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ABSTRACT

Motivation: Accurate prediction of RNA secondary structure from

the base sequence is an unsolved computational challenge. The

accuracy of predictions made by free energy minimization is limited

by the quality of the energy parameters in the underlying free energy

model. The most widely used model, the Turner99 model, has

hundreds of parameters, and so a robust parameter estimation

scheme should efficiently handle large data sets with thousands of

structures. Moreover, the estimation scheme should also be trained

using available experimental free energy data in addition to structural

data.

Results: In this work, we present constraint generation (CG), the first

computational approach to RNA free energy parameter estimation

that can be efficiently trained on large sets of structural as well as

thermodynamic data. Our CG approach employs a novel iterative

scheme, whereby the energy values are first computed as

the solution to a constrained optimization problem. Then the newly

computed energy parameters are used to update the constraints on

the optimization function, so as to better optimize the energy

parameters in the next iteration. Using our method on biologically

sound data, we obtain revised parameters for the Turner99 energy

model. We show that by using our new parameters, we obtain

significant improvements in prediction accuracy over current state

of-the-art methods.

Availability: Our CG implementation is available at http://www.

rnasoft.ca/CG/

Contact: andrones@cs.ubc.ca

1 INTRODUCTION

RNA molecules play essential roles in living cells. Many

important and diverse functions of RNA molecules, including

catalysis of chemical reactions and control of gene expression,

have only recently come to light. Outside of the cell, novel

nucleic acids have been selected using directed molecular

evolution techniques in vitro, which can function as enzymes

or aptamers with high binding specificity for target proteins

(Breaker, 2002), with medical diagnostic or biosensing applica-

tions (Benenson et al., 2004; Dirks and Pierce, 2004).

Because of the importance of RNA molecules, and because

structure is key to the function of RNA molecules in their

diverse roles, there is a need to improve the accuracy of

computational predictions of RNA structure from the base

sequence. RNA tertiary structure is difficult to predict, but is

significantly constrained by secondary structure (Tinoco and

Bustamante, 1999) — i.e. the set of base pairs that forms when

the molecule folds (see Fig. 1 for an example). Therefore,

current RNA structure prediction methods are mostly focused

on secondary structure. Given a sequence, the goal is to predict

the structure with minimum free energy (MFE), relative

to its unfolded state. There is considerable evidence that

RNA secondary structures do indeed adopt their MFE

configurations in their natural environments (Tinoco and

Bustamante, 1999), and that in many cases these structures

are pseudoknot-free (i.e. contain only hierarchically

nested base-pairs).
Most models assume that the free energy of sequence x and

structure y is given by an equation of the form

�Gðx; y; hÞ ¼ cðx; yÞ>h ¼
XK
k¼1

ckðx;yÞ�k ð1Þ

where K is the number of features, ck(x, y) is the number of

times feature k occurs in secondary structure y of sequence x,

and �k is a parameter modelling the energy contribution of each

occurrence of feature k. In this article, we use the features

proposed by Mathews et al. (1999), which are widely accepted

as biologically realistic, and are used in several software

packages such as Mfold (Zuker, 2003), RNAstructure

(Mathews, 2004), the Vienna RNA package (Hofacker

et al., 1994) and SimFold (Andronescu, 2003). We shall call

this the Turner99 model. We will explain these features in

more detail in Section 2 (see Fig. 1 for some examples).
Given a set of features, we are faced with the problem of

estimating the model parameters h—this is the focus of this

work. Suppose we have a data set S consisting of a set of (x, yx)

pairs, where yx is the true MFE structure of sequence

x (as determined using trusted and highly accurate methods).

We created such a data set using databases of known RNA

structures (Cannone et al., 2002; Sprinzl and Vassilenko, 2005,

and other databases). One approach would be to estimate the

parameter vector h that maximizes the likelihood of S, as used

in the CONTRAfold algorithm (Do et al., 2006). However,

there are several problems with this approach. First, it is very*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/23/13/i19/237108/ by 59662000 user on 06 O
ctober 2019

http://www
http://creativecommons.org/licenses/


slow, which prevents us from applying it to large training sets.

(For example, it took more than 80 h on a single reference

processor to train CONTRAfold on 190 sequences of average

length 100. However, a much larger training set is needed for

accurate parameter estimation.) Second, it does not handle the

fact that there may be label noise in the training set, i.e. yx
may not actually be the MFE structure for x, since the feature

set is not perfect, and the structures may not be perfectly

annotated.

We propose a novel algorithm that overcomes both of these

problems: it is very fast (less than 20 min to train on

190 sequences of length 100), thus letting us train on large

data sets, and it is robust to label noise. We show that the

parameters learned using our algorithm yield 7% better

prediction accuracy (as determined using the F-measure

on base pairs) than the standard Turner99 parameters, and

5% better accuracy than the CONTRAfold predictions, when

measured on a large structural data set.

In addition to predicting the secondary structure, to be of

biological interest, a model must also accurately predict the

free energy changes for structure formation. We therefore

collected a second data set, the thermodynamic set T,

comprised of triples (x, yx, ex), where x is an RNA sequence,

yx is the MFE secondary structure of x, and ex is the free

energy of structure yx for sequence x, measured within

some small experimental error. We compiled this data

set from the results of thermodynamic experiments

(Mathews et al., 1999, 2004; Xia et al., 1998). Not surprisingly,

we find that our ability to accurately predict free energies

is enhanced when we also train using T . Note that in contrast

the scores produced by CONTRAfold have no intrinsic

biological meaning.

2 THE TURNER99 MODEL

Turner and co-workers derived and refined an energy model,

which we call the Turner99 model, over a period of more than

two decades (Mathews et al., 1999; Xia et al., 1998). The model

pertains to free energy changes at 37�C. Further refinements to

the parameters were made by Mathews et al. (2004), based on

new experimental data. The Turner99 features were carefully

chosen to balance the goals of accurately modelling physical

principles, and of ensuring that the resulting optimization

problem of finding the MFE structure can be solved efficiently

(using dynamic programming, in O(n3) time, where n is the

sequence length). Some Turner99 free energy parameters were

determined using reliable wet-lab experiments, while others

were estimated from known structural data. However, estima-

tion of parameter values was done in stages, with some values

being fixed before others were determined, and parameter

estimation did not take advantage of the large body of

structural information available today. The Turner99

model achieves an average prediction accuracy (sensitivity) of

73% on a large set of biological RNAs of length shorter

than 700 nucleotides with known secondary structures

(Mathews et al., 1999).
The model features capture all types of stacked base pairs

as well as loops, including hairpin loops, internal loops and

multiloops. Non-canonical base pairs (i.e. base pairs other than

CG, AU and GU) are not explicitly predicted; however,

parameter values for internal loops do implicitly account

for bonds between noncanonical base pairs. For larger loops,

features include the number of branches, number of

unpaired bases between branches, the closing base pairs

and unpaired (‘dangling’) bases next to them. Thus, there are

one or more features associated with each loop, as

illustrated in Fig. 1.

Overall, the Turner99 model has tabulated energy values for

about 7600 features; most of these can be determined by

applying simple extrapolation rules to 363 free parameters.

For computational efficiency, in this study, we assume the

30 dangling end parameter values, used for multiloops and

exterior loops (Mathews et al., 1999), are always lower than the

respective values for 50 dangling ends. To find improved values

for the set of 363 free parameters is the goal of our work

presented in the following.

3 PARAMETER ESTIMATION

Having defined the set of features, we now discuss some

techniques for parameter estimation.

′

Fig. 1. Secondary structure of an RNA strand of length 20. An RNA

molecule, or strand, is a sequence of Adenine (A), Cytosine (C),

Guanine (G) or Uracil (U) bases, with two chemically distinct

ends, known as the 50 and 30 ends. The secondary structure is the

set of base pairs (indicated by black boxes) that form when the molecule

folds, under fixed environmental conditions. Throughout, we

consider only pseudoknot-free secondary structures. The base pairs

give rise to loops. The depicted structure includes a hairpin loop

(right end of diagram), as well as three base pair stacks and a 2� 2

internal loop. In the Turner99 model, the total free energy change of

a structure, relative to its unfolded state, is the sum of the free

energy changes of its loops. The lower the free energy change, the

more stable the structure. Generally, stacked base pairs tend to

stabilize the RNA structure, whereas loops with unpaired bases are

destabilizing. In the depicted structure, contributions to the total

free energy change at 37�C, denoted by �G0
37 (measured in kcal/mol),

include a þ5.4 penalty for closing the hairpin loop, which is largely

an entropic cost, a �2.4 favourable term for the rightmost (UA/CG)

stacked pair, and a þ0.5 penalty for an AU pair at the end of a helix

(as well as other terms).
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3.1 Maximum likelihood (ML) method

An obvious approach to parameter estimation is to use the

maximum likelihood (ML) method, as in the CONTRAfold

algorithm of Do et al. (2006). Specifically, we define the

probability of an RNA structure y, given an RNA sequence x

and parameter vector h, using a conditional log-linear model

(Boltzmann distribution) as follows:

pðyjx; hÞ ¼
1

Zðx; hÞ
exp �

1

RT
�Gðx; y; hÞ

� �
:

Here, R is the gas constant, T is the absolute temperature, and

Z(x, h) is the partition function (McCaskill, 1990).
It is well known that p(yjx,h) is a convex function of h [see e.g.

Lafferty et al. (2001)], and hence we can find the globally

optimal parameter estimate of the log likelihood

function LS(y)¼
P

(x,y,x)2 S log p(yxjx, h) using a gradient-

based optimizer, such as the Limited-Memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm,

provided we can efficiently compute Z. Since we disallow

pseudoknots, we can compute Z and the gradient of Z in O(n3)

time using dynamic programming (McCaskill, 1990), where n is

the length of x.
We can consider the thermodynamic set T as prior

knowledge by assuming the observed energies ex are noisy

versions of the true energies. We can model this with a Gaussian

distribution with precision � and compute the maximum a

posteriori (MAP) estimate of the posterior distribution p(hjS,T):

pðhjS; T Þ / LSðhÞ þ �
X

ðx;yx;exÞ2T

ðex � cðx; yxÞ
ThÞ2:

We implemented the objective function and its gradient in

Cþþ, and optimized it using an unconstrained and unbounded

Matlab LBFGS implementation. Since our model assumes

constraints on 48 parameters (namely dangling end param-

eters), in our current implementation we fix these values to the

Turner99 values. A non-linear constrained optimization soft-

ware would be needed to optimize for all 363 parameters.
However, in practice there are problems with using the ML

approach (with or without prior). First, the method is

computationally expensive, because evaluating the objective

function and its gradient is slow, and this needs to be done

many times. (For example, CONTRAfold took more than 80 h

to train on a small set of 190 sequences, and our own

implementation of ML took about 66 h on the same data.)

Second, this approach does not gracefully handle the case

where there is no parameter vector h such that yx is the MFE

structure for x with respect to h for all (x, yx) in the structural

set. This case can arise for two reasons: the feature set is not

likely to be perfect, and the structures may not be perfectly

annotated.

3.2 Constraint generation (CG) approach

An alternative approach to parameter estimation is to find a

solution h for a system of constraints

�Gðx; yx; hÞ5�Gðx; y; hÞ;

where (x, yx) 2 S and y 2 Yx n {yx}, and Yx is the set of

all secondary structures for sequence x; these constraints

ensure that for each sequence x all non-optimal secondary

structures y of sequence x have higher energy than the

MFE structure yx. (Throughout we assume there is no other

structure which has the same MFE as the known structure,

and thus use strict inequalities. This can be relaxed to

non-strict inequalities.)

3.2.1 Handling infeasible constraints. Due to inaccuracies in

the given MFE structures yx (label noise) or inherent

limitations of the given feature set, it may happen that this

system of constraints is infeasible, i.e. no solution y exists

that satisfies all constraints simultaneously. To deal with

infeasibility, we introduce slack variables �x,y� 0 into the

constraints, whose values are then minimized; this leads to

relaxed constraints of the form:

�Gðx; yx; hÞ5�Gðx; y; hÞ þ �x;y:

Considering the definition of the energy function �G

(see Equation 1), these structural constraints can be expressed

as a system of linear inequalities

ðcðx; yxÞ � cðx; yÞÞ>h� �x;y50

for all (x, yx) 2 S and y 2 Yx n {yx}. This can be written more

compactly in matrix form as

MS h� d < 0

where each row of the matrix MS is (c(x, yx)� c(x, y))> for

some (x, yx) 2 S and some y 2 Yx n {yx}, and d is the vector of

slack values �x,y. (The rows of MS and the elements of d are

ordered consistently.)
This leads to the following formulation as a constrained

optimization problem:

minimize jjdjj2

subject to

MSh � d50

d � 0:

ð2Þ

where kdk is the L2-norm of d. (This system can get quite large,

and we explain below how to address this issue.)

This is similar to the large margin approach proposed

by Taskar et al. (2005) for learning connectivity parameters

for disulfide bonds in protein structures. However, it is

not quite the same. For our problem, we do not want

to force a large distance between the known RNA

secondary structures and other secondary structures.

Our parameters are meant to have physical meaning, and

there is evidence that there can be many low-energy folds of an

RNA molecule that have energy close to the MFE (Uhlenbeck,

1995). Thus, margin approaches are not directly applicable to

our problem.

3.2.2 Incorporating thermodynamic data. We incorporate
the thermodynamic data by adding the following additional

constraints:

�Gðx; yx; hÞ � �x ¼ cðx; yxÞ
>h� �x ¼ ex: ð3Þ
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where �x is the error in predicting ex. Again we can write this in

vector form as

MT h� m ¼ e

where each row of the matrix MT is c(x, yx)
> for some (x, yx,

ex) 2 T . This leads to the following constrained optimization

problem:

minimize ð1� �Þ �
1

jSj
kmTdk2 þ � �

1

jT j
kmk2

subject to

MSh � d50

MTh � m ¼ e

� � 0:

ð4Þ

where jSj denotes the number of sequences in set S, mx is

1 divided by the number of constraints in MS for sequence

x, and m is a vector of mx.
The parameter � controls the relative importance of T and S.

The two extreme cases are: �¼ 0, which means that we do not

consider the thermodynamic set at all; and �¼ 1, which causes

those parameters which appear in the thermodynamic set to be

fixed to the values which best fit the thermodynamic set, and

the other parameters are unconstrained. Fig. 2 gives a

schematic representation of T and S, and Fig. 3 motivates the

use of inequality constraints.

One problem with the above objective is that if a certain

feature does not occur in S or T , or if it appears only very few

times, its corresponding parameter can become unbounded in

magnitude. We therefore add an additional constraint that h

should be bounded by the Turner99 parameters, plus or minus

B kcal/mol, where we assume B is given to the algorithm. If

the structural training data contains all features, we can even

set B to infinity; however, in practice, a large value, such as 10

kcal/mol, should suffice. These bounds can be seen as the

strength of a prior on the values of the Turner99 parameters.

3.2.3 Sequential CG algorithm. We have a quadratic objec-
tive subject to linear equality and inequality constraints, so we

can find the global optimum. Unfortunately, the number of

constraints can grow exponentially with the size of the input,

since for each (x, yx) in the structural data set S, there may be

exponentially many structures in Yx (Wuchty et al., 1999). To

circumvent this problem, we propose the following heuristic

algorithm, similar to the cutting plane algorithm used by

Tsochantaridis et al. (2005). The main idea is to iteratively

estimate h using constraints MSh� d50 for a matrix MS that

only includes rows for a manageable subset of sequences x and

structures y.
Specifically, starting from an empty set of structures and the

Turner99 parameters, in each iteration of our algorithm, for

each sequence x from S, we predict its MFE structure using the

current parameter vector y and add the constraint

ðcðx; yxÞ � cðx; y0ÞÞThðiÞ � dðiÞx;y0 50;

where y0 2 Yx is the MFE structure of x predicted using the

parameter vector h(i-1) from the previous iteration; this

constraint enforces that the true structure yx has lower energy

(by margin �ðiÞx;y0 ) than the predicted structure y0. To avoid

vacuous and redundant constraints, we never add constraints if

y0 ¼ yx or if the new constraint is already in the system.

The intuition behind this sequential CG method is that most

of the exponentially many constraints will not be active, since
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Structures Y
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Thermodynamic
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Fig. 2. Schematic representation of the structural and thermodynamic

data sets we use in our CG algorithm. The X and Y axes represent RNA

sequences and secondary structures, respectively. The diamonds on the

left represent (x, yx, ex) triples that form the thermodynamic set, while

the dots on the right represent (x, yx) pairs forming the structural set.

The curves depict the fact that the known yx structures from the

structural set have lower free energy change than any other structure

into which x can fold, although we do not know where these points are

situated on the vertical free energy axis.

Structures

∆G

Predicted structure Known structure

Turner99 model

Perfect model

Fig. 3. Depiction of the motivation for the use of inequality constraints

for a given sequence x. Secondary structures for x are represented on

the X axis, and free energy changes on the Y axis. The left curve

represents the free energy curve under the Turner99 model, which, when

the prediction is incorrect, assigns a higher free energy to the known

secondary structure than to the predicted secondary structure, although

in the ideal model it should be lower (right curve). We wish to modify

the parameters h so as to push up the free energy of the incorrectly

predicted secondary structures (and of other structures), and to pull

down the free energy of the known secondary structures.
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they refer to structures that are energetically very unfavourable.
Assuming we start with a reasonable set of initial parameter

values (here the Turner99 parameters), we can generate

structures with more plausible (low) energies and effectively
use constraints based on this much smaller set. The algorithm

returns the h values which give the best prediction accuracy on

the training set. Fig. 4 summarizes our constraint generation
algorithm, CG.
All secondary structure predictions are done using our

SimFold software (Andronescu, 2003). Like the widely known

Mfold algorithm (Zuker, 2003) and the RNAfold procedure
from the Vienna RNA package (Hofacker et al., 1994),

SimFold is based on Zuker and Stiegler’s dynamic programm-

ing algorithm and consequently has time complexity O(n3) and
space complexity O(n2), where n is the sequence length. The

constraint optimization problems are solved with ILOG

CPLEX 9.1.

4 DATA SETS

In order to assess the improvement in prediction accuracy that

can be achieved using our approach, we collected a large

amount of structural and thermodynamic data. This data is
summarized in Table 1.

The thermodynamic training set, T-Full, contains
optical melting experimental data that we collected from

39 research papers, referenced by Mathews et al. (2004, 1999).

Out of the 946 experiments, 739 are on RNA duplexes,

which CONTRAfold cannot currently take as input for

prediction. We therefore created a test set, T-Single, which

contains the remaining 207 experimental results for

single sequences.
The structural test set, S-Full, is a comprehensive RNA

structural set that we assembled from databases of well-

determined RNA secondary structures. Table 4 shows the

RNA families included in this set, with their sizes and lengths.

Several preprocessing steps have been applied, including

removal of RNAs for archeae (which live in extreme environ-

ments), unannotated loops or unknown nucleotides. Non-

canonical base pairs and a minimal number of bases to resolve

any pseudoknots have been removed.
The training set, S-Processed, is similar to S-Full, but

molecules longer than 700 nucleotides have been divided into

shorter sequences, so that the MFE structure prediction step is

reasonably fast. Unannotated branches or branches containing

unknown base pairs have been truncated. For truncated

structures, a restriction string that restricts the cut ends to

pair has been added; of these structures, 66% have been

included in S-Processed.
In addition to the above data sets that we collected, we

used the structural set of Do et al., which we call S-151Rfam.

This contains one sequence-structure pair from each of 151

Rfam families collected from published papers. We have not

included all of these families in S-Full because many of the

structures have been predicted in the corresponding published

papers (as opposed to measured), and are not biologically

reliable.

Note that in biological data many features do not occur at all

(see Fig. 5), making it hard to assess the potential for CG to

estimate parameters for these features. Moreover, since we do

not know what is the best accuracy achievable using the

Turner99 feature set, even with a data set that covers all

features we cannot know whether CG has found the best

possible parameter values. For these reasons, we also created

artificial data sets, generated by randomly choosing sequences

Fig. 4. Outline of the CG algorithm for RNA energy parameter

optimization.

Table 1. Structural and thermodynamic sets

Set name No. mols. Avg. length Used for

T-Full 946 17� 7 Training

T-Single 207 14� 4 Test

S-Processed 3439 178� 179 Training

S-Full 1660 295� 508 Test

S-151Rfam 151 136� 102 Training

S-A1 190 105� 28 Training

S-A5 836 105� 28 Training

S-A10 1531 103� 29 Training

S-A10 193 106� 29 Test

We use structural sets and one thermodynamic set for training. For testing,

we use one comprehensive structural set and one small thermodynamic set.

In addition, we use three artificially created structural sets for training and one for

testing.
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x and then setting yx to be the MFE secondary structure

predicted using the Turner99 parameters. On this artificial data,

we know that there exists a parameter setting (namely the

Turner99 parameters) which gives perfectly accurate predic-

tions. We sampled the data such that each feature occurs at

least k times, for k = 1, 5, 10. (Six of the features are very

unlikely to occur in MFE structures, and thus we fixed their

parameter values to the Turner99 values). We call these sets

S-A1, S-A5 and S-A10, and we call k the feature coverage of the

set. We then checked that we could recover the Turner99

parameters using these training sets. We also measured

performance on an artificial test set, S-A10, which was

obtained in exactly the same way as S-A1, but using a

different random seed.

5 EXPERIMENTAL RESULTS

In this section, we report on several aspects of the

performance of our CG method. First, using our

artificially generated training sets, we show that CG runs

much faster than CONTRAfold or ML; this is significant,

because as a consequence, CG can be run on much larger

training sets, for which running CONTRAfold or ML would be

practically infeasible. Our analysis also indicates that CG can

indeed find parameters that result in near-perfect predictions,

when such parameters exist, and when the feature count is

sufficiently high (10 for our artificial data). Next, we compare

the accuracy of CG and CONTRAfold, when CG is trained

on the S-151Rfam training set of Do et al., both with and

without the thermodynamic training set. While CG gives poor

predictions when the thermodynamic set is not included, it

matches or exceeds the prediction accuracy of CONTRAfold

when the thermodynamic set is also included in training.

Finally, we train CG on our large training set, S-Processed, and

evaluate the accuracy of CG on our full structural data set,

S-Full. We find that the parameter set found by CG achieves
accuracy 7% better than that obtained with the Turner99
parameter set, and 5% better than that obtained by

CONTRAfold. Following definitions of our accuracy mea-
sures, we first present our results on artificial data and then on
biological data.

5.1 Performance measures

We use sensitivity and positive predictive value (PPV) as
measures of structural prediction accuracy; a third measure, the

F-measure (in short F), combines both sensitivity and PPV:

Sensitivity ¼
number of correctly predicted base pairs

number of true base pairs

PPV ¼
number of correctly predicted base pairs

number of predicted base pairs

F-measure ¼
2� sensitivity� PPV

sensitivityþ PPV

Do et al. (2006) introduced a parameter called g as a way

to trade off sensitivity against PPV using their prediction
algorithm. They found that setting g¼ 6 gave the best
overall performance. We could obtain a similar trade-off by

computing the base pair probabilities and thresholding them,
following Mathews (2004). However, in this work, we focus

on MFE structure prediction, which does not support this
trade-off.

5.2 Results on artificial data

In this section, we report on our runtime analysis, which we did
primarily using our artificially generated sets. We then assess
whether the CG method can robustly find an optimal

parameter vector y when one exists. Finally, we evaluate the
sensitivity of the CG method to the feature count of the
artificial training data.

5.2.1 Runtime comparison. We measured the run time of
CG and CONTRAfold when trained on the artificial structural

set S-A1, using a 2.4GHZ Intel Xeon CPU with 512 KB cache
size and 1GB RAM, running Linux 2.6.16 (SUSE 10.1). For
CG training, we perturbed the Turner99 parameters by a

number chosen uniformly at random between 0 and 1 kcal/mol,
and we used this set as the initial set of parameters.
The F-measures of this initial set are: 0.45, 0.42, 0.45 for

S-A1, S-A5 and S-A10, respectively, and 0.43 for the test
set S-A10.

As Table 2 shows, when trained on S-A1, having
190 structures, CG took 4 min with B¼ 1, and 19 min with
B¼ 10, whereas CONTRAfold took more than 80 h. Our ML

implementation took 66 h.
Thus, CG is more than two orders of magnitude faster than

conditional ML methods on our artificial data. On the artificial

sets, CG always converges within 23 iterations. When trained
on larger artificial sets, such as S-A5 and S-A10, CG’s runtime
was within 2 and 4 h on a single processor.

For the remaining experiments we parallelized the prediction
step and ran it on 20 similar processors. When trained on
S-151Rfam, the total runtime of CG was within 4 h, while

the total runtime of ML was within 3 days. When trained
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Fig. 5. The feature counts for various structural sets (features are

ordered according to decreasing counts). Out of the 363 total

parameters, only 254 appear at least once in S-151Rfam, and 348

appear at least once in S-Processed. The thermodynamic set T-Full

contains 203 features out of all 363 features in the model.
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on S-Processed, the runtime of CG was within 12 h.

Moreover, the number of iterations it takes CG to converge

remains low, even on our largest training set S-Processed, as

shown in Fig. 6.

5.2.2 Accuracy of CG on artificial training data. When
trained on the artificial sets, CG obtained F¼ 1 on all training

sets within 23 iterations (recall the initial set of parameters

had F-measure no more than 0.45). CONTRAfold obtained

F¼ 0.85 on the training set, but the fact that CONTRAfold

did not obtain F¼ 1 is not surprising, since

CONTRAfold uses a different set of features than does the

Turner99 model.

5.2.3 Feature count and CG accuracy on artificial test

data. Table 2 also shows that the accuracy of CG improves
as the feature counts increase. On the test set S-A10, the F score

improves from F¼ 0.90 to F¼ 0.98, as the feature count k

increases from 1 to 10. We also note that the accuracy of the

CG parameters is sensitive to the choice of the bounds

parameters B, which should be optimized to account for the

size and feature counts of the training data set. In addition to

improvements in accuracy, a higher feature count also improves

the ability of CG to recover the true Turner99 parameters, as

the correlation plots of Fig. 7 show. This indicates that CG is a

consistent estimator.

5.3 Results on biological data

In order to compare CG with CONTRAfold, we first trained

on S-151Rfam, which was used by Do et al. to train

CONTRAfold. However, S-151Rfam does not include many

of the solved secondary structures available today. Since CG is

very efficient, we also trained it on the large structural data set

S-Processed. Table 3 shows the results on the training sets, and

the accuracy of the Turner99 parameters (columns 3 and 4). We

test all three prediction methods on T-Single and S-Full

(columns 5 and 6).

5.3.1 Results when training on S-151Rfam. When �¼ 0.995
CG performs 4% better than Turner99 and 1% worse than

CONTRAfold on the training set. On the S-Full test set

however, CG performs 4% better than Turner99 and

2% better than CONTRAfold (F= 0.64 versus 0.60 and 0.62,

see Table 3).
When the 48 dangling end parameters were fixed to the

Turner99 values for both ML and CG, ML with prior (�¼ 1)

performed only 1% better than CG (�¼ 0.995, B¼ 10) on the

training set S-151Rfam and test set S-Processed. This clearly

indicates that the accuracy of CG is comparable with the

accuracy of ML when the same model is used. (ML without

prior performed 7% worse than ML with prior on the test set,

but better than CG with �¼ 0, and B¼ 1.5 and B¼ 10,

respectively.)

5.3.2 Results when training on the large structural

set S-Processed. Next we trained CG on S-Processed with
B¼ 10 and �¼ 0.995, and tested on S-Full. This resulted in a 3%

improvement in prediction accuracy (F = 0.67 versus 0.64)

compared to CG when trained on S-151Rfam, a 5% improve-

ment compared to CONTRAfold trained on S-151Rfam

(F¼ 0.67 versus 0.62), and a 7% improvement compared to

the Turner99 parameters (F = 0.67 versus 0.60, see Table 3).

Fig. 8 summarizes the sensitivity and PPV for the Turner99

parameters, CONTRAfold, CG trained on S-151Rfam with

B¼ 1.5 and �¼ 0.995, and CG trained on S-Processed with

B¼ 10 and � = 0.995.

5.3.3 Feature counts. Fig. 5 shows that only 254 out of the

363 features underlying the Turner99 model appear at all in S-

151Rfam. In fact, only about 170 of them appear more than

once. Thus, it is not surprising that CG performs poorly (10%

worse than the Turner99 parameters or CONTRAfold) when

we train on this set and no thermodynamic data is used

(i.e. �¼ 0), as seen in the first row of Table 3. When the

thermodynamic set is considered, however, CG obtains higher

Table 2. Results when training on artificial data sets

Alg. and

options

Set

train

Train

F-measure

Test (S-A10)

F-measure

Number

iterations

Runtime

CG B¼ 1 S-A1 1.00 0.90 9 4m

CG B¼ 10 S-A1 1.00 0.80 23 19m

CG B¼ 1 S-A5 1.00 0.96 9 24m

CG B¼ 10 S-A5 1.00 0.95 13 1h35m

CG B¼ 1 S-A10 1.00 0.98 9 49m

CG B¼ 10 S-A10 1.00 0.98 13 4h

ML S-A1 0.94 0.77 � 66h

CF g¼ 6 S-A1 0.83 0.64 � 4 80h

CG refers to constraint generation, CF refers to CONTRAfold [where we set

g¼ 6, as recommended by Do et al. (2006)], and ML refers to maximum

likelihood. All CG and ML runs were performed with �¼ 0 and �¼ 0,

respectively, so the thermodynamic set was not used.
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Fig. 6. F-measure when trained on S-Processed versus iteration

number for the CG algorithm. Usually the accuracy at the first

iterations is much lower than the accuracy of the initial parameter set

used (i.e. the Turner99 set), because the number of inequality

constraints is small. The algorithm usually converges in about 20

iterations.
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average prediction accuracy than CONTRAfold on our large

data set, S-Full.
Fig. 5 also shows that S-Processed contains almost all of the

Turner99 features, missing only 15 of them. At the same time,

the prediction accuracy on S-Full further increases when CG is

trained on S-Processed using �¼ 0.995.
The thermodynamic set T-Full contains 203 features out of

all 363 features in the model. Note that, when � 4 0, one

occurence of a feature in the thermodynamic set is sufficient to

get a good estimate of the free energy value for that feature; this

is different from the situation for the structural set, where it is

beneficial to have several occurrences of a feature.

5.3.4 Bounds parameter B. The best setting of the bounds
parameter B is correlated with the feature counts of the

structural set used. If many of the features do not appear in

this set, we need to set a tighter bound on the parameters.

Thus, when we trained on S-151Rfam, a maximal deviation of

B¼ 1.5 kcal/mol from the Turner99 parameters gave better

prediction accuracy than B¼ 10. It is interesting however that,

when �¼ 0.995, the accuracy on S-Full is the same for both

B¼ 1.5 and B¼ 10.
When we trained on S-Processed, we used B¼ 10.

Experiments with B¼ 30 gave similar results, indicating that a

larger value of B would not affect the quality of the parameters.

5.3.5 Weight of thermodynamic data set. As we already
observed with the artificial data set, Table 3 shows clearly that

the accuracy of prediction improves with increasing feature

counts in the structural set. It also improves when strong weight

� is placed on the thermodynamic set. If many feature counts

are zero, there is no absolute free energy information in

the constraints of the quadratic program (i.e. no equality

Table 3. Prediction quality achieved by CG, CONTRAfold and the Turner99 parameters

Training sets

used

Method S-151Rfam

F (sens/ppv)

(training)

S-Processed

F (sens/ppv)

(training)

T-Single

F (sens/ppv)

(test)

S-Full

F (sens/ppv)

(test)

T-Single

�G error

(kcal/mol)

CG B¼ 1.5 �¼ 0 0.59 (0.56/0.62) � 0.60 (0.44/0.95) 0.58 (0.55/0.61) 3.17

(1 � �) � S-151Rfam þ � � T-Full CG B¼ 10 �¼ 0 0.57 (0.54/0.60) � 0.47 (0.31/1.00) 0.48 (0.45/0.51) 6.08

CG B¼ 1.5 �¼ 0.995 0.69 (0.73/0.65) � 0.90 (0.85/0.96) 0.64 (0.65/0.63) 0.59

CG B¼ 10 �¼ 0.995 0.66 (0.69/0.63) � 0.68 (0.53/0.96) 0.64 (0.65/0.63) 0.56

(1 � �) � S-Processed þ � � T-Full CG B¼ 10 �¼ 0 � 0.68 (0.69/0.67) 0.68 (0.53/0.96) 0.56 (0.57/0.54) 3.66

CG B¼ 10 �¼ 0.995 � 0.75 (0.77/0.73) 0.95 (0.93/0.96) 0.67 (0.70/0.64) 0.54

S-151Rfam CONTRAfold g¼ 4 0.70 (0.73/0.67) � 0.76 (0.64/0.93) 0.62 (0.62/0.61)
7.74

CONTRAfold g¼ 6 0.69 (0.75/0.64) � 0.84 (0.76/0.93) 0.62 (0.64/0.60)

� Turner99 0.65(0.72/0.60) 0.72 (0.75/0.70) 0.93(0.97/0.88) 0.60 (0.64/0.57) 0.96

Column 1 gives the training sets we used. Column 2 gives the method we are testing: CG (constraint generation) with various input parameters, CONTRAfold, and

the Turner99 parameters. Columns 3 and 4 show the accuracy (F-measure, sensitivity and PPV) of CG and CONTRAfold, when tested on the training structural set used

(S-151Rfam in Column 3 and S-Processed in Column 4); the last row of the table shows the accuracy of Turner99 on both training sets, for comparison. The closer the

accuracy values are to 1.00, the better. Columns 5 and 6 show the prediction accuracy on our test sets. The last column gives the average error of the predicted free energy

score, when compared with the measured free energy value for T-Single:
P

x jex� êxj/N, where N¼ 207 is the size of T-Single (the smaller the average error, the better).

Bold face values indicate cases where the corresponding parameter set performs best for that column.
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constraints), and the feature counts cannot compensate for the

lack of free energy information.

5.3.6 Free energy accuracy. In addition to measuring the
accuracy of secondary structure prediction, we compare the

average absolute difference between the experimentally mea-

sured free energy for the molecules in T-Single, and the

predicted scores for the true structures. A good free energy

estimation means this average error is low (rightmost column of

Table 3). While CG with �¼ 0.995 yields an average error lower

even than the Turner99 parameters (which is 0.96 kcal/mol),

CONTRAfold’s score differs by 7.74. This clearly shows that

the scores used by CONTRAfold lose the free energy physical

meaning.

5.3.7 Prediction accuracy for different types of
RNAs. Table 4 shows the F-measures of our best CG
parameters (i.e. trained on S-Processed, with B¼ 10 and

�¼ 0.995), CONTRAfold and Turner99 parameters on various

families of RNAs. On families such as transfer RNA, RNase

P RNA or ribosomal RNA, CG performs best on average,

between 2% and 16% better than Turner99, and between

1% and 14% better than CONTRAfold. Note that

CONTRAfold performs particularly poorly on ribosomal

RNAs (16S rRNAs and 23S rRNAs do not exist in the

S-151Rfam set, however 5S rRNAs do), although it does

perform 3% and 14% better than Turner99 on RNase P and

transfer RNAs, respectively.

On two families, namely SRP RNAs and ribozymes,

CG performs 9% and 4% worse than Turner99, and 1% and

2% worse than CONTRAfold. The number of sequences in

these families is smaller than for most of the other families.

6 RELATED WORK

As we have mentioned, Turner and his collaborators have

refined their estimates of energy values for over 20 years, based

in part on thermodynamic data, and in part on extrapolations

from structural data, using genetic and grid search algorithms.

However, estimation of parameter values was done in stages,

with some values being fixed before others were determined,

and were not able to take advantage of the large body of

structural information available today. Do et al. (2006)

also considered the problem of parameter estimation, using

ML techniques. Using their method, they estimated parameters

for a feature set that they constructed, using a small training

data set (151 Rfam structures). They showed that, on their

training set, predictions with their model have higher accuracy

than predictions with the Turner99 model (using Mfold).

However, their feature set is more than twice as large as that of

Turner et al., making it difficult to assess whether their success

is due to their approach or to their set of features. Additionally,

free energy values, which are valuable to biologists, cannot be

predicted by their model. Finally, as our results show, the

overall accuracy of their predictions is poorer on average than

our predictions.

The idea of sequentially adding constraints to optimize a

quadratic program was investigated by Tsochantaridis et al.

(2005), although they used a different objective function and

did not consider RNA structure prediction.

7 CONCLUSIONS AND FUTURE WORK

In this article, we present a constraint-based parameter

estimation algorithm, CG, which efficiently combines struc-

tural and thermodynamic RNA secondary structure data.

Table 4. Prediction accuracy on various classes of RNAs from S-Full

RNA

class

No. Length CG

(F)

Turner99

(F)

CF

(best g) (F)

tRNA 484 77� 5 0.75 0.59 0.73 (g¼ 3)

RNase P RNA 379 333� 50 0.57 0.53 0.57 (g¼ 3)

5S rRNA 375 118� 2 0.63 0.61 0.51 (g¼ 10)

16S rRNA 117 1326� 273 0.50 0.41 0.37 (g¼ 3)

23S rRNA 36 2821� 443 0.51 0.44 0.45 (g¼ 10)

SRP RNA 68 163� 96 0.60 0.69 0.61 (g¼ 10)

Ribozymes 63 56� 8 0.84 0.88 0.86 (g¼ 2)

Other 138 74� 270 0.89 0.88 0.87 (g¼ 4)

S-Full 1660 295� 508 0.67 0.60 0.62 (g¼ 4)

F-measures for our best parameters (CG trained on S-Processed, with B¼ 10 and

�¼ 0.995) and the prediction accuracy of CONTRAfold and Turner99

parameters, on various RNA families.

Bold face values indicate the parameter set which gives the highest F-measure for

the corresponding RNA class.
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Fig. 8. RNA secondary structure prediction accuracy obtained when

using the Turner99 parameters, CONTRAfold parameters (g2 {2, 3, 4,

6, 8, 10, 20}) and CG parameters (trained on S-151Rfam and

S-Processed). Tested on a wide range of biological RNA structures in

set S-Full, the parameters obtained using CG give significantly better

accuracy than those found by CONTRAfold and the Turner99

parameters.
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Our method is substantially faster than a conditional ML
method on relatively small training sets, and, unlike the ML
approach, can be practically used on large training sets with
thousands of structures.

We applied our method to derive new parameters for the
Turner99 model, the most widely used energy model for RNA
secondary structure prediction. The parameters obtained with

our CG method are significantly better than the Turner99
parameters, in terms of prediction accuracy, both on a large
structural set and on most families of RNAs, with a 7% average

improvement in accuracy over a data set of 1660 structures.
In contrast, CONTRAfold obtains a 2% accuracy improve-
ment overall.

Our analysis to date indicates that both, high feature counts
in the structural set, as well as thermodynamic data, contribute
to the quality of the parameters obtained by the CG and
ML algorithms, although ML is more robust when feature

coverage is low.
In the future, we plan to combine the ML and CG methods;

for example to use the ML method to optimize a small number

of unreliable parameters, such as those pertaining to multi-
loops, while using CG to optimize the remaining parameters.
Finally, we will explore how the introduction of alternative

features, such as co-axial base pair stacking and asymmetry in
unpaired segments of multi-loops, can lead to improvements in
RNA secondary structure prediction. We note that the CG
method can easily be adapted to other feature sets with linear

energy functions by replacing the secondary structure predic-
tion procedure.
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