

The Power of Surface-Based DNA Computation (Extended Abstract)

Weiping Cai, Anne E. Condon, Robert M. Corn, Elton Glaser,
Zhengdong Fei, Tony Frutos, Zhen Guo, Max G. Lagally,
Qinghua Liu, Lloyd M. Smith, Andrew Thiel

University of Wisconsin
Madison, WI 57306 USA

Abstract

A new model of DNA computation that is based on sur-
face chemistry is studied. Such computations involve the
manipulation of DNA strands that are immobilized on a
surface, rather than in solution as in the work of Adle-
man. Surface-based chemistry has been a critical technol-
ogy in many recent advances in biochemistry and offers
several advantages over solution-based chemistry, includ-
ing simplified handling of samples and elimination of loss
of strands, which reduce error in the computation.

The main contribution of this paper is in showing that
in principle, surface-based DNA chemistry can efficiently
support general circuit computation on many inputs in
parallel. To do this, an abstract model of computation
that allows parallel manipulation of binary inputs is de-
scribed. It is then shown that this model can be imple-
mented by encoding inputs as DNA strands and repeat-
edly modifying the strands in parallel on a surface, us-
ing the chemical processes of hybridization, exonuclease
degradation, polymerase extension, and ligation. Thirdly,
it is shown that the model supports efficient circuit sim-
ulation in the following sense: exactly those inputs that
satisfy a circuit can be isolated and the number of parallel
operations needed to do this is proportional to the size of

*Corn, Fei, Frutos, Guo, Liu, Smith and Thiel are in the Chem-
istry Department, Condon and Glaser are in the Computer Sci-
ences Department and Cai and Lagally are in the Materials Sci-
ences Department. Email address for further communication: con-
don@cs.wisc.edu. Supported by NSF grant numbers CCR-9628814
and CCR-9613799.

the circuit. Finally, results are presented on the power of
the model when another resource of DNA computation is
limited, namely strand length.

1 Introduction

Following Adleman [1], Lipton [7], and others, we recently
proposed a new DNA computing scheme based on sur-
face chemistry [8]. In this paper, we define an abstract
model of surface-based DNA computation and describe
the power and limitations of this model.

In contrast with Adleman’s solution-based experi-
ment, surface-based DNA computations manipulate DNA
strands that are immobilized on a surface using chemical
linkers. This means that a key operation used in solution-
based DNA computations, that of selectively separating
strands into separate test tubes, cannot be performed.
Also the number of DNA strands involved in the compu-
tation is limited since the strands are restricted to two
rather than three dimensions. (The number of strands
that can fit on a 1 cm? planar surface is roughly 1012.)
Nevertheless, it is our premise that surface-based chem-
istry will be important to advances in DNA computation
for the following reasons.

First, surface-based chemistry has been a critical tech-
nology in recent advances in biochemistry, including pro-
tein sequencing, DNA synthesis, and peptide synthesis
[12]. Second, handling of samples is simpler and more
readily automated when the samples are immobilized on
surfaces rather than in solution, loss of strands is effec-
tively eliminated and a much greater degree of control is
obtainable in each chemical “operation.” This is impor-
tant since errors, particularly in separating strands into
distinct test tubes, is a primary obstacle to Adleman’s
approach. Third, the work of the company Affymetrix on

DNA synthesis on “addressed” surfaces [11] can be viewed
as a restricted form of computation. Our proposed DNA
computing method is complementary to Affymetrix ar-
rays in that the ability to address strands spatially is lost
but the scale is much greater. Finally, experiments on
surfaces will provide an ideal means to develop chemistry,
algorithms and understanding of errors that will be useful
in further, larger-scale DNA computations that may not
necessarily be wholly based on surfaces.

For all of these reasons, we believe that it is important
to understand how general-purpose computation can be
performed on surfaces. Towards this end, we introduce
an abstract model of computation that can be imple-
mented using standard surface chemistry. Roughly, the
operations in the model allow strands to be marked or
selected depending on their value; bits to be appended
to the free (non-immobilized) end of selected strands; de-
struction of unmarked strands; and erasure of appended
bits from strands. We then show that surface-based DNA
chemistry efficiently supports general circuit computation
on many inputs in parallel: Given a circuit that accepts
a language L, C {0,1}", there is a surface-based DNA
algorithm that, given a set S of binary inputs that are
represented as DNA strands, identifies exactly those in-
puts in S that satisfy the circuit and destroys the rest.
The values of gates are appended in parallel to strands
until the output is computed. The number of operations
needed to do this is proportional to the size of the circuit.

In addition to keeping the number of operations to a
minimum in a DNA computation, it is also desirable to
keep the maximum strand length small. One reason for
this is that long strands are more likely to form unwanted
secondary structures that cause errors in the computa-
Therefore, we prove results about the power of
surface-based computation when modification of strands
by appending information onto them is limited.

tion.

In Section 1.1 we present our abstract model of surface-
based DNA computation. We then summarize our results
on the power of the model in Section 1.2. The chemical
basis for the abstract model is given in Section 2. Proofs
of the results are given in Section 3.

1.1 Abstract Model

The following surface-based model is motivated by several
goals. It should be built on chemical processes that are
reasonably well understood and reliable. It should be
conceptually simple, yet the operations should exploit the
chemical processes in as general a way as possible. This is

because it is important to keep the number of operations
to a minimum in a DNA computation; the more general
the operation set, the fewer operations are needed in a
computation.

Operations are performed on a multiset S of strands,
where each strand is a sequence of bits. Several prac-
tical and strategic considerations detailed in Section 2
motivate the following word-based structure for organiz-
ing bits within strands. Each strand is a finite sequence
of short, variable-length binary words. The length of a
word is the number of bits in that word. Each word in
any strand has an index; the indices of words on the same
strand must be distinct. Over all strands, words with a
common index ¢ have the same length. The value of a
word is the vector of values of the bits within that word.
For simplicity we assume that all strands in the initial set
(i.e. before any operation is performed) have the same
number, say n, of bits which are organized into words
with the same indices. We now list the operations that
can be applied to a set S of strands.

mark(constraint): all strands satisfying the constraint
are identified as marked. A constraint specifies, for some
index %, a set of values for a subset of the bits in a word
with index 4. A strand satisfies this constraint if and only
if there is a word with index ¢ on the strand and the value
of this word agrees with the values of the bits specified in
the constraint. The mark operation with no constraint is
also allowable; in this case all strands are marked.

unmark: unmark all marked strands.

destroy-unmarked: unmarked strands are removed

from the set S.

append-marked (new-i, new-word): a word with in-
dex new-i and value new-word is appended to all marked
strands. When this and the following append-unmarked
operation are used in an algorithm, the algorithm must
ensure that no strand has more than one word with the
same index.

append-unmarked (high-i, high-word, new-i, new-
word): a word with index new-i and value new-word
is appended to all unmarked strands in which the index
of the highest-numbered word is high-¢ and its value is
high-word.

erase: all words that have been appended to strands
since the start of the computation are erased leaving just
the initial strands, all of which are unmarked. The mo-
tivation for including this operation is to keep strands
short.

We note that by using the mark operation, strands can
be selectively marked for further “processing” such as ap-
pend or destroy. The mark operation replaces the sepa-
rate (or extract) operation of Adleman and Lipton, which
divides strands into separate test tubes for further pro-
cessing. The destroy-unmarked operation is very similar
to an operation of Amos et al. [3] although their model
is solution-based. There is no read-out operation in the
above set. In this paper we ignore readout and focus
on what sets can be recognized, as described in the next
section. The problem of read-out is essentially the same
for surface-based DNA computation as for solution-based
DNA computation.

1.2 Power of Model

A DNA algorithm A (= A,) is a sequence of operations
applied to an initial multiset S of n-bit strands. The out-
put of the algorithm, denoted by A, (S), is the multiset of
strands on the surface at the end of the algorithm. We say
that A, recognizes, or accepts, a subset L, of {0,1}" if
and only if 4,,({0,1}") = L,,. To characterize the power
of DNA algorithms, we adopt standard conventions used
for circuits. Consider a (nonuniform) infinite family of
DNA algorithms {A,}, one algorithm per input size. We
say that this family accepts language L if and only if the
language accepted by A, is LN {0,1}™.

We consider the following resources of a DNA algo-
rithm: (i) the number of operations; (ii) the maximum
number of bits, or alternatively of words, appended to
a strand during the computation; and (iii) the types of
operations. We distinguish between computations that
use the append operation and those that do not. This
is because computations that use append rely on more
complicated chemistry and result in longer strands.

Let Surface-Time(t(n)) be the set of languages ac-
cepted by a family of DNA algorithms with O(t(n)) op-
erations on n-bit strands. The first result is that Surface-
Time(t(n)) is exactly the set of languages that are ac-
cepted by a family of bounded fan-in circuits with O(t(n))
gates. Let Circuit-Size(¢(n)) be the latter set. The con-
stants in the O-notation in the following theorems are
made explicit in the proofs.

Theorem 1 Surface-Time(t(n)) = Circuit-Size(t(n)).

This theorem is analogous to the theorem of Boneh et
al. [4] that the Circuit SAT problem can be solved using
a solution-based model of DNA computation.

We are also interested in computations of languages

when the append operation is not allowed. In this case,
the erase operation is also unnecessary. We let Restricted-
Surface-Time(#(n)) be the set of languages recognized by
such algorithms with O(t(n)) operations. A language in
this class can be expressed as the set of satisfying assign-
ments of a boolean formula of the following type. The
variables of the formula are partitioned into words with
the number of variables per word bounded by the same
constant that bounds the number of bits per DNA word.
The formula is represented as a depth-three tree with the
output gate (root) at level 0 and the n input variables
and their negations labeling the leaves at level 3. The
root is an unbounded fan-in and-gate. The gates at level
1 are unbounded fan-in or-gates. The gates at level 2 are
bounded fan-in and-gates with the additional restriction
that all inputs to an and-gate at level 2 must be variables
(or their complements) from a single word. Call such a
formula an extended-sat formula. Let Extended-Sat(¢(n))
be the set of languages recognized by such formulas with
n variables and O(t(n)) gates.

Theorem 2 Restricted-Surface-Time(t(n)) = Extended-
Sat(t(n)).

Let Surface-Time,Length(t(n),l(n)) be the set of lan-
guages that are computable by a family of DNA algo-
rithms with O(¢(n)) operations in which the maximum
number of bits that are appended to any initial strand is
O(l(n)) throughout the computation. From Theorem 1
it follows immediately that Circuit-Size(t(n)) = Surface-
Time,Length(t(n),t(n)). To state our result about the
languages in Surface-Time,Length(¢(n),l(n)) for general
I(n), we need to define a new type of circuit, which we
call a blocked circuit. All gates but one of such a circuit
are organized into blocks; each block has a single output
gate. The output gates of the blocks are input to a single
unbounded fan-in and-gate, which is the output of the
circuit. We let Circuit-Size,Block(t(n),l(n)) be the set of
languages accepted by blocked circuits with O(t(n)) gates
and O(l(n)) gates per block.

Theorem 3 Circuit-Size,Block(t(n),l(n))
Surface-Time,Length(t(n),l(n)).

N

The above results can readily be extended to function
computation, defined as follows. We say that a family
{A,} of algorithms computes a function f if A,({0,1}")
is the set of strands of the form zy f(x), where z € {0,1}"
and y is an arbitrary strand.

2 Chemical Realization of Model

We now describe how the model of Section 1.1 can be
implemented using surface-based DNA chemistry. Pre-
liminary work on implementing the mark and destroy op-
erations on single-word strands is already underway [8].

2.1 Set Initialization; Word Design

A DNA strand, or oligonucleotide, can be thought of as a
string over the alphabet (i.e. set of bases or nucleotides)
{A,C,G,T} with chemically distinct ends known as the
3" and 5 ends. A DNA oligonucleotide is used to en-
code the value of a word plus the index of that word. A
strand in our abstract model is simply the concatenation
of multiple words with distinct indices. Also a common
sequence of bases known as a primer is placed at the 3’
end of each strand to enable readout using the polymerase
chain reaction (PCR).

To encode binary truth assignments for (up to 70) vari-
ables, Adleman and Lipton proposed that one-bit words
be used, with 20 bases per word to identify the bit value
and the variable (or word) index [2, 7]. The exact encod-
ing of words was not specified. Each possible word can be
synthesized using standard solid phase DNA synthesis in
which a large quantity of a desired DNA molecule is built
up nucleotide by nucleotide on a support particle in se-
quential coupling steps. For example, a support with the
nucleotide “A” attached may have the “A” reacted with
a “C” to form a string of length 2 (known as a dimer),
washed and the “C” coupled with “G” to form a string
of length 3 (a trimer), and so on. Adleman [2] described
how words can be concatenated together using a chemical
process called ligation so that all 2" n-bit strands can be
created in n ligation steps.

In our preliminary experimental work on an initial mul-
tiset S = {0,1}® [8], we are using one base per bit, plus
labels on either end. This can extended to multiple words
as follows. The word index is encoded using the labels and
between the labels the bases A or T are used in half of
the bit positions to represent 0 and 1 respectively, and
C or G are used in the remaining positions to represent
0 and 1 respectively. The DNA synthesis scheme de-
scribed above can easily be adapted for parallel synthesis
of multiple-word strands when this method of encoding is
used. Namely, a mixture of two nucleotides is used at cou-
pling steps that correspond to bits of a word and just one
nucleotide is used at coupling steps that correspond to the
label of a word. For example, if two nucleotides are used
together in five coupling steps, 32 different molecules are

made and are present on the support. In our experimental
work, an Applied Biosystems DNA synthesizer is used to
generate the initial set; with this system a set of strands
with 50 bases can be generated in an afternoon for about
$100. In addition to the possibility of parallel synthesis of
words, this method has the advantage of high information
density, i.e. bits per base. However words with the same
index that differ in only one bit necessarily differ in only
a single base, which makes implementation of a reliable
mark operation more challenging as we explain later.

Schemes intermediate between the two already de-
scribed are also possible in which there are multiple bits
per word, but within a word there may be more than a
single base per bit. However using the synthesis scheme
described above in which single nucleotides are coupled
at each step, parallel synthesis of words is no longer possi-
ble. To generate the set of all possible n-bit strands with
w bits per word and greater than one base mismatch be-
tween any pair of words, 2*'n/w synthesis steps plus n/w
ligation steps are required.

Attachment chemistry describes the molecules at
the interface of the surface and the oligonucleotides to be
attached to the surface. Both the surface and one end of
the oligonucleotides are specially prepared to enable this
attachment. A good attachment chemistry ensures that
the properly prepared oligonucleotides are immobilized
to the surface at a high density, and that other oligonu-
cleotides exposed to the surface later (for example during
hybridization) do not bind non-specifically to the surface.
In our preliminary experiments on single-word strands
[8], we use a glass surface and an attachment chemistry
developed in the Smith laboratory [5] to attach oligonu-
cleotides at the 5’ end. The glass surface is modified with
amino-reactive isothiocyanate functionalities in a multi-
step process. For multi-word strands it is necessary to
attach oligonucleotides to the surface at the 3’ end, in
order to use polymerase extension in the mark operation
as described later. A different chemistry can be used to
do this.

2.2 Operations

We now describe how each of the operations of our ab-
stract model can be realized on surfaces. All operations
are based on standard chemical processes, namely hy-
bridization, polymerase extension, ligation, and exonu-
clease degradation.

mark: Strands are marked simply by making them
double-stranded at the free end. Under suitable con-

ditions (such as temperature and salt concentration),
single-stranded DNA hybridizes, or anneals, to form
a double-stranded DNA molecule, or duplex, with its
Watson-Crick complement. In this duplex, complemen-
tary pairs of bases form a bond. The Watson-Crick com-
plement of a DNA strand is the sequence obtained by
replacing each A with a T and vice versa, similarly re-
placing each C' with a G' and vice versa, and with the
distinct chemical ends in the opposite order. For exam-
ple the Watson-Crick complement of (5')ACCTG(3') is
(3")TGGAC(5'). We begin by describing how the mark
operation works in the case that all strands have a single
word and then extend this to the case of multiple-word
strands.

Single-word strands: First the set of DNA
oligonucleotides F' that are Watson-Crick complementary
to the strands that satisfy the constraint are synthesized.
If there are w bits in the word and j of these are con-
strained then there are 2*~J distinct strings in F. Each
of these hybridizes to its complement on the surface (if
present). GC content has a very strong effect upon hy-
bridization stability and hence upon hybridization condi-
tions; hence if more than one bit is stored in a word, the
GC content must be kept constant over all values of this
word.

Hybridization discrimination refers to the degree to
which only perfect matches occur in a hybridization re-
action involving multiple strands. The fewer matches be-
tween two strands (or substrands), the less stable the hy-
bridization between them. If one base is used to encode
one bit in a word then single-base mismatch discrimina-
tion is needed to properly mark words and this is challeng-
ing to do successfully. This is why it may be preferable
to use more than one base per bit when encoding words.
Mir [10] discusses this further.

Multiple-word strands: In this case the
method used for the single-word strands is combined with
polymerase extension. First, as in the previous case,
a multiset F' of DNA oligonucleotides that are Watson-
Crick complementary to the constrained word value are
synthesized and annealed to the oligonucleotides to be
marked. The word indices ensure that annealing takes

place at the proper words.

After the hybridization step, any strand that satisfies
the constraint will have a word annealed to it. This an-
nealed word is used as a primer from which to initiate
DNA synthesis. DNA polymerase adds nucleotides to the
3’ hydroxyl (i.e. the 3’ end) of the primer polynucleotide,
copying the complementary sequence to the end. Thus

marked strands are doubly-stranded from the constrained
word to the free terminus. The mark operation can also
be done with no constraints, that is, all unmarked strands
can be marked using polymerase extension starting from
the Watson-Crick complement of the initial primer that
is common to every strand. The polymerase extension
step is in principle linear in the length of a strand since
it involves processing the strand base by base. However
the process is quite fast in practice.

unmark: This is done simply by washing the surface
in distilled water and raising the temperature if neces-
sary. In the absence of salt, which stabilizes the double-
stranded pairs, the complementary strands of DNA de-
nature from the oligonucleotides on the surface and are
washed away, leaving only the original single-stranded
DNA attached to the surface.

destroy-unmarked: Single-stranded DNA molecules
may be destroyed using enzymes known as exonucle-
ases, which chew up DNA molecules from the end in.
In fact exonucleases exist with specificity for either the
single-stranded or double-stranded form. For example
the enzyme Exonuclease I may be used to destroy single-
stranded oligonucleotides.

append-marked (new-i, new-word): Since marked
strands are double-stranded at the free terminus, the ap-
pend operation can be implemented via ligation at the
free terminus. The DNA polymerase employed in the
mark operation will affect the nature of the free terminus
of the marked strands. DNA polymerases which contain
a 3’ — 5 proofreading activity (most naturally occur-
ring procaryotic DNA polymerases do possess this activ-
ity) yield a blunt end. In this case blunt-end ligation
can be used to implement the append operation. Liga-
tion will only occur at the duplex and not at (unmarked)
single-stranded oligonucleotides. If the 3" — 5’ proofread-
ing activity is removed (such engineered polymerases are
commercially available) they show a new non-templated
3’ adenylation activity. That is, the base “A” is added
to the 3’ hydroxyl of the duplex creating a one base over-
hang, or “sticky end”. A cloning vector developed in
the Smith laboratory some years ago exploited this non-
templated adenylation activity to facilitate the cloning of
PCR products (TA cloning [9]). Ligation to “sticky ends”
(using a complementary one base T overhang on the word
to be ligated to the surface-bound duplex) is substantially
more efficient than blunt-end ligation. Hence, in the case
of a mark followed by an append with no destroy opera-
tion intervening, sticky-end ligation can be used.

append-unmarked (high-i, high-word, new-i, new-

word): This can be done using hybridization of a splint
oligonucleotide followed by ligation, exactly as in Adle-
man’s experiment [1].

erase: This operation is implemented using a restriction
enzyme which recognizes a short sequence of bases called
a restriction site and cuts the strand at that site when
the sequence is double-stranded. The restriction enzyme
may have a 4, 6, or 8 base pair recognition sequence and
may leave a blunt end, 3’ overhang, or 5’ overhang. The
restriction site may be included in all appended words
or may only be included in the first appended word. It
must be chosen to have a recognition sequence not rep-
resented in the combinatorial word structure. For exam-
ple the restriction enzyme Msp I recognizes the 4 base-
pair sequence (5')CCGG(3'), when annealed to its com-
plement (3')GGCC(5’) [6]. To ensure that the operation
is performed correctly, an unmark operation can first be
performed, then the restriction site can be made double-
stranded on all strands via hybridization, followed by use
of the restriction enzyme.

3 Proofs of Results

Theorem 1 Circuit-Size(t(n)) = Surface-Time(t(n)).

Proof: Let C be a bounded-degree circuit with n inputs
and ¢ gates. Assume that all gates of C' are either or-
gates or and-gates and the n inputs are available both in
negated and unnegated form.

There are k + 4 operations in the DNA algorithm per
gate of fan-in k, plus five additional operations, two at the
start and three at the end. Initially a word with a single
bit “0” is appended to all strands using the mark oper-
ation with no constraint and the append-marked opera-
tion in which a new word with single bit “0” is appended.
Then for each strand in parallel, the value of each gate
of the circuit, given this strand as input, is computed in
topological order and is appended to the strand.

If the gate is an and-gate with fan-in k£ then k mark
operations mark those strands that set the and-gate to
false. An append-marked operation appends a word con-
taining the bit “0”, which is the value of the gate for
marked strands. Two append-unmarked operations ap-
pend a word containing the bit “1” to unmarked strands.
Two operations are needed because the append-unmarked
operation requires knowledge of the last word on a strand.
This can only have two possible values since each ap-
pended word contains just one bit. (This is the reason
for the initial append operation.) Finally the unmark

operation is done.

If the gate is an or-gate with fan-in k& then k mark
operations mark exactly those strands that set the gate
to true. An append-marked operation appends a word
containing the bit “1”, which is the value of the gate for
marked strands. Two append-unmarked operations ap-
pend a word containing the bit “0” to unmarked strands.
Finally the unmark operation is done.

The last three instructions of the DNA algorithm are:
mark all of those strands for which the output of the
circuit is “1,” destroy-unmarked strands, and erase. The
strands remaining on the surface are exactly those from
the initial set that satisfy the circuit.

We next show how a DNA algorithm can efficiently be
simulated by a circuit. Let A be a DNA algorithm with
n inputs and ¢ operations. We describe how to construct
a circuit that accepts the language A({0,1}"™).

For convenience this circuit has two gates with fixed
values 0 and 1. The remaining gates are added to the cir-
cuit for each operation in order that the operations appear
in the algorithm A. To guide the construction of the cir-
cuit, some gates already added to the circuit are named
(possibly with more than one name for a gate). Consider
these names to be variables whose values (gates) are a
function of the number of operations already processed.
First one gate is named marked. Throughout the con-
struction the following invariant is maintained: a strand
in the initial multiset S is marked after ¢ operations of the
algorithm A if and only if when this strand is the input
to the circuit the gate named marked has value “1” after
t operations have been processed. For short we say that
marked is a gate that records whether the input strand
is currently marked. Initially the marked gate is the gate
with fixed value 0. Second, for each distinct word index %
used in the DNA algorithm one gate is named present(s).
This gate records whether the word with index 4 is cur-
rently appended to the input strand. Initially present(i)
is the gate with fixed value 1 if ¢ is one of the initial words
on the strand; else present(i) is the gate with fixed value
0. Third, for each index ¢ that is used by the algorithm,
for each bit position j of word 4, current-value(i,j) is a
gate which records the current value of the jth bit of the
word with index %, if this word is present on the strand. If
the word is not present this gate has arbitrary value. Ini-
tially the n input gates are named by the corresponding
current-value variables for the input bits and the remain-
ing variables name arbitrary gates. Finally one gate is
named output; initially this is the fixed gate with value
1. On completion of the construction, output will refer to

a gate whose value is 1 if and only if the input strand is
not destroyed by the DNA algorithm.

We can now describe how the circuit is constructed.
Suppose that the first ¢ — 1 operations in the algorithm
have been processed and consider the tth operation. Sup-
pose that this is a mark operation. If its constraint refers
to the word indexed ¢ then a subcircuit is added to deter-
mine if word ¢ is currently present on the strand, and if it
is present, the subcircuit determines whether the current
value of this word matches the constraint. The inputs
to this subcircuit are the gates present(i) and current-
value(i, 7) for each bit j of word i. The output of this sub-
circuit is 1 if and only if the word with index i is present
on the strand and the strand satisfies the constraint on
word i. An or-gate g receives as input the output of this
subcircuit and also the gate currently named marked (i.e.
the gate referred to by marked after t — 1 operations have
been processed). Finally the marked variable is updated
to refer to gate g.

Next suppose that the tth operation is the append-
marked(new-i, new-word) operation. In this case a new
or-gate g is added that takes as input the gate named
marked and the gate named present(new-i). Then the
variable present(new-i) is updated to refer to this new
gate g. Also a subcircuit is added that appropriately up-
dates the value of word new-i. This circuit has one output
per bit in word new-i. If the strand is currently marked
then the output gates of this circuit have value given by
the word value new-word specified in the operation. If
the circuit is currently unmarked then the output gates of
this circuit have the value given by the variables current-
value(new-i,7). Finally the variables current-value(new-
i,j) are updated to refer to the outputs of this subcircuit.
The circuit for the append-unmarked operation is similar.

If the tth operation is the unmark operation then the
marked variable is updated to refer to the gate with fixed
value 0. If the tth operation is a destroy-unmarked oper-
ation then a new and-gate g is added to the circuit which
takes as input the gate named marked and the gate named
output. Thus the value of gate g is 1 if and only if the
input strand has not previously been destroyed and is not
destroyed as a result of the current destroy-unmarked op-
eration. Also the output variable is updated to refer to
gate g. Finally if the tth operation is the erase operation
then variable marked and the variables present(i), for all
indices ¢ not among the words initially on the strands,
are updated to refer to the gate with fixed value 0. This
completes the description of how the circuit may be con-
structed. O

Theorem 2 Restricted-Surface-Time(t(n)) = Extended-
Sat(t(n)).

Proof: In proving both directions of this result we as-
sume that both the algorithm and the extended-sat for-
mula receive n-bit inputs, where the bits are organized
into words.

Let F' be an extended-sat formula with with n inputs.
Suppose that F' has ¢ (unbounded fan-in)
level 1 and t' and-gates at level 2. The following re-
stricted DNA algorithm computes exactly the set of sat-
isfying inputs to F' and uses exactly ¢ mark operations, ¢
destroy-unmarked operations, and ¢ unmark operations.
The algorithm repeats the following procedure for each
or-gate OR at level 1 of F: First for each and-gate that
is a child of OR, perform one mark operation whose con-
straint specifies that the and-gate is set to 1. Once this
is done for all and-gates that are children of OR, perform
a destroy-unmarked operation followed by an unmark op-
eration.

Conversely, let A be a restricted DNA algorithm with n
inputs. Without loss of generality we can assume that the
sequence of operations in A has the following structure.
It is a sequence of blocks where each block is a sequence

or-gates at

of mark operations, followed by a destroy-unmarked op-
eration, followed by an unmark operation. It is not hard
to verify that this structure is optimal for algorithms that
do not compute the empty set. If A is organized into ¢
blocks with a total of ¢ mark operations (and ¢ destroy
and ¢t unmark operations at the end of each block) then
it is straightforward to construct an extended-sat formula
with a total of ¢ or-gates at level 1 and ¢ and-gates at
level 2 that accepts the same language as A. O

Theorem 3 Circuit-Size,Block(t(n),l(n)) C Surface-
Time,Length(t(n),l(n)).

Proof: The proof is a simple extension of the proof
of Theorem 1. Let C' be a blocked circuit with n inputs,
t gates, and [blocks. The DNA algorithm that accepts
the same language as C simply “simulates” each block in
turn using the construction of Theorem 1 and performs
an erase operation between blocks. As a result, O(t) op-
erations are performed in total and a maximum of O(l)
words are appended to any strand at any point in the
computation. O

4 Conclusions

We have shown how to evaluate the output of a boolean
circuit in parallel on many inputs using surface-based ma-

nipulation of DNA strands. The inputs are encoded using
single-stranded DNA and the computation is done using
the chemical processes of hybridization, ligation, poly-
merase extension, and exonuclease degradation.

There are many directions for further research. (i) De-
tailed designs for information storage on DNA strands
need to be developed and the chemical processes used in
each operation need to be refined and tested. (ii) Er-
rors inherent in the operations need to be quantified and
algorithmic methods for performing robust computation
in the face of these errors need to be developed. (iii) It
may be desirable to add new operations to the model,
specifically operations that erase words from strands in a
more flexible manner than that described here or opera-
tions that duplicate strands on the surface. (iv) It would
be interesting to understand how the operations of our
model may be useful in “computations” involving general
DNA strands, that is, strands that are not restricted to
encode binary information. For example, function com-
putation in our model is akin to synthesis of sets of DNA.
The company Affymetrix performs synthesis of complex
sets of DNA using light-directed methods, in which bases
are added one at a time to strands as a function of the lo-
cation of a strand on the surface. In contrast, our model
allows words to be added to a strand as a function of its
content rather than its location. Finally, readout strate-
gies need to be developed for both surface- and solution-
based computation.

References

[1] Adleman, L. M. (1994). Molecular Computation of So-
lutions to Combinatorial Problems, Science, 266, 1021-
1024.

[2] Adleman, L. M. (1995). On Constructing a Molecular
Computer, Manuscript, Computer Science Department,
University of Southern California.

[3] Amos, M., Gibbons, A., and Hodgson, D. (1996).
Error-resistant implementation of DNA computations,
Proc. Second Annual Meeting on DNA-Based Comput-
ers, American Mathematical Society, to appear.

[4] Boneh, D., Dunworth, C., and Lipton, R. J. (1995). On
the computational power of DNA, Princeton CS Techni-
cal Report CS-TR-489-95.

[6] Guo, Z., Guilfoyle, R. A.; Thiel, A. J., Wang, R.,
and Smith, L. M. (1994). Direct fluorescence analysis
of genetic polymorphisms by hybridization with oligonu-
cleotide arrays on glass supports, Nucl. Acids Res., 22,
5456-5465.

[6] Jentsch, S. (1983). J. Bacteriol 156, 800-808.

[7] Lipton, R. J. (1995). DNA Solution of Hard Computa-
tional Problems, Science, 268, 542-545.

[8] Liu, Q., Guo, Z., Condon, A.E.; Corn, R.M., Lagally,
M.G., and Smith, L.M. (1996). A Surface-Based Ap-
proach to DNA Computation, Proc. Second Annual
Meeting on DNA-Based Computers, American Mathe-
matical Society, to appear.

[9] Mead, D. A., Pey, N. K., Herrnstadt, C., Marcil, R. A.,
and Smith, L. M. (1991). A Universal Method for the
Direct Cloning of PCR Amplified Nucleic Acid, Biotech-
nology, 9(7), 657-663.

Mir, K. U. (1996). A restricted genetic alphabet for DNA
computing, Proc. Second Annual Meeting on DNA-Based

[10]

Computers, American Mathematical Society, to appear.

Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T.,
Holmes, C. P., and Fodor, S. P. (1994). Light-generated
oligonucleotide arrays for rapid DNA sequence analysis,
Proc. Nat. Acad. Sci. USA, 91, 5022-5026.

Smith, L. M. (1988). Automated synthesis and sequence
analysis of biological macro-molecules, Analytical Chem-
istry 60, 381A-390A.

[11]

[12]

