path of the tree), V outputs 1 on all of the random strings.
Thus, player 1 can choose the values of the existential variables so that all
clauses of the subformulas are simultaneously satisfiable.

19

If the input z is not accepted by (D, V'), then in any debate subtree, there is
a debate on which V outputs 1 on at most 1/2 of the random strings. Thus, no
matter what truth assignment player 1 chooses for the existential variables, there
is a choice for the universal variables such that at most 1/2 of the subformulas are
satisfied. Hence, at most 1/2 of the subformulas are simultaneously satisfiable.
Since each subformula contains O(1) clauses, it follows that at most a constant
fraction < 1 of the clauses are simultaneously satisfiable. [l

Let (logn)-MAX-Q-FORMULA be the function whose domain is the set of
quantified formulas in which the “clauses” are general formulas with at most
logn variables instead of being in CNF. The above result can be extended (using
standard pseudorandom sampling techniques [6, 15]) to prove the following.

Theorem 4.2 There is a constant € > 0 such that approzimating (logn)-MAX-
Q-FORMULA within ratio n¢ is PSPACE-hard.

We next consider a variant of Q3SAT called Balanced Q3SAT. We say a
quantified formula is balanced if every clause of the formula contains some exis-
tentially quantified variable. Balanced Q3SAT consists of those true quantified
formulas in 3CNF form that are also balanced. This language is easily seen to
be PSPACE-complete, by the following reduction from Q3SAT. An instance

Q121Q2%2 . .. Qrrnd(T1,22,...,%n)

of MAX QSAT, where ¢ has m clauses, is mapped to the instance

Q171Q2%3 - . . QurpIwy ... JWnd (T1, T2, -+, Ty W1, - - - Wiy

where ¢’ is obtained from ¢ by replacing each clause C; = (I; V Iy V I3) of ¢ by
the two clauses (w; VI; VIs) and (w0 VI3 Vi3), 1 < j<m.

We define the corresponding function MAX Balanced Q3SAT to be the func-
tion MAX Q3SAT, restricted to the domain of balanced quantified formulas.
This provides an example of a function that can be approximated to within
some constant ratio but cannot be approximated to within an arbitrary con-
stant ratio, unless PSPACE = P.

Lemma 4.3 There is a polynomial-time algorithm that approrimates MAX Ba-
lanced Q3SAT within ratio 1/2.

Proof: Let ® = Q121 ...Qnrnd(z1,.-.,T,) be a balanced quantified for-
mula in 3CNF. Let ¢’ be the formula obtained from ¢ by eliminating all univer-
sally quantified variables. Since ¢ is balanced, note that the number of clauses
of ¢’ is equal to the number of clauses of ¢ (however, clauses may now have only
one literal).

Johnson [16] showed that a truth assignment to the variables of ¢’ that
satisfies at least 1/2 of the clauses can be found in polynomial time. Player

20

1 can use this assignment to ensure that at least 1/2 of the clauses of ¢ are
satisfied, no matter what the values of the universally quantified variables are.

Lemma 4.4 There is a constant 0 < € < 1 such that approximating MAX
Balanced Q3SAT within ratio € is PSPACE-hard.

Proof: In Theorem 4.1, we reduced the problem of deciding whether an
input z is accepted by a PCDS (D, V') to the problem of approximating a quan-
tified formula ®. ® can be converted into a balanced subformula as described
in the discussion preceding Lemma 4.3. It is straightforward to show that the
resulting balanced quantified formula @’ also has the property that, if z is ac-
cepted by (D, V), then all clauses of ®' are simultaneously satisfiable, but if x
is not accepted, at most a constant fraction < 1 are simultaneously satisfiable.

We next consider a problem from automata theory. Let FA-INT be the set
of sequences Aj, As,..., Ay, of deterministic finite-state automata having the
same input alphabet ¥ such that there exists a string w that is accepted by all
the automata. Kozen [17] showed the problem to be PSPACE-complete.

The function MAX FA-INT has as its domain the set of all sequences
Ay, As, ..., Ay of deterministic finite state automata having the same input
alphabet ¥ and maps such a sequence to the largest number k such that there
exists a string w that is accepted by k of the automata. We prove a non-
approximability result for MAX FA-INT.

Theorem 4.5 There is a constant € > 0 such that approrimating MAX FA-INT
within ratio n¢ is PSPACE-hard.

Proof: We describe a reduction from a new variant of MAX Q3SAT. The
function MAX FIX-QSAT differs from MAX Q3SAT in two ways. First, the
domain is the set of quantified formulas, where the “clauses” are now the con-
junction of O(logn) “subclauses,” each the disjunction of 3 literals. Second,
given an instance of this domain, the function outputs the maximum size k of
a set of clauses that player 1 can guarantee will be satisfied, regardless of what
assignment player 0 chooses for the universal variables. Thus for MAX FIX
QSAT, the set of k satisfied clauses must be fixed in advance, that is, the set
must be the same for all assignments of player 0. However, for MAX Q3SAT,
the set of k simultaneously satisfied clauses may depend on the assignments of
player 0. The proof of Theorem 4.1 can be extended to show that there is some
constant € > 0 such that approximating MAX FIX-QSAT to within ratio n€ is
PSPACE-hard.

We now describe our reduction from MAX FIX-QSAT to MAX FA-INT such
that an instance of MAX FIX-QSAT has a set of k clauses that player 1 can guar-
antee will be satisfied, if and only if the instance of MAX FA-INT has k automata

21

that accept the same string. Let ® = Q121Q222 ... Qnznd(x1,22,...,2,) be
an instance of MAX FIX-QSAT, where ¢ has m clauses. Moreover, assume
without loss of generality that each variable appears in some clause.

We first describe a set Valid of strings w; roughly, each string in this set
describes possible choices of player 1 for the existentially quantified variables,
against all possible choices of player 0 for the universally quantified variables.
We will later construct m sets of automata, one set per clause, such that all
automata in each of k sets accept some string w, which happens to lie in the set
Valid, if and only if the quantified formula ® has k simultaneously satisfiable
clauses.

Each string w in the set Valid is of the form $w;$w-$...3wx$, where each
W; = WjWs2 . . . Wiy, 18 a binary string of length n, corresponding to a truth as-
signment to the variables of ¢, and N = 2%, where u is the number of universally
quantified variables in ®. Moreover, w must have properties 1, 2 and 3 below.

Roughly, these properties are necessary and sufficient to ensure that w is in
Valid if and only if the strings w; correspond to paths of an J-assignment subtree
that describes the assignments of player 1 against all possible assignments of
player 0 (as described in the paragraph preceding Theorem 3.4). Note that such
a tree has N leaves. Moreover, these paths are enumerated in order from left to
right of the assignment subtree. We now list the three properties.

1. Suppose that z; is universally quantified. Then, w;; = 0 and wy; = 1.
Moreover, if w; is such that w;; = 1 for all j such that z; is universally
quantified, then ¢ = N.

2. Suppose that z; is universally quantified and ¢ > 1. Then, w;; = W;—1,;
if for all j* > j such that z; is universally quantified, w;—; ; = 1, and
Wij = Wi—1,5 otherwise.

3. Suppose that z; is existentially quantified and ¢ > 1. Then, w;; = w;—1,5,
unless for all j* > j such that z; is universally quantified, w;_1 ; = 1. In
the latter case, there is no restriction on w;;.

We say w is not valid at index j, if property (2) or (3) fails for j.

We consider two types of automata: “syntax checking” automata and “clause
checking” automata. We will later use these automata to construct the au-
tomata that are used in the MAX FA-INT instance. For 1 < j < n, automaton
S; checks that the j* bit of each w; has the property (2) or (3) above, depend-
ing on whether j is universally or existentially quantified. S,,+; checks that the
$’s are separated by strings of length exactly n and that property (1) above
holds. Clearly, a string is accepted by all n + 1 of the automata if and only if
it is in the class Valid. Moreover, each of these automata can be constructed to
have poly(n) states.

There are m clause checking automata C1,. .., Cp,, each with poly(n) states,
such that a string w € Valid is accepted by C; if and only if on all paths of the
corresponding assignment subtree, the ji* clause is satisfied.

22

We now construct m automata. The ** automaton A; does the following
checks on its input string.

a. Perform the check done by automaton Sy1.

b. If z; or Z; is a literal of C;, then perform the check of S;. (In this case,
say that A; ezamines bit x;.)

c. Perform the check done by automaton C;.

Check (b) can be done by an automaton with poly(n) states. Roughly,
for each 4, the automaton stores the the bits w;_; ; and w;;, where bit z; is
examined by C;. Also, the position of the rightmost universal index with value
0 in w; is stored. This information is sufficient to perform the check of S; on
the string w;. Since A; performs the checks of three automata of size poly(n),
A, is also of size poly(n).

If player 1 can guarantee that a fixed set of k clauses of ¢ are satisfied, for all
assignments of player 0, then there is a corresponding string w that is accepted
by k automata.

Conversely, suppose that k£ > 0 automata all accept some string w. Note
that w may not be a member of Valid. However, w must pass check (a), because
k > 0. Hence, suppose that w is not valid at I indices. We prove by induction
on I that there exists a string w’ in Valid such k automata accept w’. From
this it follows that there is a set of k clauses of ® that player 1 can guarantee
will be satisfied.

The base case, when I = 0, is immediate, for in that case w = w’. Sup-
pose I > 0, and let 5 be the smallest invalid index. In what follows, if z; is
existentially (universally) quantified, we say that j is an existential (universal)
index.

If j is an existential index, we define w} as follows for 1 < ¢ < N: Let
w;; = 0 and let wj; = w;s for s # j. The resulting string has I — 1 invalid
indices. Furthermore, it is still accepted by k automata. (This is because none
of the k accepting automata can possibly examine bit j.) We can now apply
induction to complete the proof.

Next, suppose that j is a universal index. The procedure to construct w’
from w is more complicated in this case. We do it in stages. For each set of
bits by ...b;_1, we consider separately the (unique) longest contiguous substring
wy$... 8w,y $ of w (if any) such that by ...b,;_ is a prefix of each w;, r <4 <.
Call this substring w[by ...b;—1]. In the next paragraph, we describe a new
substring w’[b; ...b;_1] that is obtained from w[b; ...b;—1]. We then let w'
be the string obtained by concatenating the substrings w'[b; ...b;_1] in the
appropriate order. Our construction ensures that w’ has I — 1 invalid indices
and is accepted by all £ automata that accept w.

Therefore, fix by ...b;_1, and consider only the substring w,$... $w,$. Note
that, for all universal indices j' > j, wyy = 0 if §/ is valid, and w,j» = 1. (If

23

this were not the case, it would contradict the facts that 1...j5 — 1 are valid
indices and that w,$...$w,s$ is the longest substring of w such that b; ...b;_1
is a prefix of each w;.) Let [be the smallest number such that, for all universal
indices j' > j, wy = 1.

Let w,$...8w;$ be such that, for 1 < i < [, wj; = 0, and, for s # j,
w;, = wjs. Similarly, let w8 ... $w)'$ be such that, for 1 <4 <[, wj’, =1 and,
for s # j, wi, = w;s.

Then, the new string w'[by ...bj_1] is w,.$... Sw;$w!$... $w]'S.

This completes the description of w’. The construction guarantees that (i)
w’ has I —1 invalid indices (namely, those invalid indices j' > j of w) and (ii) w’
is accepted by the k& automata that accept w. Again, induction can be applied
to complete the proof. |

Generalized Geography is an abstraction of a popular car game in which
two players alternately list the names of countries, each beginning with the
last letter of the previous country, until one player cannot list a new country. A
corresponding game can be played on a directed graph G that has a distinguished
start node s. A marker is initially placed on s, and two players, 0 and 1,
alternately move it along an edge, with the constraint that player 1 starts and
each edge can be used only once. The first player unable to move loses. Schaefer
[22] defines GGEOG to be the set of pairs (G, s) such that player 1 has a winning
strategy.

Informally, a natural optimization version of GGEOG is to compute how
long player 1 can keep the game going, even if player 1 does not eventually win
the game. We say (G, s) can be played for k rounds if player 1 has a strategy
that causes the marker to move along k edges of the graph before the game
ends. We define MAX GGEOG to be the function whose domain is the set of
pairs (G, s), where G is a directed graph with node s, that maps a pair (G, s)
to the maximum number k of rounds that (G, s) can be played.

Theorem 4.6 There is a constant € > 0 such that it is PSPACE-hard to ap-
proximate MAX GGEOG within ratio n®.

Proof: We first modify Schaefer’s reduction [22] to obtain a reduction from
MAX Q3SAT to MAX GGEOG. We later describe a simple modification of our
construction, to obtain a reduction from logn-MAX-Q-FORMULA to MAX
GGEOG.

Let @ = Q121Q2%3 - .- Qnrpnd(x1,--.,T,) be an instance of MAX Q3SAT,
where ¢ contains m clauses. In what follows, we assume that n is even and that
@, = V; the reduction can easily be modified to handle the other cases.

We construct from @ an instance (G,s) of MAX GGEOG such that, if a
maximum of k clauses of ® are simultaneously satisfiable, then (G, s) can be
played for a maximum of 4n + kn? + O(1) steps. From this property, it follows
that, given an approximate value for the length of the generalized geography
game, an approximate value for the number of satisfiable clauses can be deduced.

24

The graph G is composed of a “variable-setting” component, a “clause-testing”
component and a “line.” We describe each of these components in turn and also
describe how they are interconnected.

We first describe the variable-setting component. The node set is

i = {a;,-,@,ui,v”Qi:E,lSiSn}
U {mhzi:ui:vi:wiau_}hzi | Qi = \7’,1 S 7 S n} U {un+1}_

Node u; is the start node s. The nodes z;,Z;,1 < i < n are referred to below
as “literal” nodes. The edge set is

E = {(us,2:), (g, %), (w4,03), (T, v5), (U5, Uig1)
|Q:=3,1<i<n}
U {(ug, wy), (ug, @;), (Wi, 25), (05, Z3) (24, 05), (T4, v5), (Vi5 2i),5 (24, Uit1)

Thus, the variable-setting component consists of n “diamond” shaped gad-
gets that are strung together. The construction ensures that, for each ¢, the
choice of whether to follow the path through z; or #; is made by player 0 if
z; is a universally quantified variable and by player 1 if z; is an existentially
quantified variable. Informally, this choice determines a truth assignment to the
variable z;.

We next describe the clause-testing component. The node set is

Vo ={ye, ¥k | 1<k <m}U{yr; |1 <k <m,1<j<n®—3}

The edge set is

Ey = {(upy1,9x) |1 <k <m}
U e 9%)s Wro i) Whoyka) | 1 < k < m}
U {(ykjaykj-i-l)|1Sksmals.j§n2_4}
U {(Wrn2—3,uns1) | 1 <k <mj.

Note that, because we are assuming that the last quantifier is V, player 1
chooses, from u,41, an edge to some yi. Informally, node y; corresponds to a
clause C}, which player 1 claims is true. At that point, player 0 can either move
to yj., in which case player 0 is challenging player 1 that clause Cj is false, or
Y}, in which case player 0 is not challenging. If player 0 does not challenge, a
path of length n? is followed, back to u,y1, where this is repeated.

Other interconnections between the clause-testing and variable-setting com-
ponents are as follows:

Evs = {(y},z:) | z; occurs unnegated in clause k}
U {(y{,Z:i) | z; occurs negated in clause k}.

Thus, if player 0 challenges clause Cy, player 1 chooses a literal of the clause.
If the literal is false, player 0 can follow an edge of the diamond and force player
1 to lose in one more move.

25

We finally describe the line. The node set is V3 = {I; | 1 <4 < n*}. The
edge set is B3 = {(l;,1;41) | 1 < j < n* —1}. Thus, this is simply a line with
n* — 1 edges.

The following edges connect each literal node of the variable-testing compo-
nent to the line:

E13 = {(miall); (i.i;ll) | 1 < ? < n}

The purpose of this line is to ensure that player 0 never challenges player 1 on
a clause that is actually true. Otherwise, player 1 can force the game to end up
on the line and thus take n* steps, and also player 0 loses.

Thus, the whole reduction gives G = (V, E) where V = V; U V2 U V3 and
E:E1UE2UE12UE3UE13.

This completes the reduction from MAX Q3SAT and implies that there is a
constant € such that approximating MAX GGEOG within ratio € is PSPACE-
hard. By reducing from (logn)-MAX-Q-FORMULA instead of MAX Q3SAT,
we improve the result to ratio n€. In this new reduction, y; is connected to
a subgraph that simulates the k" formula ¢y in the following way. There is
a node for each of the operators of ¢ and possibly some auxiliary nodes. If
o = ¢, V @), we make sure (possibly by adding an auxiliary node) that player
1 makes the move from the node corresponding to the V operator. Thus, player
1 chooses the subformula ¢}’ such that ¢}’ = 1. If ¢, = ¢, A ¢} we make
sure (possibly by adding an auxiliary node) that player 0 makes the move from
the node corresponding to the A operator. If ¢ is a literal, we connect it to
the diamonds, as before. The paths from the nodes y}, to u,41 are longer than
before and depend one. |

5 Subsequent Related Work

This section contains a brief discussion of related work that has been done since
our results first appeared in [8, 9].

A polynomial-round Arthur-Merlin game with a polynomial-time verifier [4]
can be thought of as a PCDS in which r(n) and g(n) are both arbitrary polyno-
mials and one of the debaters simply makes random moves. Let AM(poly(n))
denote the class of languages accepted by such Arthur-Merlin games. In this
context, the fact that AM(poly(n)) = PSPACE (cf. [18, 23]) means that, if r(n)
and ¢(n) are both arbitrary polynomials, then the universal debater in a PCDS
can be replaced by a random debater without loss of generality. In [10], we
show that, even if r(n) = logn and g(n) = 1, one can replace the universal
debater by a random debater and still retain the power to recognize any lan-
guage in PSPACE. This fact has implications for the hardness of approximating
stochastic PSPACE-hard functions, of the type studied by Papadimitriou [20].

We have described PSPACE-hard functions that do not have PTAS’s, unless
some unexpected collapse occurs. It is not hard to define a PSPACE-hard

26

function that does have a PTAS, but the straightforward examples are artificial.
We were thus led to ask in [8, 9] whether there is a natural PSPACE-hard
function that has a PTAS. A positive answer to this question is provided in [19].

Bodlaender [5] has extended our results by showing that MAX-Q-3SAT can
be approximated within some 0 < € < 1 and by providing a simpler proof
of the fact that MAX GGEOG is PSPACE-hard to approximate; his proof
that approximating MAX GGEOG is hard does not involve PCDS’s. Hunt
et al. [14] showed, also using direct reduction arguments, that it is PSPACE-
hard to approximate several other constrained optimization problems within
certain factors. These problems include MAX-Q-FORMULA, a generalization
of (logn)-MAX-Q-FORMULA, where the “clauses” are general formulas (with
no restrictions on the number of variables per “clause”).

It is not known whether characterizations of EXP and NEXP can be found
that are similar to the PCP and PCD characterizations of NP and PSPACE,
respectively, and that lead to interesting nonappoxability results for problems
that are complete for EXP or NEXP.

6 Acknowledgements

We thank Lance Fortnow and Mario Szegedy for helpful discussions in the for-
mative stages of this work. We thank Jin-yi Cai, Lenore Cowen, Uriel Feige,
David Johnson, Madhu Sudan, and Mihalis Yannakakis for their comments on
earlier versions. Finally, we thank Nick Reingold for helping us typeset Section
3.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifica-
tion and hardness of approximation problems. In Proc. 38rd Symposium on
Foundations of Computer Science, pages 14-23. IEEE Computer Society
Press, Los Alamitos, CA, 1992.

[2] S. Arora and S. Safra. Probabilistic checking of proofs. In Proc. 33rd Sym-
posium on Foundations of Computer Science, pages 2—-13. IEEE Computer
Society Press, Los Alamitos, CA, 1992.

[3] R. Aumann and S. Hart, editors. Handbook of Game Theory, volume 1.
North Holland, Amsterdam, 1992.

[4] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system
and a hierarchy of complexity classes. J. Computer and System Sciences,
36:254-276, 1988.

[5] H. Bodlaender. Private communication.

27

[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and
weak random sources. In Proc. 30th Symposium on Foundations of Com-
puter Science, pages 14-19. IEEE Computer Society Press, Los Alamitos,
CA, 1989.

A. Condon. The complexity of the max word problem and the power of

one-way interactive proof systems. Computational Complexity, 3:292-305,
1993.

A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilistically check-
able debate systems and approximation algorithms for PSPACE-hard func-
tions. Technical memorandum, AT&T Bell Laboratories, January 1993.

A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilistically check-
able debate systems and approximation algorithms for PSPACE-hard func-
tions (extended abstract). In Proc. 25th ACM Symposium on the Theory
of Computing, pages 305-314. ACM, New York, 1993.

A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Random debaters and the
hardness of approximating stochastic functions. In Proc. 9th Conference on
Structure in Complexity Theory, pages 280-293. IEEE Computer Society
Press, Los Alamitos, CA, 1994. Final version to appear in SIAM Journal
on Computing.

U. Feige, S. Goldwasser, L. Lovasz, M. Safra, and M. Szegedy. Approxi-
mating clique is almost NP-complete. In Proc. 82nd Symposium on Foun-
dations of Computer Science, pages 2-12. IEEE Computer Society Press,
Los Alamitos, CA, 1991.

M. R. Garey and D. S. Johnson. Computers and Intractibility: A guide to
the theory of NP-Completeness. W.H. Freeman and Company, San Fran-
sisco, 1979.

P. Gemmell and M. Sudan. Highly resilient correctors for polynomials.
Inf. Proc. Letters, 43:169-174, 1992.

H. Hunt ITI, M. Marathe, and R. Stearns. Generalized CNF satisfiability
problems and non-efficient approximability. In Proc. 9th Conference on
Structure in Complexity Theory, pages 356-366. IEEE Computer Society
Press, Los Alamitos, CA, 1994.

R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
Proc. 30th Symposium on Foundations of Computer Science, pages 248—
253. IEEE Computer Society Press, Los Alamitos, CA, 1989.

D. S. Johnson. Approximation algorithms for combinatorial problems.
J. Computer and System Sciences, 9:256-278, 1974.

28

[17]

[18]

[19]

[20]

[21]

[22]

[23]

D. Kozen. Lower bounds for natural proof systems. In Proc. 18rd Sympo-
sium on Foundations of Computer Science, pages 254-266. IEEE Computer
Society Press, Los Alamitos, CA, 1977.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39:859-868, 1992.

M. Marathe, H. Hunt III, R. Stearns, and V. Radhakrishnan. Hierarchical
specifications and polynomial-time approximation schemes for PSPACE-
complete problems. In Proc. 26th ACM Symposium on the Theory of Com-
puting, pages 468-477. ACM, New York, 1994.

C. Papadimitriou. Games against nature. J. Computer and System Sci-
ences, 31:288-301, 1985.

C. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. J. Computer and System Sciences, 43:425-440, 1991.

T. J. Schaefer. On the complexity of some two-person perfect-information
games. J. Computer and System Sciences, 16:185-225, 1978.

A. Shamir. IP = PSPACE. J. ACM, 39:869-877, 1992.

29

