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Abstract

We examine a very simple asynchronous model of parallel computation that assumes the
time to compute a task is random, following some probability distribution. The goal of this
model is to capture the effects of unpredictable delays on processors, due to communication
delays or cache misses, for example.

Using techniques from queueing theory and occupancy problems, we use this model to
analyze two parallel dynamic programming algorithms. We show that this model is simple
to analyze and correctly predicts which algorithm will perform better in practice.

The algorithms we consider are a pipeline algorithm, where each processor ¢ computes
in order the entries of rows %, 7 + p and so on, where p is the number of processors; and a
diagonal algorithm, where entries along each diagonal extending from the left to the top of
the table are computed in turn.

It is likely that the techniques used here can be useful in the analysis of other algorithms
that use barriers or pipelining techniques.
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1 Introduction

Parallel algorithms can suffer significant slowdown due to unpredictable delays in the sys-
tem. These delays include contention on communication channels or cache misses, for example.
Unpredictable delays lead to periods of forced idleness among the processors, during which
processors are ready to work, but cannot. For example, a processor may be forced to be idle
at a synchronization point because of delays to another processor.

Analytically predicting the increase in running time of an algorithm due to unpredictable
delays is an important task because it provides a basis for deciding which of a set of algorithms
is best for a particular system. However, there is no consensus on how best to do this. What
is needed is a model of computation that is simple, general and accurate. By simple, we mean
that the model should be easy to use and analyze. By general, we mean that the model should
work for all algorithms, or at least all algorithms on a given architecture. By accurate, we mean
the analysis should accurately reflect an experimental measure of the algorithm’s performance.

We examine a very simple asynchronous model of parallel computation for task graphs.
Our model assumes that the time to compute a task is random, following some probability
distribution (usually the exponential distribution). The resulting variability in the task time is
designed to model the effects of unpredictable delays in the system on the computation of an
algorithm. With this model, we analyze the performance of two parallel dynamic programming
algorithms, using techniques from queueing theory and occupancy problems. We present empir-
ical evidence that the analysis using the model can accurately predict which of two algorithms
performs better in practice. While this analysis does not prove the generality of the model, it
is likely that the techniques used here can be useful in the analysis of other algorithms that use
barriers or pipelining techniques.

1.1 Problem description

We view the dynamic programming problem as that of computing entries in a large table,
say of dimension n X m, where the computation of entry (i,j) depends on the results of its
predecessors, which are entries (i — 1,7),(i — 1,7 — 1) and (3,7 —1),1 < i < n,1 < j < m.
(Entry (1,1) is known in advance and the remaining entries in the first row and column have
only 1 predecessor.) Throughout, we assume without loss of generality that n < m (since the
table can be transposed if n > m). Dynamic programming is a classic algorithmic technique.
It is used, for example, to solve the Knapsack problem [10], the Longest Common Substring
problem [23], queueing network models [1], and DNA sequence alignment [17]). There are
many possible parallel algorithms to implement it. The two dynamic programming algorithms
that we consider are the pipeline and diagonal algorithms. We also assume that the number of
processors, p, is at most n.

In the pipeline algorithm, the ith processor computes the entries in rows 4,7+ p, ..., in order.
A processor can compute an entry as soon as its predecessors are computed. (We assume that
processors can test whether the predecessors of an entry are already computed, using locks,
for example.) Almquist et al. [1] used this algorithm in solving the longest common substring
problem and a problem on queueing network models. In the diagonal algorithm, entries along
each diagonal extending from the left side to the top of the table, are computed in turn. Within
each diagonal, each processor computes approximately 1/p of the entries. The computation of



the entries along a diagonal is not started until all entries along the previous diagonal are
computed. This can be enforced using barriers, for example. Lander et al. [13] proposed this
parallel algorithm for protein sequence alignment.

Note that the two algorithms are very similar in that a processor may compute exactly the
same sequence of table entries in both algorithms. Thus, the time spent actually computing
table entries is the same for both algorithms. The important difference between the algorithms
is that in the diagonal algorithm, all processors use barrier synchronization to ensure that when
computing an entry, its predecessors are already computed, whereas in the pipeline algorithm, a
processor explicitly checks that the predecessors are computed. Thus, in comparing the running
times of the algorithms, one must measure for the diagonal algorithm the costs of barriers and
of the forced idleness of processors as they wait at barriers; and for the pipeline algorithm the
costs of testing whether the predecessors of an entry are already computed, and of waiting until
the predecessors are computed.

While experiments show that their performance is generally different on the same input
data, synchronous models of parallel computation, such as the PRAM [6] [9] [21], give the same
time complexity for both algorithms. A useful asynchronous model must capture the difference.

It is not obvious which of the two algorithms will have better performance. In the diagonal
algorithm there are ©(n) barriers, while in the pipeline algorithm, each processor must test
©(n?/p) times that the predecessors of an entry are computed. In our experiments on the
Sequent Symmetry, we used locks for this purpose in the pipeline algorithm. (An alternative
efficient scheme is to have processors read a flag associated with the predecessors of an entry,
to test whether the entry has been computed. However, it is difficult to make measurements
of this scheme on the Sequent.) We found that the cost in running time of executing a barrier
with sixteen processors is about ten times the cost of executing a lock (and is less for fewer
processors). Even for large p, the cost of ©(n?/p) locks will dominate the cost of ©(n) barriers
for moderately large n. Thus, if only synchronization time is considered we would expect the
diagonal algorithm to be a better choice. However, it is misleading to consider only the cost of
synchronization primitives. In the diagonal algorithm, if the time taken by different processors
between barriers is highly variable, then the cumulative idle time of processors before the
barriers may be significant. One would expect that the cost in running time due to such forced
idleness would be more in the diagonal algorithm than the pipeline algorithm; furthermore our
experiments show that this is indeed the case (see Section 5). Thus, it is hard to be certain,
without further study, which algorithm will perform better. The purpose of our results is to
compare analytically the cost of forced idleness in the diagonal and pipeline algorithms. Of
course, there are yet other costs of these parallel algorithms in addition to the two discussed
here. For example, in the pipeline algorithm, if testing whether a predecessor of a table entry
is computed involves repeated reading of the predecessor, the resulting message volume may
cause the pipeline algorithm to have a longer average task time than the diagonal algorithm
(and may also be closely related to variations in task time).

1.2 Description of Model

In our random model, the time required to compute an entry in the table, given that its
predecessors have already been computed, is exponentially distributed with mean 1/y, where p
is some constant, 0 < p < co. For the diagonal algorithm, we also extend our analysis to some



other distributions. The running time of an algorithm is the time to compute all the entries in
the table.

This model attempts to capture the effects of processor idleness, due to unpredictable delays
in a parallel system, on the running time of an algorithm. Such delays may be due to contention
on communication channels or cache misses, for example. It is not the goal of this model to
predict actual running time, rather it provides a basis from which to compare two algorithms
without actually implementing them. We note again that other, perhaps significant, costs of the
diagonal and pipeline algorithms are the cost of barrier synchronization and the cost of testing
that the predecessors of an entry are already computed. These other costs are not included in
our model, and would have to be included in a complete analysis of the running time of the
computation.

We assume that task times are independent. We note that in practice, task times are
probably not independent at all. However, since it may be very hard to predict the actual
dependencies that may occur on a given machine, we do not attempt to incorporate such de-
pendencies faithfully in an analysis such as ours. The independence assumption keeps the
analysis as simple as possible; furthermore, there is precedent for this assumption in the lit-
erature. For example, previous papers which consider expected running times of parallel task
structures [5, 11, 15, 16] also assume that task times are independent (for more details, see
Section 1.4 on related work).

We use the exponential distribution for a variety of reasons. First, it makes analysis of the
pipeline case feasible, since tools from queueing theory are applicable in this case. Second, our
measurements in a real application (see Section 5) have shown that the variance of task times can
be high; thus assuming task times follow the exponential distribution is not unreasonable. Our
experiments on the two algorithms confirm that the results we get by using the exponential
distribution are qualitatively accurate. Finally, performance folklore holds that as long as
some variation exists, the exponential distribution is a reasonable one to use in predicting
performance. Even for parallel models, there is some evidence supporting this: for example,
Fromm et al. [7] measured delays in executing an instruction due to memory conflicts on one
parallel system, the Erlangen General Processor Array, and concluded that the exponential
distribution was the best of several distributions in predicting performance.

To compare the predictive power of the exponential distribution with other distributions, we
did our own simulations with task times chosen according to the uniform, normal, exponential
and gamma distributions. The algorithms were simulated on n X n tables, with n equal to 1000,
2000, 3000, 4000, and 5000. Table 1 details the results of the study when the diagonal and
pipeline algorithms were simulated on sixteen processors (results for fewer processors were sim-
ilar). For each n, the table first gives a simple lower bound on the running time, namely n?/p,
which is approximately the running time when there is no variance in the task times. Then, for
each distribution we give the running time as a percentage of this lower bound. For all distribu-
tions, the diagonal algorithm is slower than the pipeline algorithm (this is consistent with our
experiments, which we describe later). We observe that the running times for the exponential
distribution are the most pessimistic, showing the worst slowdown. For the uniform distribu-
tion, the running time of the pipeline algorithm is actually faster than the lower bound. We
conclude from this that the uniform distribution would be a poor choice in modeling slowdown
due to idleness. As n increases, the percentage difference between each of the running times
and the lower bound decreases. This suggests that for any of the distributions, the slowdown



due to variation in task time is a low order term in the total running time. We will see that
our analytical results confirm that this is the case for the exponential distribution; moreover
this is also consistent with our experimental results. From these simulations, we conclude that
an analysis based on the exponential distribution may be somewhat pessimistic, but should be
useful in explaining qualitatively the effects of task variance on the total running times of the
algorithms.

Table Lower Uniform Normal Exponential Gamma

Size (n) | Bound | Diag Pipe | Diag Pipe | Diag Pipe | Diag Pipe
1000 62500 | 119% 97% | 129% 102% | 132% 102% | 114% 101%
2000 250000 | 111% 96% | 120% 101% | 122% 101% | 109% 101%
3000 562500 | 108% 95% | 117% 101% | 118% 101% | 108% 101%
4000 1000000 | 107% 95% | 115% 101% | 116% 101% | 107% 100%
5000 1562500 | 105% 95% | 113% 101% | 114% 101% | 106% 100%

Table 1: Results of simulating the pipeline and diagonal algorithms on 16 processors. For each
distribution, the running time as a percentage of the lower bound, which is n?/16, is given. The
uniform distribution used a mean task time of 1 on the range [0,2]. The normal distribution
used a mean of 1 and a variance of 1. The exponential distribution used g = 1. The gamma
distribution used a mean of 1 with order 5. Each simulated processor used an independent
random number stream.

1.3 Overview of Results
1.3.1 Theoretical analysis

Our analytic results show that the expected running time of the diagonal algorithm is worse
than the expected running time of the pipeline algorithm. The difference increases as the
number of available processors increases, indicating that with more processors, the advantages
of the pipeline algorithm would increase.

To get an idea of how our results on the two algorithms compare, Table 2 presents our
results for three cases of p, in the special case when the table is of size n X n and y = 1. The
table gives a lower bound on the expected running time of any algorithm in a large class of
static algorithms (defined below), which includes both the diagonal and pipeline algorithms. It
also gives an upper bound on the expected running time of the pipeline algorithm, and a lower
bound on the expected running time of the diagonal algorithm. In each case, the lower bound
of the diagonal algorithm is larger than the upper bound of the pipeline algorithm.

1.3.2 Summary of Experiments

The two algorithms were timed on the Sequent Symmetry, an asynchronous, shared memory
parallel machine. Experiments were run using 1, 4, 8, 12 and 16 processors. Details of the
experiments are given in Section 5.

In our experiments, the pipeline algorithm outperformed the diagonal on almost all data
sets, although the difference in running time is small. We estimated as best we could the cost of
synchronization and processor idleness in both algorithms, and concluded that processor idleness



p>1aconstant | p=+/n p=n
lower bound n?/p+ 6(1) nv/n + 0(y/n) 2n —1
(static algorithms) | (Lemma 2.1) (Lemma 2.1) (Lemma 2.1)
upper bound, n?/p+2n+0(1) | ny/n+2n+0(/n) | 4n
pipeline (Theorem 3.1) (Theorem 3.1) (Theorem 3.1)
lower bound, n?/p+ 2nH,_, ny/n +nlogn 2nlogn
diagonal —-3n—n/p-1 —-3n—yn-1 +0(nloglogn)
(Theorem 4.1) (Theorem 4.1) (Theorem 4.2,
asymptotic)

Table 2: Running times for three cases of p (n X n table, u = 1). Here, H, = >¥_| 1/i(> logp).
Logs are to the base e. The lower bound result for the diagonal algorithm with p = n is
asymptotic.

accounted for much of the gap in the running times of the two algorithms. The difference in
the idleness increased as the number of processors increased, as predicted in the theoretical
analysis. We also found that the distribution of the task times has a standard deviation close
to the mean, providing some empirical justification for assuming the exponential distribution
in our analysis.

The rest of the paper is organized as follows. We describe related work on asynchronous
models of parallel computation in Section 1.4. Our lower bound is presented in Section 2.
In Sections 3 and Section 4, we present the analysis of the pipeline and diagonal algorithms,
respectively. Our experimental results are reported in Section 5.

1.4 Related Work

Various models have been proposed to analytically predict the running time of algorithms on
asynchronous models of parallel computation in which unpredictable delays contribute to the
running time. One model, used by Anderson et al. [2] in analyzing dynamic programming
algorithms on small, asynchronous parallel machines, allows an adversary to control the delays
of the processors. Such a model may be useful for predicting the worst case performance of an
algorithm.

Another approach is to make the running time of a task a random variable. Nishimura [19],
Cole and Zajicek [5] and Martel et al. [16] describe general models of asynchronous parallel
computation with such random delays. This approach appears to be a promising one, when
one wants to estimate the performance of an algorithm on an average run, rather than in the
worst case. Our simple model follows this approach. Our work extends the above results both
by providing a sharp analysis of two commonly used algorithms, and by providing empirical
evidence that the analysis is realistic.

Fromm et al. [7] use a stochastic model to analyze the performance of a parallel system, the
Erlangen General Processor Array. The time needed to execute an instruction in this system
depends on delays due to memory conflicts and is modeled as a random variable. Different dis-
tributions are considered, including constant, exponential and “phase-type” distributions, and
the results of the analysis are compared with experimental results. The authors conclude that
the analysis using the exponential distribution compares favorably with experimental results.



Mak and Lundstrom [15], describe analytic models for predicting the performance of a parallel
program represented as a task graph with series-parallel structure, where the time to execute
a task is exponentially distributed. Our work on the diagonal algorithm extends their results
on series-parallel graphs, while our work on the pipeline algorithm provides tools for predicting
the performance of task graphs with a mesh structure, where dependence between the tasks is
much more complex than in a series-parallel graph.

Kruskal and Weiss [11] analyze the expected running time of p processors working on a pool
of n subtasks. Each subtask can be done independently. They show that allocating an equal
number of subtasks to each processor has good efficiency. Their result on the expected running
time of the p processors is equivalent to the expected running time on a single diagonal of the
diagonal algorithm, when p is o(n) but more than a constant. Our work extends their result
to give an upper bound for computing an entire table in this case, and also gives results for
constant p and for p = ©(n). The pipeline analysis examines processors that are interacting, a
case not considered in their work.

2 Lower Bound for Static Algorithms

Our first analytic result is a simple lower bound on the expected running time of a general class
of static algorithms. This class includes the pipeline and diagonal algorithms and is useful in
comparing the bounds derived later for these algorithms. In a static algorithm, each processor
is assigned a sequence of table entries, where the assignment of processors to entries is fixed
before execution of the algorithm. A processor computes each entry of its sequence in turn and
is ready to compute the kth entry in the sequence once it has completed the computation of
the (k — 1)st entry and all predecessors of the kth entry are computed. Recall that we assume
in this lemma and throughout that p < n < m.

Lemma 2.1 A lower bound on the expected runming time of a static dynamic programming
algorithm with p processors on an n X m table is (mn/p +p—1)/pu.

Proof: A trivial lower bound on the expected running time of an algorithm is mn/(up),
since some processor must compute at least mn/p entries, and the expected time to compute
each of them is 1/u. We can improve this lower bound to prove the lemma, by taking into
account the fact that at the start and end of the computation, not all processors can be actively
computing entries.

In what follows, we refer to the set of entries {(i,7) | i +j = d + 1} as the dth diagonal
of the table. Consider the set of entries between diagonals numbered p and n + m — p. There
are mn — p(p — 1) entries in this set; hence some processor, say i, is assigned to compute at
least (mn — p(p — 1))/p of the entries in this set. Let e; and ey be the first and last entries
in this set that processor i computes. For static algorithms, these are fixed in advance of the
computation. The expected time for processor ¢ to compute the entries in this set is at least
(mn —p(p—1))/pp-

Since e; is in a diagonal numbered at least p, there is a sequence of entries of length at least
p, starting with the top left entry of the table and ending with e;, such that each entry in the
sequence cannot be computed until the previous entry in the sequence is computed. Hence,
the expected time from the start of the computation until entry e; can be computed is at least
(p —1)/p. Similarly, since e2 is in a diagonal numbered at most n + m — p, there is a sequence



of entries of length at least p, starting with es and ending with the bottom left entry of the
table, such that each entry in the sequence cannot be computed until the previous entry in the
sequence is computed. Hence, the expected time from the time es is computed until the end of
the computation is at least (p — 1)/p.

Hence the total expected time is at least

1

—plp—1 — 1
mn — p(p )+2pu =;(mn/p+p—1)-

Hp

3 Analysis of Pipeline Algorithm

In this section we give an upper bound for the expected running time of the pipeline algorithm.
We begin by presenting the intuition behind the proof and then give the formal proof.

3.1 Intuition

In this section, we assume that n is divisible by p. This is not necessary for the analysis, but
makes the intuition more clear.

hy
&

Figure 1: Cyclic p-customer problem: How long for p to be served s times, if the system starts
in the steady state?

We relate the pipeline algorithm to a problem from queueing theory. Consider a cyclic
queueing system in which p customers circulate through m servers and queues, where the
service times are exponentially distributed. Assume that the system is in the steady state. The
cyclic p-customer problem is to determine the expected time for the pth customer to be served
s times in a cyclic queueing system with m servers (see Figure 1.) This problem has a known
solution: (s/u)(1+ (p—1)/m) (Lavenberg & Reiser [14, Equation 2.17]).

To relate the pipeline algorithm to the cyclic p-customer problem, think of the p processors
as customers, and the m columns in the n X m table as servers. Each column corresponds to a
server because only one processor can be working on an entry in a column at a time. (Figure

2.)
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Figure 2: Pipeline algorithm: how long for the pth customer to be served (n/p)m times?

If the customers start out lined up at the queue to the first server, then the expected time
for the pth customer to be served (n/p)m times is the expected running time of the pipeline
algorithm.

Unfortunately, the cyclic p-customer problem does not correspond directly to the pipeline
algorithm. Since the cyclic p-customer problem assumes the system is in steady state, the
customers do not start out lined up in the first queue. Thus, the expected time for the pth
customer to be served (n/p)m times in steady state does not include the startup costs associated
with the pipeline algorithm.

It is easy to overestimate these startup costs by making the pth customer go around the
entire system an additional time. That is, the expected time for a customer to be served
m + (n/p)m times is an upper bound on the running time of the pipeline algorithm. This
guarantees that every customer will have been served at server 1 before we start counting the
services of the pth customer. However, this overestimate may be very severe if m >> p.

The key to our solution is to notice that the cyclic p-customer problem can model the
pipeline algorithm without using m servers. If we use fewer servers, customers must wait more
often, so the time to be served (n/p)m times only increases (i.e. the estimate of the time for the
pth processor to compute (n/p)m cells will be at least as large the actual time). For example,
we could decide to use only p servers. In this case the startup cost (one cycle through the
system) would be much closer to the cost actually experienced by the pth processor, while the
time to be served (n/p)m times would be a large overestimate if m >> p. (Figure 3.)

For any x < m, an upper bound on the running time of the pipeline algorithm is
(x + (n/p)m)(service_time).

Here, x is the number of servers in the cyclic p-customer problem and so the time for the pth
customer to go around the entire system one time (the startup cost) is = times the service time.
Also, the service time is (1/p)(1 + (p — 1)/z). Choosing z to minimize this equation balances
the startup cost with the cost of being served (n/p)m times. Simple calculus provides us with
the best value, which is approximately /mn (see Theorem 3.1).
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Figure 3: Pipeline upper bound: choose x such that (z + (n/p)m)(service_time) is minimized.
(service_time depends on x)

3.2 Formal Proof

We model the execution of the pipeline algorithm as a cyclic queueing system. Suppose that
p customers are served eternally by z first-come-first-served servers with unbounded queues,
numbered 1, ...z, where a customer is served by the ((i mod z) + 1)st server after it has been
served by the ith server. We assume service times are all exponentially distributed with mean
1/p. Suppose we observe the queueing system with all customers initially in the queue of
server 1, in order with 1 first and p last. Then, the computation of entry (i, j) of the table (by
processor ¢ mod p) corresponds to the service of the (¢ mod p)th customer for the [i/p]th time
by the jth server (where here, processor p is aliased as processor 0). The termination of the
algorithm corresponds to the completion of the m[n/p]th task of processor p.

Our upper bound on the pipeline algorithm exploits this relationship between the pipeline
algorithm and the queueing system. Also, the bound uses Lemma 3.1, which gives the expected
time for a customer to be served s times in a system in steady-state. This lemma follows directly
from a result of Lavenberg and Reiser [14, Equation 2.17].

Lemma 3.1 In a steady-state cyclic queueing system with x servers, p customers and exponen-
tially distributed service times at each server with mean 1/u, the expected time for a customer
to be served s times s

—1
S+t
1 x

)-

Our proof of the upper bound must bridge the gap between the system modeling the al-
gorithm, in which the customers are all in the queue of server 1 initially, and the system of
Lemma 3.1, which is initially in steady-state. We need the following notation for the proof.
Define a state S of the system to be a p-tuple, where S[i] is the server at which customer ¢
resides. Let T'(z,S) be the expected time for customer p to be served m[n/p| times in an
z-server system that starts in state S, where we only count services of p starting with the first
service at server 1 after customer 1 has been served there. We consider valid initial states J
of the system to be states in which the the customers are in ascending circular order. That is,
customer (7 mod p)+1 follows customer 7, 1 < i < p. Without loss of generality, we assume that
in a valid initial state J, customer 1 resides at server 1. Notice that the definition of T'(x,.J)
means that if in state J, customer p is ahead of customer 1 at server 1 (note that this is not



inconsistent with our assumption of circular ordering) then we don’t start counting until the
second service of customer p at server 1. Let I be the state of the queueing system in which all
customers are in the queue of server 1, with customer 1 at the head of the queue. Then, T'(m, I)
is the expected running time of the pipeline algorithm (this follows from the first paragraph of
this section). The following lemma is the key to the proof.

Lemma 3.2 Let I be the state of the queueing system in which all customers are in the queue
of server 1, let J be any valid initial state and let < m. Then,

T(m,I) <T(z,I) <T(z,J).

Both inequalities are intuitively true: The first inequality states that if the number of servers
is reduced, the expected time for customer p to complete a given number of services increases.
The second inequality states that the expected time for customer p to complete a given number
of services is greater when the customers are in an arbitrary valid initial state, rather than
when the customers are nicely lined up at server 1. The proof of Lemma 3.2 is in the appendix.

The next lemma applies Lemma 3.2 to bound the running time of the pipeline algorithm
using a steady-state system.

Lemma 3.3 The running time of the pipeline algorithm using the random delay model is at
most the time for a customer to be served T + m[n/p]| times in the cyclic p-customer problem
with x < m servers, when the system is in the steady-state.

Proof: Consider again a cyclic queueing system in the steady-state with x ordered queues,
z < m, and p ordered customers, where (by definition), customer 1 is at server 1. Let S(z) be
the expected time for customer p to reach server 1 and then to be served m[n/p| times after
it has arrived in the queue of server 1 of an z-server system. Note that S(z) is the expectation
T(z,J) taken over all valid initial states J. Using Lemma 3.2, we can see that the expected
running time of the pipeline algorithm is at most S(z). This is because we already know that
the expected running time of the pipeline algorithm is at most 7'(m, I). By Lemma 3.2, this is
at most T'(z, J) for any valid initial state J and z < m. Let Jy be a valid initial state for which
T(z,J) is minimal. Since S(z) is the expectation of T'(z,.J) over all valid initial states J, we
have T'(m,I) < T(z, Jy) < S(x).

Also, S(z) is at most the time for a customer to be served = + m[n/p| times in an z-server
system with p customers. This is because the time for customer p to reach the queue of server

1 is at most the time for a customer to be served by z servers (the worst case is when initially,
customer p is ahead of customer 1 in the queue for server 1). O

Substituting the value from Lemma 3.1 into Lemma 3.3 we see that the expected time of

the pipeline algorithm is at most

@ mlnfp))(1+ )

This is at most

(a+mn/p] + ;

To minimize this expression, we choose z = [\/m[n/p] (p— 1)-| Thus, we have the following
theorem.
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Theorem 3.1 The expected running time of the pipeline algorithm is at most

% (m[n/p-| +p+2\/m) :

4 Analysis of Diagonal Algorithm

In this section, we analyze the diagonal algorithm for dynamic programming on our random
model. We first prove a general lower bound on the expected running time of the diagonal
algorithm. In Section 4.1, we obtain asymptotic estimates for the expected running time of
the diagonal algorithm for different values of p, the number of processors, using results on the
solution of a well known occupancy problem. Upper bounds on the running time of the diagonal
algorithm when the assumption of an exponential distribution is relaxed can be found in [4].

To compute the expected running time of the diagonal algorithm on the random model, we
define T'(p,j) to be the time for p processors to complete an iteration in which the diagonal
contains j entries, where p < j.

We first obtain an expression for the quantity 7'(p,j). The time for any one processor to
compute k = [%J entries is the sum of k i.i.d. random variables, each of which is exponentially
distributed with mean 1/yp. This sum has a gamma distribution with parameters p and k. That
is, the density function for the time for a processor to compute k entries is (u* /T'(k))tF=te=# t >
0, where I'(k) is the gamma function. Let M(l, k) be the time for [ processors to compute k
entries each; that is, M (I, k) is the maximum of [ i.i.d. random variables which have a gamma
distribution with parameters p and k. Then, T(p,j) is the maximum of M(l,k + 1) and

M(p —1,k), where I = j —p| =] and k = |[I52].

In the special case when j = p, E[T(p,j)] is the expected maximum of j i.i.d. random
variables whose distribution is exponential with mean 1/p. This is known to be (1/u)Hj,
where H; = >>7_, 1/i is the jth harmonic number (Solomon [22]).

We now obtain a lower bound on the expected time of the diagonal algorithm. We first obtain
a lower bound on E[T(p, j)]. Since in the jth diagonal, each processor must compute at least
k= L%J entries, and the time to do this is M(p, k), it follows that E[T(p,j)] > E[M (p,k)].
Consider the processor which takes the most time in computing the first entry. The expected
time taken by this processor to complete k entries is clearly a lower bound on E[M (p, k)]. The
expected time taken by this processor is (1/p)(k — 1) (which is the expected time to compute
k — 1 entries, other than the first), plus the expected value of the maximum of p i.i.d. random
variables which are exponentially distributed with mean 1/u. We have already seen that this
is (1/p)H,. Hence, E[T(p,j)] > E[M(p,k)] > (1/pu)(Hp + (k — 1)). Summing over all the
diagonals, we obtain the following theorem, whose proof can be found in [4].

Theorem 4.1 For p > 1, the total expected time of the diagonal algorithm s at least

iumn +n(p—1))/p+ (m+n+1)(Hp1 —2)].

4.1 Reduction to an Occupancy Problem and Resulting Bounds

To obtain further estimates on the running time of the diagonal algorithm, we relate the ex-
pected value of M(p, k) to the solution of a well studied occupancy problem. If balls are thrown
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randomly and uniformly into p bins, how many balls must be thrown in order that each bin
has at least k balls? Let Occ(p, k) be the random variable denoting the number of balls needed
to ensure that each bin has k balls. Then we obtain the following relationship between the
expected values of M (p, k) and Occ(p, k).

Lemma 4.1 E[M(p,k)] = pqu[Occ(p,k)].

Proof: This result was proved by Young [24]. We give a simple proof here. Imagine
that the processors compute entries forever; then M(p, k) is the time at which all processors
have computed at least k entries. Define an event to be an instant when some processor finishes
computing an entry. By the memoryless property of exponential distributions, the time between
events is exponentially distributed with mean pp. Thus, the expected time between events is
1/(up). When an event occurs, the processor that finished computing an entry is random (by
symmetry). Thus, the expected time for p processors to compute k entries each is

Y2, Pr[Occ(p, k) = i](expected time to complete i events)
é 321 1Pr[Occ(p, k) = i]

EE[Occ(p, k).
O

Using this lemma, we can apply results on the occupancy problem to obtain asymptotic
bounds on the expected value of M (p, k). We use the following results on E[Occ(p, k)]. In the
next lemma, the notation f(k) ~ g(k) denotes that limy_,o, f(k)/g(k) = 1.

Lemma 4.2 1. Ifp is fized and k — oo, then E[Occ(p, k)] ~ pk.
2. If k is fized and p — oo, then E[Occ(p, k)] ~ p(logp + (k — 1) loglog p).
3. If k = ap and p — oo then E[Occ(p, k)] < pk(1+ O(\/logp/p))-

Proof: 1 and 2 follow directly from results of Newman and Shepp [18]. We present the
proof of 3. Suppose k = ap. We first estimate the number, IV, of balls needed to ensure that
with probability at least 1 —1/p, all bins have at least k balls. Suppose that N balls are thrown
in the p boxes. The probability that some bin has less than k balls is at most

p ((g) (1/p)°(1 = 1/p)N =0 + (Jf) 1/p)ra-1/p)V T+ + (kffl) (1/p)F1(1 — 1/p)N—(k—1)) _

To bound this sum, we first bound each term in the sum, by noting that for 1 < <k —1,

N
(i )_ Nl k(N —k)! k(k—1)...(i+1)
(N> C(N=)! N (N=9)(N—-i—1)...(N—(k—1))
k
kk—i kk—i )
< N = (k=) < Tp —F)— (since N > kp — 1)
— (= = 1

12



Multiplying both sides by (g) (1/p)'(1 — 1/p)N~*, we see that

)

(N> (1/p)'(1=1/p)"" < (g) (1/p)* (1 =1/p)"*.

Hence, the probability that some bin has less than & balls is at most

ph (ff ) (1/p)(1 = 1/p)¥ .

If N = fp, then (‘]iv) = (gp) < (ﬁp)k(l/k!). Hence the last expression is at most

pk(Bp)F (/K1) (1/p)* (1 — 1/p)PP~* < pkBF(1/K!) exp(—(8 — a)),

since (1 —1/p)? < e~ ! and k = ap.

We now find the asymptotic value of # that will make this last expression equal to 1/p.
Taking logarithms and applying Stirling’s formula (namely, k! = v27k(k/e)* (1 + ©(1/k))), we
see that if we set this last expression equal to 1/p then

log(1/p) ~logp+logk + klog 5 —1/2log(2m) — 1/2logk — klogk + k — 5+ c.
Rearranging the terms, we have
klogB —klogk ~ 3 —k —2logp —1/2logk + 1/2log(27) — «.

Since k = ap, 1/2logk = 1/2loga + 1/2logp. Letting ¢ = a + 1/2log o — 1/2log(27) and
dividing across by k, we have that

log(B/k) ~ B/k —1—(5/2logp + c)/k.
Let 3/k — 1 = €. From the Taylor series expansion, log(1 + ¢) < e — €2/2. Thus, as p — oo,
e—e2)2> Bk —1—(5/2logp+c)/k.

Equivalently, €2/2 < (5log p + 2c)/(2k), that is,

e < /(5logp + 2¢)/k.

This shows that asymptotically 8/k <1+ +/(5logp + 2¢)/k and so as p — oo,

N = fp < pk(1 +/(5log p + 2¢) /k).

We observe that if not all bins have k balls by NV steps, we can continue for N more steps,
again for another NV if it is not done, and so on. At each stage, the probability of finishing is
no worse than the probability that a newly begun process (starting with the all bins empty)
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finishes in N steps. Now, we have a chance < 1/p of going to the second stage, < 1/p? of going
to the third stage, and so on. This implies that the mean waiting time is at most

pk(1+ \/(510gp +20)/k)(1+1/p+1/p* +...) = pk(1 +/(5/a)log p/p + O(1/p)).
Od

Finally, we can obtain the following bounds on the expected running time of the diagonal
algorithm with p processors by summing over all diagonals using M (p, k) and applying Lemma,
4.2. For details, see [4].

Theorem 4.2 As n — oo, the expected running time of the diagonal algorithm with p proces-
sors on an n X m table, n < m, s

1. ~mn/(up) + ©(m), when p is a constant,
2. ~(m+mn)(logp)/u+ O(mloglogp), when p =0©(n), and

3. < (m+en)(n/p)(1/p+ o(1)) + O(m), when p = ©(y/n), where € is any constant.

5 Experimental Results

Experiments were run on the diagonal and pipeline algorithms using a Sequent Symmetry com-
puter, an asynchronous, shared memory, parallel machine. The goal of our experiments was to
determine empirically, for a small number of processors, the slowdown of both algorithms due
to idleness of processors, and to compare this with the slowdown due to the cost of synchro-
nization primitives. In this section, we first report on these experiments. We then compare the
experimental results with predictions based on the formulas of Table 2.

5.1 Measured Running, Synchronization and Idleness Times

In our experiments, for each run of the algorithm, we measured the total running time and, in
addition, we estimated the synchronization time, idle time and average task time of each run.
These were estimated as follows.

For a given run of the diagonal algorithm, the synchronization time at a particular barrier
is simply the minimum amount of time spent at the barrier by any of the processors. The total
synchronization time is obtained by summing over all barriers. The idle time at a particular
barrier is the difference between the maximum time any processor spends on the task prior to
that barrier, and the average time spent by all processors on the task prior to that barrier.
Summing up over all barriers gives the idle time. Thus, the idle time is the average time (taken
over all the processors) that a processor spends idle during a run of the algorithm. Finally,
the average task time is the average time (taken over all tasks of all processors) spent by a
processor on a task.

We used locks on the Sequent to enable a processor to check when the predecessors of an
entry are computed, since locks are a simple and efficient mechanism on the Sequent provided
for this purpose. An alternative scheme, to have a special bit per table entry that indicates
when it is computed, is also efficient in terms of time. We opted for locks because it enabled us
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to use some measurement tools to measure the time spent on the checking of predecessors. On
the Sequent, there is no good way to separate the time a processor spends executing the lock
from the time the processor spends idle at the lock. Therefore, to estimate the synchronization
time for the pipeline algorithm on a given data set, we first calculated the average time spent at
a lock on a run of the algorithm with a single processor (where there is no idleness). Then, for a
given data set and a given number of processors, we multiplied this average time by the number
of locks per processor to obtain the synchronization time. The idle time is the total time spent
at locks, by the processor which computes the last row of the table, minus the synchronization
time. Again, the average task time is the average time (taken over all tasks of all processors)
spent by a processor on a task.

We note that it may be the case that the time to execute a lock on a run of the algorithm
with more than one processor is more than the time on a run of the algorithm with a single
processor, due to delays in using the bus, for example. If this is the case, we are underestimating
the synchronization time and overestimating the idle time for the pipeline algorithm. In spite
of this, our results show that the idle time for the pipeline algorithm is less than the idle time
for the diagonal algorithm.

In order to increase the work between synchronization points, both algorithms do 4 x 4
blocks of table entries at a time. (Various sizes were tried before settling on 4 as the block size.
This block size gives reasonable performance at various sizes of sequences, compared with other
block sizes.) Thus, a task consists of computing 16 table entries. For clarity in our tables, we
note the size of the table, followed by the values of n and m as they should be interpreted in
the previous sections. In every case, n = m and n, m equal the table size divided by 4.

We draw the following conclusions from our experiments.

e The diagonal algorithm is typically slower than the pipeline algorithm, although the
difference in running time is small (see Table 3).

e The difference in running time is not due to the cost of the barriers. In fact, on every run
with more than one processor, the synchronization time in the diagonal algorithm is less
than the synchronization time in the pipeline algorithm (see Table 4). (Recall that the
number of locks executed by any one processor in the pipeline algorithm is ©(n?/p). This
explains why, for a given table size, the synchronization time for the pipeline algorithm
decreases as p increases.)

e The idle time is always much more in the diagonal algorithm than in the pipeline algo-
rithm, for 8 or more processors (see Table 5).

e In the diagonal algorithm, the idle time is much more costly than the time to execute the
barriers. In the pipeline algorithm, the idle time and synchronization times are typically
close.

e Despite the simplicity of a task, the variance in computation time of a single task was high
(often much larger than the task time itself) in both the diagonal and pipeline algorithms.
The variance increased as the number of processors and input size increased (see Table
6). We were unable to determine why this is so. In the case that the number of processors
increased, it may be because the more processors that simultaneously used the common
bus in order to complete their tasks, the greater the degree of interference between the
tasks, which caused some tasks to take a longer time.
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Processors 1 4 8 12 16

Table size Diag Pipe Diag Pipe Diag Pipe | Diag Pipe | Diag Pipe
500(n, m=125) 16.80 16.79 4.36 4.30 2.33 219 | 167 154 135 1.16
1000(n, m=250) 67.91 67.55 | 1733 17.08 9.02 8.69 | 6.28 576 | 493 4.43
1500(n, m=375) 153.93 15297 | 39.03 38.43 | 20.01 19.23 | 13.72 13.12 | 10.61 9.91
2000(n, m=500) 274.67  272.03 | 69.28 68.06 | 35.26 34.34 | 24.95 25.33 | 19.74 17.51
3000(n, m=750) 622.82 613.54 | 156.94 153.85 | 79.78 76.98 | 53.98 51.71 | 40.97 38.70
4000(n,m=1000) | 1111.18 1142.65 | 279.44 273.09 | 140.67 136.59 | 94.83 92.07 | 72.23 72.70

Table 3: Total running time, in seconds, for several values p and table size.

Processors 4 8 12 16

Table size Diag Pipe | Diag Pipe | Diag Pipe | Diag Pipe
500(n, m=125) 0.017 0.026 | 0.037 0.012 | 0.056 0.009 | 0.074 0.006
1000(n,m=250) | 0.027 0.101 | 0.053 0.051 | 0.079 0.034 | 0.102 0.026
1500(n,m=375) | 0.036 0.226 | 0.069 0.113 | 0.103 0.077 | 0.135 0.058
2000(n, m=>500) | 0.045 0.401 | 0.076 0.202 | 0.076 0.135 | 0.111 0.103
3000(n,m=750) | 0.076 0.906 | 0.145 0.453 | 0.213 0.303 | 0.280 0.226
4000(n, m=1000) | 0.099 1.606 | 0.183 0.803 | 0.268 0.539 | 0.354 0.405

Table 4: Synchronization time, in seconds, for several values p and table size.

Processors 4 8 12 16

Table size Diag Pipe | Diag Pipe | Diag Pipe | Diag Pipe
500(n, m=125) 0.02 0.02| 0.06 0.01| 007 0.01 | 0.09 0.01
1000(n, m=250) 0.09 0.10| 0.21 0.05| 0.27 0.03 | 0.31 0.02
1500(n, m=375) 0.15 0.22| 030 0.11| 0.37 0.08 | 0.42 0.06
2000(n, m=500) 023 040 | 041 0.20| 0.57 0.13 | 0.63 0.11
3000(n, m=750) 080 087 | 129 043 | 1.21 0.30 | 1.05 0.23
4000(n,m=1000) | 0.70 1.52 | 1.01 0.76 | 1.31 0.54 | 1.28 0.53

Table 5: Idle time, in seconds, for several values p and table size.

5.2 Predicted Running, Synchronization and Idleness Times

To compare our experimental results with our theoretical analysis, we predicted the total run-
ning time of the algorithms, and the costs of synchronization and idleness as follows. The
synchronization times for the pipeline and diagonal algorithms are In?/p and b,(2n — 1) re-
spectively, where [, the cost of a lock is estimated to be 6 microseconds and b, the cost of a
barrier with p processors is given in Table 7. The cost of a barrier increases as the number
of processors increases. These costs for the barriers are based on average measurements taken
when the processors executed no instructions other than barriers (which may explain why these
numbers are less than our experimental measurements in Table 4).

For our estimate of running times, we first computed the formulas in Table 2, first column
(that is, with p a constant) and added the synchronization cost. Based on Table 6, we used

1080 microseconds as our estimate of average task time, 1/u. Thus, our formulas are:

e Predicted running time (pipeline) = 1/u(n?/p + 2n) + In?/p.
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Processors 1 4 8 12 16
Table size Diag Pipe | Diag  Pipe | Diag  Pipe | Diag Pipe Diag Pipe
500 Avg | 1959 1065 | 1061 1063 | 1070 1064 | 1080 1065 1090 1066
(n,m=125)  Var 827 787 | 1290 1133 | 3919 1295 | 6902 1374 9986 1578
1000 Avg | 1070 1071 | 1071 1068 | 1080 1069 | 1080 1069 1102 1070
(n,m=250) Var 1028 769 | 2252 1170 | 7460 1307 | 13567 1300 | 21233 1395
1500 Avg | 1078 1077 | 1077 1079 | 1082 1074 | 1087 1075 1093 1075
(n,m=375)  Var 933 21727 | 1945 4884 | 4796 4189 | 7891 4167 | 114555 4365
2000 Avg | 1082 1077 | 1078 1073 | 1080 1074 | 1085 1075 1088 1075
(n,m=500) Var | 12397 5765 | 1816 4845 | 3825 4707 | 6022 33293 | 13121 31820
3000 Avg | 1089 1079 | 1084 1077 | 1084 1077 | 1086 1077 1088 1077
(n,m=750)  Var 3075 4517 | 1546 4245 | 2685 4164 | 3902 4223 5342 4235
4000 Avg | 1093 1132 | 1091 1078 | 1089 1077 | 1091 1081 1089 1093
(n,m=1000) Var 1986 3141770 | 1363 14289 | 2129 22126 | 3055 337709 3979 34954374

Table 6: Average task time and variance (in microseconds) for several values p and table size.

p

114

8

12 | 16

by

6|21

34

48 | 62

Table 7: Estimates of by, the cost of a barrier with p processors, on the Sequent (in microsec-

onds).

e Predicted running time (diagonal) = 1/u(n?/p + 2nHy, 1 —3n —n/p — 1) + by(2n — 1).

To estimate the cost due to idleness, we computed the lower bound given in Table 2 — this
is our estimate of the running time, not counting costs of synchronization and idleness. We
subtracted this value and the time for synchronization from the predicted running time. Thus,

e Predicted idleness (pipeline) = 1/u(n?/p +2n) — 1/u(n?/p+p —1).

e Predicted idleness (diagonal) = 1/u(n?/p +2nHy_1 —3n—n/p—1) —1/u(n?/p+p—1).

All of the predicted values are listed in Table 8. Our conclusions are as follows.

e The predicted running times are qualitatively correct for 8 or more processors, that is,

they predict correctly that the diagonal algorithm is slower than the pipeline algorithm.
(Our lower bound for the diagonal algorithm given in Table 2 is not good for 4 processors,
leading to a poor prediction). The difference in running time between the diagonal and
pipeline algorithms is small and increases as p increases. This is as expected, since the
work done in both algorithms is quadratic in n whereas the cost due to idleness is predicted
to be linear in n (for fixed p). However, our predictions are somewhat pessimistic, that
is, most of the numbers overestimate the actual running time. The percentage error of
the predicted results tends to decrease as the input size increases.

For the input sizes we considered, synchronization costs are insignificant, representing less
than 1% of the total running time in both algorithms. Since the the cost of barriers is
linear in n and the running time of the algorithm is ©(n?/p), the relative cost of barriers
increases as p increases and decreases as n increases. In contrast, since the cost of locks
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is ©(n?/p), the percentage of total running time due to locks is fairly constant, at about

.6%.

e The cost of idleness is much larger than the cost of synchronization for all entries in the
table, being highest in the diagonal algorithm when p = 16, where for n = 125 it is 30%
of the total running time and decreases as the input size increases to be about 5% of the
total running time when n = 1000. Clearly, as n increases further, the relative cost of
idleness continues to decrease in both algorithms.

e Since as n increases, the relative cost of locks stays constant but the relative cost of barriers
and idleness decreases, we should expect that eventually the diagonal algorithm should
beat the pipeline algorithm (for any fixed number of processors). Using our numbers for
average task time, locks and barriers, with p = 16, the “break even” point at which the
predicted performance of both algorithms is equal occurs when n is approximately 4,000
(that is, the table size is 16,000). Since our estimates appear to be pessimistic however,
especially for the pipeline algorithm, the break even point is probably smaller on the
Sequent.

5.3 Timing Details

The application implemented was the Needleman-Wunsch algorithm for aligning two DNA
sequences [17]. In aligning the two sequences, gaps may be inserted in one or the other of the
sequences in order to make the overall alignment better. The best alignment is determined by
scoring all possible alignments using a dynamic programming algorithm. The scoring of a table
entry is a very simple task.

Both algorithms were implemented in the C programming language, using the synchroniza-
tion routines provided in the Sequent Parallel Programming Library. The diagonal algorithm
was implemented using barriers, the pipeline using locks. Each algorithm was run ten times on
six different data sets, ranging from sequences of length 500 to sets of length 4000. The exper-
iments were run on a dedicated machine, (thus avoiding effects of other jobs on the dynamic
programming algorithms). The runs were done on 1, 4, 8, 12 and 16 processors.

The Sequent provides a good timing facility (the getusclk() function). Both algorithms
take the same number of timings, minimizing the effect of timing the algorithms on the relative
performance. The results of the timings were buffered and output after the algorithm completed,
preventing variations in time due to i/o effects.

6 Conclusions

We have examined a very simple model of parallel computation that models unpredictable
delays on processors. We have shown that it is feasible to analyze this model for two parallel
dynamic programming algorithms. We have experimentally shown that the analysis is also
realistic, accurately reflecting the effects of unexpected delays on the running times of the two
algorithms. The techniques used in our analysis can likely be useful in analyzing other parallel
algorithms, since they apply to situations using pipelining or barriers. Our experimental work
supports our analysis.
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Processors 4 8 12 16

Table size Diag Pipe Diag Pipe | Diag Pipe | Diag Pipe
500(n, m=125) 4.28 4.52 2.40 239 | 1.81 1.69 | 1.55 1.33
% Actual

Running Time 8% 105% | 102%  109% | 108% 110% | 115% 115%
Synchronization .01 .03 .01 .01 .01 .01 .01 .01
Idleness .05 27 27 .26 .48 .26 .46 .25
1000(n, m=250) 17.00 17.52 9.01 9.03 | 645 6.20| 521 4.78
% Actual

Running Time 98% 103% | 100%  104% | 102% 107% | 106% 108%
Synchronization .01 A1 .02 .06 .02 .04 .04 .03
Idleness 11 .53 .27 .26 .48 .26 .46 .25
1500(n, m=375) 38.15 39.02 | 19.84 19.91 | 13.89 13.54 | 10.99 10.36
% Actual

Running Time 98%  102% 99%  104% | 101% 103% | 104% 105%
Synchronization .02 .25 .03 A2 .04 .08 .05 .06
Idleness .26 81 81 .79 1.18 .79 33 .79
2000(n, m=500) 67.74 69.01 | 34.89 35.05 | 24.14 23.72 | 18.87 18.06
% Actual

Running Time 98%  101% 9% 102% | 9%  94% | 96% 103%
Synchronization .02 44 .03 .22 .05 15 .06 a1
Idleness 22 1.07 1.10 1.08 1.58 1.06 | 1.91 1.06
3000(n,m=750) | 152.23 154.46 | 77.65  78.04 | 53.08 52.57 | 40.95 39.83
% Actual

Running Time 97%  100% 97% 101% | 98% 102% | 100% 103%
Synchronization .03 .98 .05 .49 .07 33 .09 .25
Idleness .33 1.61 1.66 151 | 239 161 | 289 1.60
4000(n, m=1000) | 270.46 272.13 | 137.28 138.02 | 93.28 92.73 | 71.48 70.09
% Actual

Running Time 97%  100% 98% 101% | 98% 101% | 99%  96%
Synchronization .04 1.8 .07 .88 .09 .08 12 44
Idleness 44 2.15 2.21 215 319 215| 3.74 214

Table 8: Predicted running time, in seconds, for several values of p and table size. The predicted
running time as a percentage of the actual running time is listed. The predicted costs of
synchronization and idleness are also listed.

In future work, we would like to extend the analysis for the pipeline case for some non-
exponential distributions, as in the diagonal algorithm. A theorem by Glynn and Whitt [8] can
be used to get a very weak upper bound of (m[n/p])/p + O(nm'=%?), when p = ©(m?), for
O0<a<l.
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A Appendix

Proof of Lemma 3.2

In the proof, it is useful to use the following numbering of services of customer 7, in a
queueing system with z servers that starts in a valid initial state J. The services of customer
1 (which by definition, is at server 1) are numbered 1,2,3 and so on. If ¢ # 1, then service
number 1 of customer i is the first service at server 1 after customer 1 has been served there.
Successive services following service number 1 are numbered 2, 3 and so on. The jth service of
customer ¢ that precedes service number 1, if any (which occurs at server numbered z — j + 1)
is numbered 1 — j, where j < x. When j = z, customer ¢ is ahead of customer 1 in the initial
state J; this is not inconsistent with our assumption of circular ordering, since customer 1 may
not be at the head of the queue. Fact A.1 follows directly from this numbering scheme and the
fact that the customers remain in circular order at all times.

Fact A.1 Consider an z-server queueing system that starts in a valid initial state J. Let a;(t)
denote the number of the last completed service of customer i at time t.

1. Ifi > 1 then a;(t) < a;—1(t) and if i =1, a;(t) < ap(t) + .

2. Ifi > 1 then a;(t) = a;—1(t) if and only if customers i+ 1 and i are in the same queue at
time t (with i —1 just ahead of i). If i =1 then a;(t) = ap(t) + z if and only if customers
1 and p are in the same queue at time t with p just ahead of 1.

21



Note that T'(z,J) is the expected time for customer p to complete its service numbered
m[n/p], if the system is in state J at time 0.

Proof: (of Lemma 3.2). We first show that T'(m,I) < T'(x,I). The idea is that both of
these expected values are integrals over random number sequences that define the time for each
service (the sequences are defined precisely below). To show that T'(m,I) < T(z,I), we show
that for each random number sequence and each value ¢ of time, the system with m servers has
at least as many completed services of each customer as does the system with = servers.

A random number sequence 71,792,713, ... defines the durations of services in both queueing
systems as follows. The duration of service number k of customer i is r,, where u = i+p(k—1).
Since we are considering both systems starting from the special initial state I, all services of
all customers are numbered by a positive number.

Let the m-server system and the z-server system be called system A and system B, respec-
tively. In system A, for each customer i, let a;(¢) be the number of the last completed service
at time ¢. Initially a;(0) =0 for 1 <7 < p. Also, let a}(t) be the amount of time until the next
service is completed. By definition, a}(t) is always positive, because if customer i completes a
service at time %, it is considered to be at the queue of the next server and a;(t) is the amount
of time until service is completed at this new server. Initially, a}(0) =7 +72+ ...+ r;. Define
bi(t) and b, (t) similarly for system B.

We say system A is ahead of system B at time ¢ if it is the case that for all ¢, (a) a;(¢t) > bi(?)
and (b) if a;(¢t) = b;(t) then a}(¢) < bi(t). We next show by induction on ¢ that system A is
ahead of system B at all times ¢. The first inequality of the lemma follows from this.

The base case is when ¢ = 0. In this case, by definition, a;(0) = b;(0) = 0 and a}(0) =
bi(0) =r1 + 7o+ ...+ for all 4.

Now, suppose that system A is ahead of system B at time ¢; and consider time ¢5 > #; such
that no service is completed after ¢; and before ¢5. We need to show that for each customer i,
(a) ai(ta) > bi(t2) and (b) if a;(t2) = bi(t2), then a(ta) < bi(t2). There are three cases.

(i) The service of customer 7 is not completed in either system. That is, a;(t2) = a;(t1)
and b;(t2) = b;(t1). By the inductive hypothesis, a;(t1) > b;(t1) and so a;(t2) > b;(t2), proving
that (a) holds. To prove that (b) holds, we note that since to — ¢; time has elapsed, a;(t2) =
a;(tl) - (tz - tl) and b;(tz) = bé(tl) - (tz — tl). If ai(tz) = bi(tQ), then ai(tl) = bi(tl) and so by
part (b) of the inductive hypothesis, a;(¢1) < b}(¢1). Substituting this into the equations of the
previous sentence, we conclude that a}(t2) < bi(t2).

(i) The service of customer 7 is completed in system A but not in system B at time ¢5. That
is, a;(t2) > a;(t1) and b;(t2) = b;i(t2). From the inductive hypothesis, a;(t1) > b;(t1). Putting
these three inequalities together we conclude that a;(t2) > b;(t2). Therefore (a) holds, and (b)
holds vacuously.

(iii) The service of customer 7 is completed in system B at time t5. That is, b;j(t2) = b;(¢1)+1
and ai(tQ) Z ai(tl). If Qg (tl) > bi(tl) then clearly ai(tz) 2 bz' (tz). It ai(tl) = bi(tl) we claim that
the service of customer 7 in system A is completed also at time ¢, that is, a;(t2) = a;(¢1)+1 (and
so again a;(t2) > b;(t2)). This is because at time ¢1, by the inductive hypothesis, the amount of
time until the service of customer 7 is completed in system A is less than or equal to the amount
of time until the service of customer i is completed in system B, that is, aj(¢1) < b}(¢1). Thus if
the service of customer ¢ completes at time ¢ and no service is completed between times ¢; and
to, it must be the case that the service of customer 7 is also completed in system A at exactly
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time to. We conclude that a;(t2) > b;(t2) in case (iii).

It remains to show that (b) holds for case (iii), that is, if a;(t2) = b;(t2) then al(t2) < bi(t2).
Therefore suppose that a;(t2) = b;(t2). Then the next service of customer i to be completed
in both systems has duration r, where u =i + pa;(t2) (=i + pb;(t2)). If in system A there is
nothing ahead of customer ¢ on the queue at which customer 7 resides at time ¢2 then aé(tz) <7y
Also bf(t2) > 7, since the next service of customer ¢ in system B has not yet started. Therefore
al(tz) < bi(t2), as required. Otherwise in system A, in the queue of customer i at time ¢y, there
is some customer ahead of customer ¢. This is customer : — 1 if 7 > 1 and is customer p if 7 = 1.
That is, from Fact A.1, a;—1(t2) = ai(t2) if i > 1 and ap(t2) + m = a;(t2) if i = 1. We will
suppose that ¢ > 1 and complete the argument by referring to customer ¢ — 1. The argument
is similar when ¢ = 1, with a,(t2) + m and by(t2) + m substituted for a;_1(¢2) and b1 (¢2),
respectively. We claim that also in system B, in the queue of customer 7 at time to, customer
1 — 1 must be ahead of customer 7. To see this, we know from the proof so far and the inductive
hypothesis that a;_1(t2) > b;_1(t2). Also, we are assuming that b;(t2) = a;(t2) = a;—1(t2).
Hence, b;(t2) > b;—1(t2). By Fact A.1 part 1, it must be that b;(t2) = b;—1(¢2) and thus by part
2, both 7 and 7 — 1 are at the same queue, with ¢ — 1 ahead of ¢, as we claimed. Therefore in
both systems, in the queue of customer 7 at time ¢9, customer 7 — 1 is just ahead of customer
1. We conclude that customer ¢ — 1 did not complete a service in either system at time %s.
Case (i) above therefore implies that a;_(t2) < b_;(t2). Also, aj(t2) = a_;(t2) + r, and
bi(ta) = bi_(t2) + ry. The last three inequalities immediately yield that aj(t2) < bl(t2).

We next show that T'(z,I) < T'(x, J). The proof of this is similar to the proof that T'(m, I) <
T(z,I). Namely, both T'(z,I) and T(z,J) are expectations over random number sequences,
and we show that for each random number sequence and each value ¢ of time, in the system
with initial state I, which we call system A, there are at least as many completed services of
each customer as in the system with initial state J, which we call system B.

A random number sequence ...,r_9,7_1,79,71,72,... defines the duration of services in
both queueing systems as before. Recall that services of customer 7 with a non-positive index
represent services of customer ¢ that are completed before service number 1 of customer i,
where service number 1 of customer ¢ is the first service of customer i at server 1 that occurs
after customer 1 has already been served there. The duration of service number & of customer
i i 7y, where u = i + p(k — 1). Now however, since some of the initial services of customer
i may have negative numbers (that is, k& may be negative), we extend our random number

sequence to have numbers with negative indices. Thus, rg,7_p,7_2p,... are the durations of
services numbered 0, —1, —2, ... of customer p; r 1,7, 1,7 2p 1 ... are the durations of services
numbered 0, —1, —2, ... of customer p—1 and so on. The lowest possible index needed is 2 — pz;

this is the time for the service numbered —(z — 1) of customer 2 (if needed).

We define a;(t), aj(t), bi(t) and b}(t) just as in the previous proof and again use induction to
show that system A is ahead of system B at all times ¢. With our set-up, the proof is almost
identical except for the base case. Now when ¢t = 0, a;(0) = 0 for all 4, and b;(0) < 0 for all 7 (if
the first service of 7 in system B is numbered f, where —(z — 1) < f <1, then b;(0) = f — 1).
Also, a;(0) =r1 +re+ ...+ 7. If b;(0) = 0 then b.(0) =7 + 72+ ...74.

The only other difference in the proof is in case (iii) of the inductive proof, where m should
be replaced everywhere by x, since now system A is an x-server system and not an m-server
system.
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