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Abstract Approximate Majority is a well-studied prob-

lem in the context of chemical reaction networks (CRNs)

and their close relatives, population protocols: Given

a mixture of two types of species with an initial gap

between their counts, a CRN computation must reach

consensus on the majority species. Angluin, Aspnes,

and Eisenstat proposed a simple population protocol

for Approximate Majority and proved correctness and

O(log n) time efficiency with high probability, given an

initial gap of size ω(
√
n log n) when the total molecular

count in the mixture is n. Motivated by their intriguing

but complex proof, we provide a new analysis of several

CRNs for Approximate Majority, starting with a very

simple tri-molecular protocol with just two reactions

and two species. We obtain simple analyses of three bi-

molecular protocols, including that of Angluin et al., by

showing how they emulate the tri-molecular protocol.

Our results improve on those of Angluin et al. in that

they hold even with an initial gap of Ω(
√
n log n).

We prove that our tri-molecular CRN is robust even

when there is some uncertainty in the reaction rates,

when some molecules are Byzantine (i.e., adversarial),

or when activation of molecules is triggered by epi-

demic. We also analyse a natural variant of our tri-

molecular protocol for the more general problem of multi-

valued consensus. Our analysis approach, which lever-

ages the simplicity of a tri-molecular CRN to ultimately

reason about these many variants, may be useful in

analysing other CRNs too.
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1 Introduction

Stochastic chemical reaction networks (CRNs) and pop-

ulation protocols (PPs) model the dynamics of interact-

ing molecules in a well-mixed solution [1] or of resource-

limited agents that interact in distributed sensor net-

works [2]. CRNs are also a popular molecular program-

ming language for computing in a test tube [3,4]. A

central problem in these contexts is Approximate Ma-

jority [2,5]: in a mixture of two types of species where

the gap between the counts of the majority and minor-

ity species is above some threshold, which species is in

the majority? Angluin et al. [6] proposed and analysed

a PP for Approximate Majority, noting that “Unfortu-

nately, while the protocol itself is simple, proving that

it converges quickly appears to be very difficult”. Here

we provide new, simpler analyses of CRNs for Approx-

imate Majority and several variants. Before describing

our contributions, we provide background on the CRN

and PP models and the Approximate Majority prob-

lem.

1.1 CRNs and Population Protocols

A CRN is specified as a finite set of chemical reac-

tions, such as those in Figures 1 and 2. The underlying

model describes how counts of molecular species evolve

when molecules interact in a well-mixed solution. Any

change in the molecular composition of the system is

attributable to a sequence of one or more interaction

events that trigger reactions from the specified set. The

model is probabilistic at two levels. First, which inter-

action occurs next, as well as the time between interac-

tion events, is stochastically determined, reflecting the

dynamics of collisions in a well-mixed solution [7]. Sec-
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ond, an interaction can trigger more than one possible

reaction, and rate constants associated with reactions

determine the relative likelihood of each outcome. For

example, reactions (0’x) and (0’y) of Figure 2(c) are

equally likely reactions triggered by an interaction in-

volving one molecule of species X and one of species

Y . The method of Soloveichik et al. [8] for simulating

CRNs with DNA strand displacement cascades can sup-

port such probabilistic reactions.

Angluin et al. [2] introduced the closely related pop-

ulation protocol (PP) model, in which agents interact

in a pairwise fashion and may change state upon inter-

acting. Agents and states of a PP naturally correspond

to molecules and species of a CRN. A scheduler speci-

fies the order in which agents interact, e.g., by choosing

two agents randomly and uniformly, somewhat analo-

gous to stochastic collision kinetics of a CRN. The mod-

els differ in other ways. For example, PP interactions

always involve two agents, and as such correspond to

bi-molecular interactions, while the CRN model allows

for interactions of other orders, including unimolecu-

lar and tri-molecular interactions. Unlike CRNs, PP

interactions may be asymmetric: one agent is the des-

ignated initiator and the other is the responder, and

their new states may depend not only on their cur-

rent states but also on their designation. Also, while

CRN reaction outcomes may be probabilistic, PP state

transition function outcomes are deterministic. Never-

theless, probabilistic transitions can be implemented in

PPs by leveraging both asymmetry and the randomness

of interaction scheduling [6,9].

1.2 The Approximate Majority Problem

Consider a mixture with n molecules, some of species

X and the rest of species Y . Here and throughout, we

denote the number of copies of X and Y during a CRN

computation by random variables x and y respectively.

The Approximate Majority problem [6] is to reach con-

sensus — a configuration in which all molecules are X

(x = n) or all are Y (y = n), from an initial con-

figuration in which x + y = n and the gap |x − y| is

above some threshold. If initially x > y, the consensus

should be X-majority (x = n), and if initially y > x the

consensus should be Y -majority. We focus on the case

when initially x > y since the CRNs that we analyse

are symmetric with respect to X and Y .

The reactions of the simple tri-molecular CRN of

Figure 1 involve just the two species X and Y that are

present initially. Intuitively, the tri-molecular reactions

sample triples of molecules and amplify the majority

species by exploiting the facts that (i) every triple must

have a majority of either X or Y , and (ii) for healthy

populations of X and Y , the ratio of the number of

triples with two X-molecules and one Y -molecule to

the number of triples with two Y -molecules and one

X-molecule, is essentially the ratio of X-molecules to

Y -molecules.

It is also natural to consider protocols and CRNs

in which interactions may involve just two agents or

molecules. Angluin et al. [10] proposed and analysed the

Single-B CRN of Figure 2(c). Informally, reactions (0’x)

and (0’y) are equally likely to produce B’s (blanks)

from X’s or Y ’s respectively, while reactions (1’) and

(2’) recruit B’s to become X’s and Y ’s respectively.

(Angluin et al. described this as a population protocol,

using asymmetry, that provides 1/2 rates, and the ran-

domness of the scheduler to implement the random re-

actions (0’x) and (0’y).) When X is initially in the ma-

jority (x > y initially), a productive reaction event (i.e.

one that results in some change in the chemical compo-

sition) is more likely to be (1’) than (2’), with the bias

towards (1’) increasing as x gets larger. Angluin et al.

showed correctness: if initially x−y = ω(
√
n log n), then

with “high” probability 1−n−Ω(1), Single-B reaches X-

majority consensus. They also showed efficiency: with

high probability for any initial gap value x−y, Single-B

reaches consensus within O(n log n) interaction events.

They also proved (i) correctness and efficiency in “ini-

tiation by infection” protocols, in which agents are ini-

tially inactive and only participate in the protocol upon

receipt of a “wake-up” signal, and (ii) correctness with

respect to a (slightly but unavoidably relaxed) form of

consensus, as well as efficiency, in protocols with o(
√
n)

Byzantine agents. Several others have subsequently and

independently studied the problem; we’ll return to re-

lated work after describing our own contributions.

1.3 Our Contributions

After describing the CRN model and our analysis tools

in Section 2, in Section 3 we analyse Tri, the tri-molecular

CRN of Figure 1. Our primary motivation is to pro-

vide the simplest and most intuitive proof of correct-

ness and efficiency that we can, with the goal of adapt-

ing our techniques to reason about other variants, as

well as CRNs for other problems. We show that con-

sensus is reached within O(γn lg n) interaction events,

with probability 1 − exp(−Ω(γ lg n)) and, if initially

the gap between the majority and minority species is

at least
√
γn lg n then, with the same high probability,

the consensus is on the majority species.

When the initial gap is at least
√
γn lg n, we analyse

Tri in three phases. In the first phase we model the evo-

lution of the gap x − y as a sequence of random walks

(referred to as stages) with increasing bias of success
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X+X+Y → X+X+X (1)
X+Y +Y → Y +Y +Y (2)

Fig. 1 Tri, a tri-molecular chemical reaction network (CRN) for Approximate Majority. Reactions have rate constant 1.

X+Y
1/2
→ X+B (0’x)

X+Y → B (0’) X+Y → B+B (0’) X+Y
1/2
→ Y +B (0’y)

B+X → X+X+X (1’) X+B → X+X (1’) X+B → X+X (1’)
B+Y → Y +Y +Y (2’) Y +B → Y +Y (2’) Y +B → Y +Y (2’)

(a) Heavy-B (b) Double-B (c) Single-B

Fig. 2 Three bi-molecular chemical reaction networks (CRNs) for Approximate Majority. Reactions (0’x) and (1’y) of Single-B
have rate constant 1/2 while all other reactions have rate constant 1.

(i.e., increase in x − y). Similarly, in the second phase

we model the evolution of the count of y as a sequence of

random walks with increasing bias of success (decrease

in y). We use a simple biased random walk analysis

to show that these walks make forward progress with

high probability, thereby ensuring correctness. To show

efficiency, we model each random walk as a sequence

of independent trials, observe a natural lower bound on

the probability of progress, and apply Chernoff bounds.

In the third and last phase we model the “end game” as

y decreases from Θ(log n) to 0, and apply the random

walk analysis and Chernoff bounds a final time to show

correctness and efficiency, respectively. We then extend

our analysis to small initial gaps, showing that consen-

sus is reached efficiently with high probability, although

the consensus may not be on the majority species.

In Section 4 we analyse the three bi-molecular CRNs

of Figure 2 by relating them to the tri-molecular CRN.

In each of these protocols, blanks are in a natural sense

a proxy for X + Y (an interaction between X and Y ),

and so reactions (1’) and (2’) behave exactly like the

corresponding reactions of our tri-molecular CRN. The

Heavy-B CRN in part (a) of the figure simply uses a

blank species as a proxy for X + Y . The total species

count can vary as a result, though can never be less than

half of the initial species count. The Double-B CRN of

part (b) uses two blanks to represent X + Y , thereby

keeping the total molecular count constant. Double-B

is implementable and symmetric even in the PP set-

ting, and was among the earliest CRN algorithms con-

structed with strand displacement chemistry, by Chen

et al. [11]. The Single-B CRN of part (c) is essentially

the same as that of Angluin et al. [6].

In subsequent sections, we build on our analysis of

Tri to show correctness and efficiency of other CRNs for

the Approximate Majority problem or for more general

variants of the problem. The table in Figure 3 pro-

vides a summary. In Section 5 we consider the case

where reaction rate constants of the tri-molecular CRN

may fluctuate in unpredictable ways over the course

of a computation. One motivation for analysing this

scenario arises when a CRN is “compiled” to a DNA

strand displacement system [8]. It may be that the DNA

strand displacement reaction rate constants closely ap-

proximate, but are not exactly equal to, the CRN re-

action rates. For a given lower bound on the relative

rates of reactions (1) and (2), we determine an ini-

tial gap that is sufficient to ensure that our analysis

of the tri-molecular CRN goes through. In turn, we

show in Section 6 how the uncertain rates analysis nat-

urally leads to an analysis of the Byzantine case (with

relaxed consensus), when the initial population of X

is (n + ∆0)/2 ≥ (n + Ω(
√
n lg n))/2 and z ≤ ∆0/16

molecules behave adversarially. In Section 7 we anal-

yse the natural generalization of our CRN when there

are three or more species and the goal is to reach con-

sensus on the plurality (most populous) species. Once

again we can leverage our analysis of the tri-molecular

protocol for two species, by first analysing a period in

which the initial plurality species grows to be greater

than the sum of all the others, and then showing that

the computation proceeds in essentially the same way

as the original protocol. In Section 8 we analyse a vari-

ant of Tri for a scenario also considered by Angluin et

al. in which molecules become active only when a single

distinguished molecule initiates an infection.

We present empirical results in Section 9, and in

Section 10 we conclude with directions for future work.

The results presented in this paper extend our ear-

lier conference paper [12]. We have simplified our anal-

yses of the Double-B and Single-B bi-molecular proto-

cols, and added the Heavy-B protocol as an additional

AM bimolecular CRN. Our sections on uncertain rate

constants, Byzantine behaviour, initiation by infection,

and multi-valued consensus are all new and we have

expanded our empirical results accordingly.
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Problem CRNs Initial # Interaction
gap ∆0 events

Approximate Majority Tri

Heavy-B
√
γn lgn Θ(γn lgn)

Double-B
Single-B

Approximate Majority with Tri(1,α)
Uncertain Rate Constants (1, α < 1) Θ( 1−α

1+α
n) Θ(γn lgn)

Relaxed Approximate Majority Byzantine-Tri

with ≤ ∆0/16 Byzantine Molecules
√
γn lgn Θ(γn lgn)

m-Species Plurality Consensus m-species-Tri
√
γn lgn Θ(γmn lgn)

Approximate Majority with Tri-with-

Initiation by Infection Infection Θ(
√
γn lgn) Ω(γn lgn)

Fig. 3 Our results for CRNs for the Approximate Majority (AM) problem and variants. An initial gap lower bound ∆0,
between the count of the majority (or plurality) species and the count of any other species, is specified as a function of n, the
initial number of molecules, and a positive constant γ. For all CRNs the error probability is exp(−Ω(γ lgn)). See Section 3.2
for our analysis of the Tri CRN with a small initial gap, which is not included in this table.

1.4 Comparison with Related Work

Angluin et al.’s work on the Single-B protocol [6] stim-

ulated much interest in CRNs and PPs for approximate

majority. Our analyses improve slightly on theirs in

some cases. Their majority-consensus analysis of Single-

B assumes an initial gap of
√
n lg n, while ours is

√
n lg n.

For the Byzantine case their result, assuming the same

initial excess of the majority species, holds for o(
√
n)

Byzantine agents while ours holds for a population of

Byzantine molecules that is proportional to the initial

excess of the majority species, which is Ω(
√
n lg n) and

could be Θ(n). Their result on protocols that are initi-

ated by infection requires an initial gap of Ω(n3/4+ε),

compared with our initial gap of Ω(
√
n lg n). Their pro-

tocol for multi-valued consensus applies Approximate

Majority in a bit-wise fashion; they do not analyse an

m-species protocol such as ours. Angluin et al. also

analyse Single-B in the case when the initial gap is

o(
√
n log n), showing that Single-B reaches consensus

with high probability, though not necessarily on the

Majority species. We also provide a simpler proof of

this result.

In contrast with our asynchronous model, other re-

lated work focuses on a synchronous model in which n

participating agents (corresponding to molecules) up-

date their states in rounds, with each of the n partic-

ipating agents initiating one interaction that involves

a constant number of additional processes chosen uni-

formly at random. For this synchronous model, Doerr

et al.’s [13] “median rule” consensus protocol involves

rules that are identical to the interactions of the Tri

CRN of Figure 1 in the case of two types of agents

(species). Their analysis shows that the protocol effi-

ciently reaches stable consensus with high probability

in the m-species case, from an arbitrary initial configu-

ration. They also show that a weaker form of consensus

is reached when at most
√
n Byzantine faults occur per

round. The result of each synchronous round is very

similar to what is accomplished in one time unit of the

CRN or PP models, in which a sequence of n random

interactions occur. Accordingly there are strong similar-

ities between our analysis and that of Doerr et al. For

example, our analysis is staged in a way that allows

us to assume that interactions within each stage are

driven by essentially the same population sizes. Note

however that in our CRN model, unlike the Doerr et

al. model, there may be molecules that participate in

no interaction within a given unit of time. This differ-

ence becomes evident in our end game analysis, which

requires Θ(n log n) time units to ensure that, with high

probability, the few remaining minority species interact

and thus are converted to the majority species. In con-

trast, the end game is completed in O(1) rounds with

high probability in the synchronous model.

The median rule of Doerr et al. may not converge on

the plurality species, even if there is a large initial gap

between the count of this species and the count of any

other species. For this reason, Beschetti et al. [14] anal-

yse a 3-majority protocol that is quite similar to the

m-species Tri CRN when the number m of species is at

least three. For the synchronous model they show that

for any m ≤ n, for some constant c > 0, consensus on

the plurality species is reached with probability at least

1−n−c in O(min{m, (n/ lg n)1/3} lg n) rounds when the

initial gap between the plurality species and the re-
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maining species is Ω(
√

min{m, (n/ lg n)1/3}n lg n). In

subsequent work, Becchetti et al [15] show, again with

respect to the synchronous model, that if m ≤ nα where

α is a positive constant, their protocol reaches consen-

sus with high probability, even from an arbitrary initial

configuration, in time polynomial in m and log n. Their

results hold for relaxed consensus in the presence of

o(
√
n) Byzantine faults per round. Apart from the fact

that Becchetti et al.’s analysis is for a different model

than ours (synchronous vs asynchronous), there are sev-

eral differences in the details of their results and ours.

For example, they require an initial gap that depends

on m while ours is independent of m. Neither Doerr

et al. nor Becchetti et al. consider protocols in which

interactions involve just two agents, uncertain reaction

rates, or initiation by infection.

Perron et al. [16] analyse Single-B when x + y = n

and y ≤ εn. They use a biased random walk argument

to show that Single-B reaches consensus on X-majority

with exponentially small error probability 1 − e−Θ(n).

The results of Perron et al. do not apply to smaller ini-

tial gaps. Mertzios et al. [17] showed somewhat weaker

results for Single-B when initially x − y ≥ εn (the

main focus of their paper is when interactions are gov-

erned by a more general interaction network). Cruise

and Ganesh [18] devise a family of protocols in network

models where agents (nodes) can poll other agents in

order to update their state. Their family of protocols

provides a natural generalization of our tri-molecular

CRN and their analysis uses interesting connections be-

tween random walks and electrical networks.

Yet other work on Approximate Majority pertains

to settings with different assumptions about the num-

ber of states per agent, the types of interaction schedul-

ing rules, and possibly adversarial behaviour, or anal-

yses more general multivalued consensus problems [9,

10,19].

2 Preliminaries

2.1 Chemical Reaction Networks

Let X = {X1, X2, . . . , Xm} be a finite set of species. A

solution configuration c = (x1, x2, . . . , xm), where the

xi’s are non-negative integers, specifies the number of

molecules of each species in the mixture. Molecules in

close proximity are assumed to interact. We denote an

interaction that simultaneously involves si ≥ 0 copies of

Xi, for 1 ≤ i ≤ m, by a vector s = (s1, s2, . . . , sm), and

define the order of the interaction to be s1+s2+. . .+sm.

We model interacting molecules in a well-mixed so-

lution, under fixed environmental conditions such as

temperature. The well-mixed assumption has two im-

portant implications that allow us to draw on aspects

of both CRN models [1,3,20] and also PP models [2],

aiming to serve as a bridge between the two. The first,

that all molecules are equally likely to reside in any lo-

cation, supports a stochastic model of chemical kinet-

ics, in which the time between molecular interactions

of fixed order is a continuous random variable that de-

pends only on the number of molecules and the vol-

ume of the solution. The second, that any fixed inter-

action is equally likely to involve any of the constituent

molecules, and is therefore sensitive to the counts of

different species, supports a discrete, essentially combi-

natorial, view of interactions reminiscent of, but more

general than, those in standard PP models. In Section

2.3 we compare our model with that of Cook et al. [3].

In this paper we will only be interested in interac-

tions of a single order (either two or three), in a fixed

volume. According to a stochastic model of chemical

kinetics [1], at any moment, the time until the next

interaction of order o, what we refer to as an inter-

action event, occurs is exponentially distributed with

parameter
(
n′

o

)
/vo−1, where n′ denotes the total num-

ber of molecules in the system and v denotes the to-

tal volume of the solution. Consequently, the expected

time between interaction events of order o is vo−1/
(
n′

o

)

and the variance is (vo−1/
(
n′

o

)
)2. It follows that, if n

is the total number of molecules initially in the sys-

tem, and at all times n′ = Θ(n) and v = Θ(n) (as

will be the case for all CRNs studied in this paper),

the time Tn for n interaction events has expected value

E[Tn] = Θ(no/
(
n
o

)
) = Θ(1) and variance Var[Tn] =

Θ((no/
(
n
o

)
)2/n) = Θ(1/n). By Chebyshev’s inequality,

we have that:

P[|Tn − E[Tn]| ≥ h
√

Var[Tn]] = P[|Tn − no/
(
n
o

)
| ≥

h(no/
(
n
o

)
)/
√
n] ≤ 1/h2. By setting h =

√
n we see that

the time for n interaction events is O(1) with prob-

ability at least 1 − 1/n. Thus we use the number of

interaction events, divided by n, as a proxy for time.

When the solution is in configuration

c = (x1, x2, . . . , xm) where
∑
i xi = n, the well-mixed

property dictates that the probability that a given in-

teraction event of order o is the particular interaction

s = (s1, s2, . . . , sm) is λ(c, s) =
[∏m

i=1

(
xi

si

)]
/
(
n
o

)
.

Some interaction events lead to an immediate change

in the configuration of the solution, while others do not.

The change (possibly null) arising from an interaction

can be described as a (possibly unproductive) reaction

event. Formally, a reaction r = (s, t) = ((s1, s2, . . . , sm),

(t1, t2, . . . , tm)) is a pair of non-negative integer vec-

tors describing reactants and products, where, for pro-

ductive reactions, some si > 0 and for at least one
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i, si 6= ti. Reaction r is applicable in configuration

c = (x1, x2, . . . , xm) if si ≤ xi, for 1 ≤ i ≤ m. If re-

action r occurs in configuration c, the new configura-

tion of the mixture is c′ = (x1 − s1 + t1, x2 − s2 +

t2, . . . , xm−sm+ tm). In this case we say that the tran-

sition from configuration c to configuration c′ is realized

by reaction r and we write c⇒r c′. Each reaction r has

an associated rate constant 0 < kr ≤ 1, specifying the

probability that the reaction is consummated, given the

interaction specified by the reactant vector is satisfied,

so the probability that reaction r = (s, t) occurs as the

result of an interaction event in a configuration c is just

krλ(c, s).

A chemical reaction network (CRN) is a pair (X ,R),

where X is a finite set of species and R is a finite set of

productive reactions, such that, for all reactant vectors

s, if R(s) is the subset of R with reactant vector s, then∑
r∈R(s) kr ≤ 1. To ensure that all interactions have

a fully specified outcome, we take as implicit in this

formulation the existence, for every reactant vector s,

including all possible interactions of order o, of a non-

productive reaction with rate constant 1−∑r∈R(s) kr.

2.2 CRN Computations

Next we describe how the mixture of molecules evolves

when reactions of a CRN (X ,R) occur. For most of the

CRNs that we analyse, there is some order o such that

for every reaction (s, t) of R, s1 +s2 + . . . sm = t1 + t2 +

. . . tm = o. (As we shall see, this assumption is relaxed

in Section 4, where the necessary modification to the

model is discussed separately.) Thus the number n of

molecules in the system does not change over time. We

furthermore assume that the volume v of the solution

is fixed and proportional to n.

A random sequence of interaction events triggers a

sequence of (not necessarily productive) reaction events,

reflected in a sequence of configurations that we inter-

pret as a computation. More formally, a computation

of the CRN (X ,R), with respect to an initial config-

uration c0, is a discrete Markov process whose states

are configurations. The probability, denoted π(c, c′), of

a transition, via a reaction event, from configuration c

to configuration c′ is just the sum of the probabilities

of all reactions r such that c⇒r c′.

Furthermore, the probability, denoted π∗(c0, cfinal),

that a sequence of transitions from configuration c0
reaches configuration cfinal, is just the sum, over all con-

figuration sequences

c0, c1, . . . , ct = cfinal where ci 6= cfinal for 0 ≤ i ≤ t− 1,

of Πt
i=1π(ci−1, ci).

2.3 Relationship between our CRN model and that of

Cook et al.

Other CRN models define reaction probabilities and

computation time somewhat differently than we do, but

these differences can easily be reconciled. For example,

in the model of Cook et al. [3], if k′r is the rate constant

associated with reaction r = (s, t) of order o and the

system is in configuration c = (x1, x2, . . . , xm), then the

propensity, or rate, of r is

ρr(c) = k′r[

m∏

i=1

(xi!/(xi − si)!)]/vo−1.

If ρtot(c) =
∑
r ρr(c) for all reactions r of order o, then

the probability that a reaction event is reaction r is

ρr(c)/ρ
tot(c), and the expected time until a reaction

event occurs is 1/ρtot(c). (In this model, reaction rate

constants can be greater than 1, and may depend not

only on the number of reactants of each species, but

also on other properties of a species such as its shape,

capturing the fact that the likelihood of different types

of interactions may not all be the same.)

If in our model we set kr = k′r
∏m
i=1 si! for each pro-

ductive reaction, and normalize by
∑
r kr if necessary

to ensure that
∑
r∈R(s) kr ≤ 1 (adjusting the underly-

ing time unit accordingly), a straightforward calcula-

tion shows that, when in a given configuration c, the

probability that a reaction event is a given reaction r

is the same in our model and that of Cook et al. 1 See

1 Here is the calculation for the probability conversion.

ρr(c) = k′r.[
m∏
i=1

(xi!/(xi − si)!)]/vo−1

= k′r.[
m∏
i=1

si!].[
m∏
i=1

(xi
si

)
]/vo−1

= [
(n
o

)
/vo−1]k′r[

m∏
i=1

si!].[
m∏
i=1

(xi
si

)
]/
(n
o

)
= [
(n
o

)
/vo−1]kr[

m∏
i=1

(xi
si

)
]/
(n
o

)
,

where

kr = [k′r[
m∏
i=1

si!]. (1)

We can interpret the last of these expressions for ρr(c) as the
product of three terms. The first term, namely

(
n
o

)
/vo−1, cor-

responds to the (normalized) average rate of an interaction of
order o. The last term, namely [

∏m
i=1

(
xi
si

)
]/
(
n
o

)
, is the prob-

ability that the reaction of order o has exactly the reactants
of r. The middle term kr depends on the si’s, but could also
model situations where different types of interactions have
different rates, e.g., if some molecular species are larger than
others. Normalizing the kr’s by

∑
kr yields rate constants for

our model.
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the example of Figure 4. Also, the expected time until

the next reaction event differs between the models by a

constant factor that is independent of c. Conversely, to

convert from our model to that of Cook et al., divide

our rate constant kr by [
∏m
i=1 si!] and multiply all rate

constants by the same constant factor in order to adjust

time units as needed.

2.4 Analysis Tools

We will use the following well-known property of ran-

dom walks, as well as familiar Chernoff tail bounds on

the sum of independent random variables.

Lemma 1 (Asymmetric one-dimensional random

walk [21](XIV.2)) If we run an arbitrarily long se-

quence of independent trials, each with success proba-

bility at least p, then the probability that the number of

failures ever exceeds the number of successes by b is at

most ( 1−p
p )b.

Lemma 2 (Chernoff tail bounds [22]) If we run N

independent trials, with success probability p, then SN ,

the number of successes, has expected value µ = Np

and, for 0 < δ < 1,

(a) P[SN ≤ (1− δ)µ] ≤ exp(− δ2µ2 ), and

(b) P[SN ≥ (1 + δ)µ] ≤ exp(− δ2µ3 ).

3 Approximate Majority Using Tri-molecular

Reactions

In this section we analyse the behaviour of the tri-

molecular CRN of Figure 1. We prove the following:

Theorem 1 (a) For any constant γ ≥ 1, a computa-

tion of the tri-molecular CRN reaches a consensus in

O(γn lg n) interaction events, with probability

1− exp(−Ω(γ lg n)). (b) Furthermore, provided the ini-

tial molecular count of X exceeds that of Y by at least√
γn lg n this consensus is X-majority, with probability

1− exp(−Ω(γ lg n)).

We first address our primary concern (part (b)), the

situation where the initial molecular count of X exceeds

that of Y by at least
√
γn lg n and we want to reach a

consensus of X-majority.

3.1 Initial gap at least
√
γn lg n

Recall that we denote by x and y the random vari-

ables corresponding to the molecular count of X and Y

respectively. We note that the probability that an inter-

action event triggers reaction (1) (respectively, reaction

(2)) is just
(
x
2

)
y/
(
n
3

)
(respectively,

(
y
2

)
x/
(
n
3

)
). Hence, the

probability that an interaction triggers one of these (a

productive reaction event) is xy(x+ y− 2)/(2
(
n
3

)
), and

the probability that such a reaction event is reaction

(1) is (x− 1)/(x+ y − 2) ≥ x/n, provided x ≥ y.

We assume that n is sufficiently large (in particu-

lar γ lg n ≤ n/6), and divide the computation into a

sequence of three, possibly degenerate, phases:

phase 1: It starts with x − y ≥ √γn lg n and contin-

ues while
√
γn lg n/2 ≤ x − y < 2n/3. It completes

properly if x− y ≥ 2n/3 (equivalently, y ≤ n/6).

phase 2: It starts with y ≤ n/6 and continues while

n/3 ≥ y > γ lg n. It completes properly if y ≤ γ lg n.

phase 3: It starts when y ≤ γ lg n and continues while

2γ lg n ≥ y > 0. It completes properly if y = 0.

Of course the assertion that a computation can be

partitioned in such a way that these phases occur in se-

quence (i.e., they all complete properly) holds only with

sufficiently high probability. To prove this assertion and

to analyse the efficiency of the phases, we divide both

phase 1 and phase 2 into Θ(lg n) stages, defined by in-

tegral values of t and s, as follows:

– A typical stage t in phase 1 starts with x − y ≥
2t
√
γn lg n and continues while 2t−1

√
γn lg n ≤ x−

y < 2t+1
√
γn lg n. It completes properly if x − y ≥

2t+1
√
γn lg n.

– A typical stage s in phase 2 starts with y ≤ n/2s and

continues while n/2s−1 ≥ y > n/2s+1. It completes

properly if y ≤ n/2s+1.

Our proof of correctness (all phases/stages complete

properly) and our efficiency analysis (how many inter-

action events does it take to realize the required num-

ber of productive reaction events for proper phase/stage

completions) exploit the simple and familiar tools set

out in the previous section, taking advantage of bounds

on the probability of reactions (1) and (2) that hold

throughout a given phase/stage:

(a) [High probability of proper phase/stage completion

within a small number of productive reaction events]

Within a fixed phase/stage the computation can be

viewed as a sequence of independent trials (choice

of reaction (1) or (2)) with a fixed lower bound on

the probability of success (choice of reaction (1)).

This allows us to establish, by a direct application

of Chernoff’s upper tail bound Lemma 2(a), an up-

per bound, for each phase/stage, on the probability

that the phase/stage completes improperly within a

specified number of productive reaction events.

(b) [High probability that the productive reaction events

occur within a small number of molecular interac-

tions] Within a fixed phase/stage the choice of pro-

ductive reaction events, among interaction events,
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X +X + Y
1→ X +X +X (r1) X +X + Y

2/14
→ X +X +X (r1)

Y + Y + Y
2→ X +X + Y (r2) Y + Y + Y

12/14
→ X +X + Y (r2)

(a) (b)

Fig. 4 (a) A CRN specified with respect to the Cook et al. model. The reaction rates when the system is in configuration
(3,3) are k′r1 = 18/v2 and k′r2 = 12/v2. The reaction probabilities are ρr1(3, 3) = 3/5 and ρr2(3, 3) = 2/5. (b) The mapping
of the CRN of part (a) to our model by changing the rate constants (using Equation 1 of footnote 1) and normalizing by∑
kr. The probability that a reaction event is r1 is (18/14)/(30/14) = 18/30, and the probability of r2 is 12/30. Thus, reaction

probabilities are preserved exactly.

can be viewed as a sequence of independent trials

with a fixed lower bound on the probability of suc-

cess (the interaction corresponds to a productive re-

action event). Thus our timing analysis (proof of ef-

ficiency) is another direct application of Chernoff’s

upper tail bound (Lemma 2(a)).

Lemma 3 At any point in the computation, if 0 < x−
y = ∆ < n, then, with probability 1− exp(−Ω(∆2/n)),

x− y increases to min{2∆,n} within 2n productive re-

action events.

Proof Since x− y ≥ ∆/2 up to the point (if ever) when

we first have x−y < ∆/2, it follows that the probability

that a productive reaction is reaction (1) is at least
(x
2)y

(x
2)y+x(y

2)
> x

n ≥ 1
2 + ∆

4n . Thus, we can view the change

in x− y resulting from productive reaction events as a

random walk, starting at ∆, with success (an increase

in x− y by two) probability p > 1
2 + ∆

4n .

Since 1−p
p < 2n−∆

2n+∆ = 1 − 2∆
2n+∆ , it follows from

Lemma 1 that reaching a configuration where x − y <
∆/2 (which entails an excess of ∆/4 failures to suc-

cesses) is less than (1 − 2∆
2n+∆ )∆/4 which is at most

exp(−∆2/(4n+ 2∆)).

As long as x − y is at least ∆/2, the probability

that it fails to be increased to min{2∆,n} within 2n

productive reactions is just the probability that a se-

quence of 2n independent trials with success probabil-

ity p > 1/2 + ∆/(4n) results in fewer than n + ∆/4

successes, i.e., at least ∆/4 fewer than expected. By

Lemma 2(a), this probability is at most

exp(−∆2/(32n+ 16∆)).

Corollary 1 Since x − y ≥ √γn lg n at the start of

each stage of phase 1, every such stage completes prop-

erly within at most 2n productive reaction events, with

probability at least 1− exp(−Θ(γ lg n)).

Lemma 3 shows that progress, in the form of a dou-

bling of the gap between the majority and minority

species, happens with high probability within Θ(n) pro-

ductive reaction events. The next lemma shows that

progress, in the form of a reduction of the population

of the minority species, occurs at a rate proportional

to the population of that species, provided that popu-

lation is bounded away from n/2 (the extent to which

is captured by the parameter β).

Lemma 4 Let 1 < β ≤ 2 be any constant. At any

point in the computation, if y = n/k, where 1 + β ≤
k ≤ n/(γ lg n), then, with probability 1− exp(−Ω((β −
1)γ lg n)), y decreases to 0 within 2n/(k−2) productive

reaction events.

Proof Let d = γ lg n. Since y ≤ n/k+ d up to the point

(if ever) when we first have y > n/k+ d, it follows that

the probability that a productive reaction is reaction (1)

is at least x
n ≥ 1− n−kd

kn > 1−1/k. Thus we can view the

change in y resulting from productive reaction events as

a random walk, starting at n/k, with success (a decrease

in y by one) probability p satisfying p > 1 − 1/k. It

follows from Lemma 1 that reaching a configuration

where y > n/k+d (which entails an excess of d failures

to successes) is less than ( 1−p
p )d ≤ ( 1

k−1 )d, which is

exp(−Ω((β − 1)γ lg n)), since lg β ≥ (β − 1), for 1 <

β ≤ 2.

Let λ = 2k/(k − 2). As long as y remains no larger

than n/k+d then the probability that it fails to decrease

to 0 within λn/k productive reactions is just the prob-

ability that a sequence of λn/k independent trials with

success probability p > 1 − 1/k = 1/2 + 1/λ results in

fewer than (λ+ 1)n/(2k) successes, i.e., at least n/(2k)

fewer than expected. It follows, by Lemma 2(a), that

this probability is at most exp(−Θ(n/(λk))), which is

exp(−Ω((β − 1)γ lg n)) since λ = Θ(1/(β − 1)).

Corollary 2 Since stage s of phase 2 starts with y ≤
n/2s ≤ n/6 and ends with y = min{n/2s+1, γ lg n}, it

completes properly, within at most 3n/2s productive re-

action events, with probability at least 1−exp(−Θ(γ lg n)).

Corollary 3 Since phase 3 starts with y ≤ γ lg n ≤
n/6 it completes properly, within at most 3γ lg n pro-

ductive reaction events, with probability at least 1 −
exp(−Θ(γ lg n)).

Lemma 5

(i) The at most 2n productive reaction events of each

stage of phase 1 occur within Θ(n) interaction events,
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with probability 1− exp(−Ω(n)).

(ii) The at most 3n/2s productive reaction events of

stage s of phase 2 occur within Θ(n) interaction events,

with probability 1− exp(−Ω(n/2s)).

(iii) The at most 3γ lg n productive reaction events of

phase 3 occur within Θ(γn lg n) interaction events, with

probability 1− exp(−Ω(γ lg n)).

Proof It is an immediate consequence of Lemma 2(a)

that, if during some sequence of r interaction events

the probability that interaction events are productive

is at least p, then the probability that the sequence

gives rise to fewer than rp/2 productive reaction events

is no more than exp(−rp/8). Since at any one time

the probability that an interaction event results in a

productive reaction is
(x
2)y+x(y

2)
(n
3)

> 3xy
n2 , it suffices to

observe the following lower bounds on the product xy

in individual phases/stages:

(i) in phase 1, n/2 < x < 7n/8, so xy > 7n2/64;

(ii) in stage s of phase 2, y > n/2s+1, so xy > 2s+1−1
22s+2 n

2;

(iii) in phase 3, y ≥ 1 and so xy ≥ n− 1.

Finally, we prove Theorem 1(b), for initial popu-

lation gaps of size at least
√
γn lg n, using the pieces

proved until now.

Proof (of Theorem 1(b))

(i) [Correctness] It follows directly from Corollaries 1, 2

and 3 that all phases, including their Θ(lg n) sub-stages,

complete properly, with probability 1−exp(−Ω(γ lg n)).

(ii) [Efficiency] It is immediate from Lemma 5 that a

total of Θ(γn lg n) interaction events suffice to ensure

the proper completion of all phases/stages, with prob-

ability 1− exp(−Ω(γ lg n)).

3.2 Small initial gap

To prove Theorem 1(a) it remains to argue that even

with an arbitrarily small initial gap our tri-molecular

CRN reaches a consensus inO(γn lg n) interaction events,

with probability 1 − exp(−Ω(γ lg n)). Of course, given

the results of the preceding subsection, it suffices to

show that a gap of at least
√
γn lg n is reached, within

O(γn lg n) interaction events, with probability

1− exp(−Ω(γ lg n)).

In previous analyses, we viewed the evolution of the

gap between the populations of X and Y , effected by

single productive reactions, as a random walk on the

state set {2i | i ∈ N}. For our current purposes it

is helpful to distinguish a subset of checkpoint states,

namely {gj | j ∈ N}, where g0 = 0 and gj = 2j+3
√
n,

for j ≥ 1 and to consider transitions between adjacent

such states, effected by a sequence of productive reac-

tions. 2

It is straightforward to confirm that: (i) with prob-

ability at least 3/4, starting from a configuration with

population gap g0, the population gap is increased to

g1 within 210n productive reactions; and (ii) for j ≥ 1,

with probability at least 1− exp(−22j+6/48)

(> 1−1/(2j+1 +2)), starting from a configuration with

population gap gj , the population gap is increased to

gj+1, before it is reduced to gj−1, within 210n produc-

tive reactions. (Assertion (i) follows directly from the

fact that the expected number of steps for an unbiased

random walk to move distance d from its initial position

is d2, and (ii) follows from Lemma 3).

Thus, (i) the transition between checkpoint states

g0 and g1 has associated probability at least 3/4, and

(ii) for j ≥ 1, the transition between checkpoint states

gj and gj+1 has associated probability at least 1 −
1/(2j+1 + 2).

Observe that if this random walk on checkpoint states

is augmented with transitions from every checkpoint

state gj to state g0 with some associated probability

pj , then any increase in pj above 0 (reducing the other

transition probabilities from state gj accordingly) can

only decrease the probability of reaching some check-

point state s from some initial state ginit < s. This fol-

lows immediately from the fact that any walk from state

0 to state s must pass through all states j, 0 ≤ j ≤ s.
Given this, it suffices to analyse an augmented ran-

dom walk on the checkpoint states in which

(i) the initial state is g0;

(ii) the transition from checkpoint state g0 to g0 has

associated probability p0 = 1/4;

(iii) for j ≥ 1, the transition from checkpoint state gj
to g0 has associated probability pj = 1/(2j+1 + 2); and

(iv) for j ≥ 1, the transition from checkpoint state gj
to gj+1 (resp., gj−1) has associated probability 1 − pj
(resp., 0).

Note that, with probability exactly 1/2t+1, t ≥ 1

transitions of this augmented random walk reach state

gt−1 before returning to state 0, something we call a

length t foray. Accordingly, with probability 1/2+1/2t+1,

it reaches state gt after t ≥ 1 transitions, and so finite-

length forays have a total probability of 1/2. This re-

veals a simple probability-preserving bijection between

length-t forays and sequences of unbiased coin flips of

the form 1t0, for t ≥ 1.

This extends to a natural bijection between a se-

quence of f finite-length forays with a total of T transi-

tions and a random binary sequence of length f+T that

2 Here, we tacitly assume that n = (2k)2, for some integer
k. Extending the argument to general n, though notationally
cumbersome, is straightforward.
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(i) starts with a 1 and (ii) contains no two consecutive

0’s.

Since a random binary sequence of length 2γ lg n

fails to contain two consecutive 0’s with probability at

most exp(−Ω(γ lg n)), it follows that with probability

at most exp(−Ω(γ lg n)) a sequence of forays with a to-

tal of γ lg n transitions fails to reach state g(lgn)/2−3 =

n.

By construction, our augmented random walk on

checkpoint states makes a transition with every 210n

productive reactions. Thus, with probability

1− exp(−Ω(γ lg n)), our tri-molecular CRN must pro-

duce a population gap of at least
√
γ lg n within 210γn lg n

productive reactions. But, as detailed in Lemma 5, since

the populations of X and Y are both Θ(n) throughout

this process, these productive reactions occur within

O(γn lg n) interaction events.

Remark. The results of this section are based on the

assumption that reactions (1) and (2) of the tri-molecular

CRN have rate constants 1. If the rates are reduced but

remain equal, the analyses of correctness as well as stage

and phase completion within a small number of pro-

ductive reaction events (i.e., Corollaries 1, 2, and 3) are

identical. Analysis of the number of interaction events

needed for phase completion changes very slightly to

account for the constant factor change in the probabil-

ity that an interaction results in a productive reaction

event, although the statement of Lemma 5 also remains

unchanged.

4 Approximate Majority Using Bi-molecular

Reactions

Here we provide some details of correctness and effi-

ciency of the bi-molecular CRNs Heavy-B, Double-B

and Single-B of Figure 2.

Theorem 2 For any constant γ ≥ 1, a computation of

the Heavy-B, Double-B or Single-B bi-molecular CRNs

reaches a consensus of X-majority, with probability 1−
exp(−Ω(γ lg n)), in O(γn lg n) interaction events, pro-

vided (i) the initial molecular count of X and Y together

is at least n/2, and (ii) the initial count of X exceeds

that of Y by at least
√
γn lg n.

The bi-molecular CRNs emulate each of the reac-

tions of our tri-molecular system as a sequence of two

bi-molecular reactions. While their success in doing so

might seem obvious at first, arguing that the introduc-

tion of the new composite molecule (denoted as B in the

Heavy-B CRN and as B in the Double-B and Single-B

CRNs) preserves both the correctness and the efficiency

of the underlying tri-molecular system is not entirely

trivial. As evidence of this, note that an emulation that

uses composite molecules consisting of two X’s or two

Y ’s (instead of B) is conceptually similar to Heavy-B

but may never reach a stable consensus configuration.

4.1 Correctness of the Heavy-B emulation

Recall that x (resp., y) denotes the population of molecule

X (resp., Y ). Let b denote the population of the com-

posite molecule B. It is easy to confirm that x+y+2b is

invariant over time and is equal to n, the initial number

of molecules. Note that the total number of molecules

m = x+ y + b satisfies n/2 ≤ m ≤ n at any point in a

computation. Our analysis uses exactly the same three

phases (and the same sub-phase stages) that we used

in our tri-molecular analysis.

We measure progress throughout in terms of the

change in the molecular counts x̂, defined as x+ b, and

ŷ, defined as y + b. Note that reaction (0’) leaves these

counts unchanged and reactions (1’) and (2’) change x̂

and ŷ in exactly the same way that the corresponding

tri-molecular reactions (1) and (2) change x and y. In

each phase, we note that the relative probability of re-

action (1’) to that of (2’), equals the relative probability

of reaction (1) to that of (2) in the tri-molecular CRN.

This allows us to conclude that the evolution of x̂ and

ŷ in the bi-molecular system exactly matches that of x

and y in the tri-molecular CRN.

4.2 Efficiency of the Heavy-B emulation

To show efficiency, we first observe that if y ≤ y0 at

the start of a sequence of k productive reaction events,

then the number of these reaction events that are of

type (1’) or (2’) is at least (k−y0)/3. Otherwise, at most

2(k−y0)/3−2 Y ’s could be produced by such reactions,

and these, together with the at most y0 Y ’s available

initially, are insufficient to “fuel” the more than k −
(k − y0)/3 remaining reactions of type (0’). Therefore,

with high probabilities (the probabilities exactly as for

the the corresponding statements of the tri-molecular

protocol):

– 7n productive reaction events are sufficient to com-

plete any stage of phase 1 (since in any stage of

phase 1, initially y ≤ n);

– 16n/2s productive reaction events are sufficient to

complete any stage s of phase 2 (since in stage s of

phase 2, initially y ≤ n/2s); and

– 16γ lg n productive reaction events are sufficient to

complete phase 3 (since in phase 3, initially y ≤
γ lg n).
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It remains to show that, with high probability, the

number of interaction events needed for any given stage

or phase to complete is, to within a constant factor, the

same as the number of interaction events needed in cor-

responding phases/stages of the tri-molecular protocol.

To this end we first observe that at any time the

propensities of reactions (0’) and (2’) sum to (xy +

by)/
(
n
2

)
, which is at least ymin/(4n), where ymin denotes

the minimum value of y during a particular phase/stage.

It follows immediately that Θ(n) interactions suffice,

with probability 1 − exp(−Θ(γ lg n)), to produce the

Θ(ymin) productive reactions needed in any properly-

completing stage within phases 1 and 2. Furthermore,

since ymin = 1 for stage 3, it follows that Θ(γn lg n) in-

teractions suffice, with probability 1− exp(−Θ(γ lg n)),

to produce the Θ(γ lg n) productive reactions needed in

phase 3.

4.3 Double-B

The analysis of the Double-B bi-molecular CRN of Fig-

ure 2(b) is very similar to that of Heavy-B. Molecular

counts in Double-B computations satisfy the invariant

x+ y + b = n. Correctness follows by very similar rea-

soning. The only slight differences are that (i) we define

x̂ and ŷ to be x+ b/2 and y+ b/2, respectively, so that

reaction (0’) leaves these counts unchanged, and (ii) the

counts x̂ and ŷ increase or decrease by 1/2 due to reac-

tions (1’) and (2’) when the counts x and y increase or

decrease by one due to reactions (1) and (2) of the tri-

molecular CRN. With regard to efficiency, if y ≤ y0 at

the start of a sequence of k productive reaction events,

at least (k − y0)/2 of them will be of type (1’) or (2’).
The result of these changes means that with high prob-

ability, the number of productive reactions that are suf-

ficient for stages 1, 2 and 3 to complete are 9n, 11n/2s,

and 11γ lg n, respectively. The rest of the analysis of

Double-B is identical to that of Heavy-B.

4.4 Single-B

We analyse phase 1 of Single-B; changes to the analysis

of other phases are similar. The statement of Lemma 3

for the tri-molecular protocol changes very slightly for

Single-B; we simply replace x and y by x̂ = x + b/2

and ŷ = y + b/2 and the number of productive reac-

tions needed increases from 2n to 15n. To restate: At

any point in the computation, if x̂− ŷ = ∆ > 0, where√
γn lg n/2 < ∆ < n, then with probability at least

1−exp(−Θ(γ lg n)), x−y increases to min{2∆,n}, with-

out decreasing below ∆− γn lgn
2∆ , within 15n productive

reaction events.

The proof must account for the fact that reaction

(0’x) increases x̂ by 1/2 and decreases ŷ by 1/2, while

(0’y) does the opposite. As in the proof of Lemma 3, we

let d = γn lgn
8∆ ≤ ∆/2. Among kn reactions of type (0’x)

or (0’y), the expected number of type (0’x) is kn/2,

since both are equally likely. Thus by Lemma 2, the

number of type (0’x) is at least kn/2−d/4 ≥ kn/2−∆/8
with probability at least

1− exp(−(k/4)n(
γ lg n

4k∆
)2) ≥ 1− exp(−Θ(γ lg n)).

Assume in what follows that, among kn reactions of

type (0’x) or (0’y), the number of type (0’x) is at least

kn/2 − d/4 ≥ (k − 1)n/2 for sufficiently large n. Then

there is an excess of at most d/2 failures (reactions of

type (0’x)) to successes (reactions of type (0’y)) among

the reactions of type (0’x) or (0’y). Also, in a sequence

of 15n productive reaction events, the number of events

that are of type (1’) or (2’) is at least 4n. Otherwise, at

most 4n − 1 Y ’s could be produced by such reactions,

and these, together with the at most n Y ’s available

initially are insufficient for the (15n − 4n − n)/2 = 5n

or more reactions of type (0’x).

Following the same reasoning as in Lemma 3, we

can show that the probabiliy of an excess of d/2 fail-

ures to successes among the at least 4n reactions of

type (1’) or (2’) is less than (1− 2∆
2n+∆ )d/2, which is at

most exp(−Θ(γ lg n)). Since also, among the reactions

of type (0’x) or (0’y), there is an excess of at most d/2

failures to successes, the overall probability that x̂ − ŷ
becomes less than ∆− d is exp(−Ω(γ lg n)).

Assuming that x̂ − ŷ remains at least ∆ − d, and

taking into account the excess of at most d/2 ≤ ∆/4

failures to successes among the reactions of type (0’x)

or (0’y), the probability that x̂−ŷ reaches min{2∆,n} is

at least the probability of an excess of ∆+∆/4 successes

to failures among the at least 4n reactions of type (1’)

and (2’). This is just the probability that a sequence

of 4n independent trials with success probability p >

1/2+∆/(4n) results in at least 2n+∆/2+∆/8 = 2n+

5∆/8 successes. By Lemma 2, this probability is at most

exp(−9∆2/(64(2n+∆))), which is exp(−Ω(γ lg n)).

5 Uncertainty or Variability in the Rate

Constants

There are several reasons to consider the sensitivity of

the results of our tri-molecular analysis (in Section 3) to

uncertainty or variability in the reaction rate constants.

For example, it is known that, when a CRN is “com-

piled” to a DNA strand displacement system, the DNA

strand displacement (DSD) reaction rate constants can
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only be made to closely approximate, but not neces-

sarily equal, the desired CRN reaction rates. In fact,

Soloveichik et al. [8] provides a DSD construction that

can control the reaction rate constants over 6 orders of

magnitude that is still considered as a constant error.

Furthermore, since the presence of Byzantine molecules

(cf. Section 6 can be modelled in terms of their distor-

tion of reaction rates, understanding the tradeoff be-

tween relative reaction rates and population gaps allows

us to quantify precisely the changes needed to accom-

modate a fixed population of Byzantine molecules.

Our goal in this section is to determine the size of

the gap between X and Y populations that is sufficient

to guarantee correct and efficient computations for Ap-

proximate Majority with high probability, when there is

uncertainty or variability in the relative reaction rates.

To this end we suppose that the rate of reaction (2)

remains a constant 1 while the rate of reaction (1) is

some not-necessarily-constant value α ≤ 1 (what we call

the relative reaction rate). For a given α, we revisit our

analysis of Section 3, asking at each point what bound

on the population gap is sufficient to ensure that the

computation will advance quickly, with high probabil-

ity.

Our results, summarized in Lemmas 6 and 7, cap-

ture the robustness of our tri-molecular CRN in the face

of uncertain or changing reaction rates. In the next sec-

tion, this is applied directly to the analysis of our pro-

tocol in the presence of Byzantine molecules. Lemma 7

by itself allows us to establish a tight bound on the size

of the initial gap required for correct and efficient con-

sensus, with high probability, in the special case where

the relative reaction rate is constant, but different from

1.

Remark. Note that, assuming x > y, at any point

in time the probability p that a productive reaction

is reaction (1) is at least
α(x

2)y
α(x

2)y+x(y
2)

> αx
αx+y = 1 −

y
αx+y = 1/2 + αx−y

2(αx+y) . If for some β, α ≥ βy/x, then

p ≥ 1/2 + β−1
2(β+1) and 1−p

p ≤ 1
β .

Lemma 6 At any point in the computation, if 0 <

x − y = ∆ < n, then with probability at least 1 −
exp(−Θ(∆2/n)), x− y increases to min{2∆,n} within

5n productive reaction events, provided the relative re-

action rate satisfies α ≥ 1− ∆
2n .

Proof We argue along the same lines as the proof of

Lemma 3. Suppose that α ≥ 1 − ∆
2n = β n−∆/2n+∆/2 , where

β = 1 + ∆
2n . Since x − y ≥ ∆/2 up to the point (if

ever) when we first have x − y < ∆/2, it follows that

x ≥ n/2 + ∆/4 and y ≤ n/2 − ∆/4, and hence α ≥
βy/x. Thus, by the remark above, the probability p

that a productive reaction is reaction (1) is at least

1/2 + β−1
2(β+1) and 1−p

p ≤ 1
β up to this point.

As before, we can view the change in x − y result-

ing from productive reaction events as a random walk,

starting at ∆, with success (an increase in x−y by two)

probability p. It follows from Lemma 1 that the prob-

ability of reaching a configuration where x − y < ∆/2

(which entails an excess of ∆/4 failures to successes)

is less than ( 1−p
p )∆/4 ≤ ( 1

β )∆/4 = ( 2n
2n+∆ )∆/4 < (1 −

∆
2n )∆/4, which is at most exp(−Θ(∆2/n)).

As long as x − y remains at least ∆/2, the proba-

bility that it fails to be increased to min{2∆,n} within

5n productive reactions is just the probability that a

sequence of 5n independent trials with success proba-

bility p ≥ 1/2 + β−1
2(β+1) = 1/2 + ∆

2(4n+∆) ≥ 1/2 + ∆
10n

results in fewer than 5n/2 +∆/4 successes, i.e. at least

∆/4 fewer than expected. By Lemma 2, this probability

is at most exp(−Θ(∆
2

n )).

Lemma 7 Let 1 < β ≤ 2 be any constant. At any

point in the computation, if y = n/k, where 1 + β ≤
k ≤ n/(γ lg n), then, with probability 1− exp(−Ω((β −
1)γ lg n)), y decreases to 0 within Θ( n

(β−1)k ) productive

reaction events, provided α ≥ β n/k+γ lgn
n(k−1)/k−γ lgn .

Proof We argue along the same lines as the proof of

Lemma 4. Suppose that, while y ≤ n/k+γ lg n, reaction

(1) has associated reaction rate α ≥ β n/k+γ lgn
n(k−1)/k−γ lgn .

Since y ≤ n/k+ γ lg n (and x ≥ n(k− 1)/k− γ lg n) up

to the point (if ever) when we first have y > n/k+γ lg n,

it follows that α ≥ βy/x. By the remark preceding

Lemma 6, the probability p that a productive reaction
is reaction (1) is at least 1/2 + β−1

2(β+1) , and 1−p
p ≤ 1

β up

to this point.

Let λ = 2(β+1)
β−1 . As before, we can view the change in

y resulting from productive reaction events as a random

walk, starting at n/k, with success (a decrease in y)

probability p ≥ 1/2 + 1/λ. It follows from Lemma 1

that reaching a configuration where y > n/k + γ lg n

(which entails an excess of γ lg n failures to successes)

is less than ( 1−p
p )γ lgn ≤ ( 1

β )γ lgn. This is

exp(−Ω(γ(β − 1) lg n)), since lg β ≥ (β − 1), for 1 <

β ≤ 2.

As long as y remains no larger than n/k + γ lg n,

the probability that it fails to be decreased to 0 within

λn/k = Θ(n/((β− 1)k) productive reactions is just the

probability that a sequence of λn/k independent trials

with success probability p ≥ 1/2 + 1/λ results in fewer

than (λ+ 1)n/(2k) successes, i.e., at least n/(2k) fewer

than expected. By Lemma 2, this probability is at most

exp(−Θ(n/(λk))), which is exp(−Ω((β−1)γ lg n)), since

λ = Θ(1/(β − 1)).
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Let α < 1 be any fixed constant. We refer to the

tri-molecular CRN with reaction rate α (respectively,

1) for reaction (1) (respectively, (2)), as α-relaxed tri-

molecular CRN. It is interesting to determine the size

of the smallest initial gap for which the α-relaxed tri-

molecular CRN can reach the correct consensus with

high probability. The following theorem confirms our

empirical results, detailed in Section 9, that this thresh-

old is arbitrarily close to 1−α
1+αn.

Theorem 3 For any constant γ ≥ 1, a computation of

the α-relaxed tri-molecular CRN reaches a consensus of

X-majority, with probability 1−exp(−Ω( ξ(1−α2)
2α−(1−α)ξγ lg n))

in O(α(2α−(1−α)ξ)
ξ(1−α2) γn lg n) interaction events, provided

the initial molecular count of X exceeds that of Y by at

least (1 + ξ) 1−α
1+αn, where 0 < ξ < α is any constant.

Proof Suppose that 0 < ξ < α < 1. Let c = (1 +

ξ) 1−α
1+α < α < 1. If the initial molecular count of X

exceeds that of Y by ∆ ≥ cn then the initial count of

Y is at most n/k, where k = 2
1−c .

Let β = α (k−1)n−kγ lgn
n+kγ lgn . Choose 0 < ε ≤ ξ(1 −

α2)/4 < ξ(1−α2)/2
2α−ξ(1−α) . For n sufficiently large, α(k − 1)−

ε < β < α(k − 1). But, substituting for k and c, and

simplifying, we see that α(k−1) = 1+ ξ(1−α2)
2α−ξ(1−α) . Hence

β < 2 (since ξ < α) and β − 1 = Θ( ξ(1−α2)
2α−ξ(1−α) ).

Hence we can apply Lemma 7 to conclude that rate

α suffices to sustain an efficient and correct computa-

tion with probability at least 1−exp(−Ω((β−1)γ lg n)),

within Θ( n
(β−1)k ) productive reaction events. Since pro-

ductive reaction events in an α-relaxed tri-molecular

CRN, occur at least α times as often as they do in our

standard CRN, it follows from Lemma 5, we have that,

with high probability, these productive reaction events

occur within Θ( α
(β−1)γn lg n) interaction events.

6 Byzantine Molecules

Here, we study the impact on our tri-molecular proto-

col if some subset Z of the molecules can exhibit un-

reliable behaviour. So-called Byzantine molecules, can,

at any time, either be neutral or play the role of ei-

ther X or Y in a reaction event and, in any event

they remain Byzantine throughout the computation.

Note that, if z = |Z| ≥ 2, a true consensus, where

all the non-Byzantine molecules are either X or Y ,

cannot be sustained, because even when all the non-

Byzantine molecules are X, any interaction between an

X molecule and two Byzantine molecules can trigger

a productive reaction event which results in consum-

ing one X molecule and producing one Y molecule. We

define a relaxed X-consensus to be a configuration in

which the population of X is n− 8z. 3 Even a relaxed

consensus is impossible to sustain indefinitely: assum-

ing that Byzantine molecules consistently behave like

the minority species Y , with probability 1 any relaxed

consensus will eventually be followed by consensus on

the minority species. However, we will show:

Theorem 4 Consider computations of the tri-molecular

CRN with initial populations x, y and z of X, Y and

Byzantine molecules, respectively. If γ ≥ 1 is any con-

stant then, with probability 1 − exp(−Ω(γ lg n)), such

a computation reaches a relaxed X-consensus within

O(γn lg n) interaction events, provided ∆0 = 2x− n ≥√
γn lg n and z < ∆0/16. Furthermore, with the same

probability, this relaxed X-consensus is preserved over

the subsequent nγ interaction events.

In our tri-molecular protocol, it straightforward to

show that impact is most severe if Byzantine molecules

consistently behave like the minority species Y . Specif-

ically, in the worst case we can assume that Byzantine

reactions:

X+Y +Z → X+X+Z and Y +Z+Z → X+Z+Z

have associated rate constants 0, and the reactions:

X+Y +Z → Y +Y +Z and X+Z+Z → Y +Z+Z

have associated rate constants 1.

Lemma 8 From any configuration (x, y, z) and any 0 <

` ≤ n−x−z, the probability π∗((x, y, z), (x+`, y−`, z))
is minimized when the above assumptions hold.

Proof It suffices to observe that ∀` > 0, π∗((x, y, z), (x+

`, y− `, z)) ≤ π∗((x+ 1, y− 1, z), (x+ `, y− `, z)). This

follows immediately from the fact that, by the nature

of our protocol, the populations of X and Y change

incrementally, and hence any computation that takes

configuration (x, y, z) to configuration (x + `, y − `, z),
must pass through configuration (x+ 1, y − 1, z).

Proceeding with this worst-case assumption concern-

ing the behaviour of Byzantine molecules, and preserv-

ing the invariant that the number of Byzantine molecules

remains unchanged, we can combine the reactions in-

volving one X and two elements of Ŷ = Y ∪ Z into

X+ Ŷ + Ŷ → Ŷ + Ŷ + Ŷ . Similarly, we can combine

the reactions involving two X’s and one element of Ŷ

into X+X+Ŷ
r−→ X+X+X, where the reaction rate

r = y/(y + z) is just the probability that a randomly

chosen element of Ŷ is a Y molecule.

3 A similar, though more involved argument, can be used
to show the same result with relaxed X-consensus defined as
an X-population of size n− (1 + ε)z, for any ε > 0.
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The resulting system:

X+X+Ŷ
r−→ X+X+X and X+Ŷ +Ŷ

1−→ Ŷ +Ŷ +Ŷ

is just our original tri-molecular system with Y replaced

by Ŷ , and the rate of the first reaction reduced to r. We

refer to y/(y+z) as the effective rate of the first reaction

and, taking advantage of the results of the previous sec-

tion, it suffices to show that, in any configuration, this

effective reaction rate is sufficiently large to sustain the

Byzantine tri-molecular system to a relaxed consensus

on the majority species.

Lemma 9 Suppose that z ≤ ∆0/16. If ∆ = 2x − n

satisfies ∆0/2 ≤ ∆ ≤ n/2, then the effective reaction

rate is at least 1− ∆
2n .

Proof Since z ≤ ∆0/16 ≤ ∆/8 and ∆ ≤ n/2 the effec-

tive rate satisfies y
y+z = 1− 2z

n−∆ ≥ 1− ∆/4
n/2 = 1− ∆

2n .

Lemma 10 Suppose that x < n − 2z. If y + z = n/k,

where k ≥ 4, then the effective reaction rate is greater

than 6
5

n/k+γ lgn
n(k−1)/k−γ lgn .

Proof Since y = n − (x + z) > z, y/(y + z) > 1/2 >
6
5

n/k+γ lgn
n(k−1)/k−γ lgn , for n sufficiently large.

It follows from Lemmas 6 and 9 that the tri-molecular

protocol with Byzantine molecules, proceeds until ∆ >

n/2, or equivalently until y + z < n/4, and it fol-

lows from Lemmas 7 and 10 that the protocol proceeds

from this point to a configuration with x ≥ n − 2z,

or equivalently until y < z, all with probability 1 −
exp(−Ω(γ lg n)). To complete the proof of Theorem,

we simply observe that once such a configuration has

been reached, a subsequent doubling of y + z happens

with probability at most exp(−Θ(γ lg n)). Thus, two

consecutive doublings of y + z (necessary to escape a

relaxed consensus) happen within nγ interactions, with

probability at most exp(−Θ(γ lg n)).

7 Multi-species Consensus

Multi-species consensus involves a total of n molecules

drawn from a set {Z0, Z1, . . . , Zm−1} ofm distinct species,

where 3 ≤ m < n. The goal is to reach consensus on

the plurality (most populous) species. Here we analyse

a CRN, which we call m-species-Tri, for m-species con-

sensus. The CRN has m(m− 1) reactions, two for each

distinct pair (Zi, Zj) of species, referred to as (ZiZj)

reactions:

Zi+Zi+Zj → Zi+Zi+Zi

Zi+Zj+Zj → Zj+Zj+Zj

and is the natural generalization of Tri, our tri-molecular

CRN for approximate majority. We will show the fol-

lowing:

Theorem 5 For any constant γ ≥ 1, if m ≤ n/(γ lg n),

a computation of m-species-Tri reaches consensus on

the plurality species with probability 1−exp(−Ω(γ lg n)),

in O(mn lg n) interaction events, provided the initial

count of the plurality species exceeds that of any other

species by at least
√
γn lg n.

7.1 Analysis Overview

We denote the initial plurality species by X and the

remaining species by Z = {Z1, Z2, . . . , Zm−1}. At any

time the count of X (resp. Zi) is denoted by x (resp.,

zi). We abbreviate maxZ∈Z{z} as zmax and
∑
Z∈Z{z}

as zsum.

Much of our analysis leverages our earlier two-species

analysis. We will show that, if initially x − zmax ≥√
γn lg n, then with high probability, in what we will

refer to as phase 0, the computation will reach a point

where x − zsum ≥
√
γn lg n. Thereafter the analysis of

correctness and efficiency follows directly from the anal-

ysis of the two-species computation, with zsum substi-

tuted for y. This is because (i) all reactions that change

zsum involve X, and (ii) the probability of failure (an

increase in zsum) is maximized when the entire pop-

ulation zsum is concentrated in one species, which is

exactly the two-species case.

Our phase 0 analysis parallels that of phase 1 of

the two-species analysis, using a similar composition

into short stages, with x− zmax doubling in each stage.

With high probability, these stages occur in sequence,

i.e., there is no “backsliding”. (No backsliding also en-

sures that X remains the plurality species.) We reason

about changes in x− zmax by considering an arbitrary

species Y ∈ Z, with count y, and analysing changes in

x−y. Compared with the two-species analysis, the only

additional complication that arises in analysing x − y
is the fact that the populations, both absolute and rel-

ative, of X and Y are impacted by reactions involving

other minority species (what we refer to as third-party

reactions).

7.2 No backsliding

We consider two types of “backsliding” events that could

arise in the computation, starting at a point where

x− zmax ≥ ∆.

Two-party backsliding: For some Y 6= X, (XY ) reac-

tions result in a cumulative decrease of at least ∆/4
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to x− y at some subsequent point in the computa-

tion.

Third-party backsliding: Third-party reaction events, i.e.,

of types (XZ) or (Y Z) for some Z 6∈ {X,Y }, result

in a cumulative decrease of at least ∆/4 to x− y at

some subsequent point in the computation.

Lemma 11 (No Backsliding) Suppose that x−zmax ≥
∆ at some point in the computation. Then the probabil-

ity of two-party backsliding is m exp(−Ω(∆2/n)), and

so also is the probability of third-party backsliding. Con-

sequently, x − zmax ≥ ∆/2 for the remainder of the

computation with probability 1−m exp(−Ω(∆2/n)).

Proof Consider the computation from the given point

up to a point (if ever) when we first have either two-

party or third-party backsliding. During this period, x−
zmax ≥ ∆/2. We show that for any given species Y , the

probabilities of two-party and third-party backsliding

are exp(−Ω(∆2/n)). Then since Y is arbitrary among

the m− 1 species other than X, the overall probability

of backsliding is m exp(−Ω(∆2/n)).

Two-party backsliding: Upon reaction events of type

(XY ), x − y either increases by two (success) or de-

creases by two (failure). The probability of success is at

least

x/(x+ y) = 1/2 + (x− y)/(2(x+ y))

> 1/2 +∆/(4x)

> 1/2 +∆/(4n).

From Lemma 1, with p = 1/2+∆/(4n), the probability

that such reactions ever result in a cumulative decrease

of ∆/4, which requires an excess of ∆/8 failures to suc-

cesses, is at most
(

1− p
p

)∆/8
< (1−∆/n)∆/8 = exp(−Ω(∆2/n)).

Third-party backsliding: Upon reaction events (XZ) or

(Y Z), success and failure increase and decrease x − y
by 1, respectively.

– If x > z > y then both x/(x + z) and z/(z + y)

are greater than 1/2, ensuring that success is more

likely than failure. Moreover, since x−z > ∆/2, the

probability of success when z interacts with x is at

least 1/2+∆/(4n). Since z is more likely to interact

with x than y, the overall probability of success in

this case is at least 1/2 +∆/(8n).

– If x > y > z, then the probability of success is at

least

(xx+ yz)/(xx+ yz + xz + yy)

≥ 1/2 + (x(x− z)− y(y − z))/(2(xx+ yz))

≥ 1/2 +∆/(4x) ≥ 1/2 +∆/(8n).

Applying Lemma 1 again, with p = 1/2 + ∆/(8n), the

probability that the number of successes ever exceeds

the number of failures by at least ∆/4 is at most

(
1− p
p

)∆/4
< (1−∆/(2n))

∆/4
= exp(−Ω(∆2/n)).

7.3 Multi-species Phase 0 Analysis

Within phase 0, we track the evolution of x − zmax in

stages. A typical stage, with integer index t, starts with

x−zmax ≥ 2t
√
γn lg n and continues while 2t−1

√
γn lg n ≤

x − zmax < min{2t+1
√
γn lg n, n}. A stage completes

properly when x − zmax ≥ min{2t+1
√
γn lg n, n}. Ini-

tially x − zmax ≥
√
γn lg n, and phase 0 ends if either

some stage fails to complete properly or if all stages

complete properly and zsum ≤ x−
√
γn lg n. Note that

since x−zmax doubles in each stage, phase 0 has O(lg n)

stages.

We next show that proper stage completion is likely

and happens efficiently, under suitable conditions on m

and the initial gap x− zmax.

Lemma 12 (Proper stage completion) Consider a point

in the computation where x − zmax = ∆ ≥ √γn lg n.

Let m ≤ n/(γ lg n). Then x − zmax ≥ min{2∆,n}
within Θ(n) productive reaction events, with probabil-

ity 1− exp(−Ω(γ lg n)).

Proof Consider a computation that starts with x = x0

and x − zmax = ∆0 ≥
√
γn lg n, and ends with either

(a) x− zmax < ∆0/2 (i.e., backsliding occurs), (b) the

completion of 2n productive reaction events, (c) the

completion of x0/2 productive reaction events involving
X, or (d) x−zmax ≥ min{ 48+1

48 ∆0, n}, whichever occurs

first. We will argue that completions (a), (b) and (c) are

unlikely, and use the fact that if none of (a), (b) or (c)

happen then (d) happens with high probability.

By Lemma 11, completion of type (a) occurs with

probability m exp(−Ω(γ lg n)) = exp(−Ω(γ lg n)) since

m < n.

Suppose that we have completion of type (b). Then,

since (b) precedes (c), x ∈ [x0/2, 3x0/2] throughout the

computation, and so the probability that a given pro-

ductive reaction involves X is at least

(
x
2

)
(n−x) +

∑
Z∈Z

(
z
2

)
x(

x
2

)
(n−x) +

∑
z∈Z

(
z
2

)
(n−z) ≥

∑
Z∈Z

(
z
2

)
x∑

Z∈Z
(
z
2

)
n
≥ x0/2

n
.

Thus we expect the 2n productive reactions to include

at least x0 productive reactions involvingX. Since fewer

than x0/2 actually occur, this completion occurs with

probability at most exp(−x0/8) = exp(−Ω(γ lg n)) since

x0 ≥ n/m and m ≤ n/(γ lg n).
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Next, consider completions of type (c). Let Y , with

count y, be an arbitrary species in the set Z of mi-

nority species such that, at the time of completion,

x−y < 48+1
48 ∆0. Since (c) precedes (d), there is at least

one such species Y . Also, since (c) precedes (a), there

is no backsliding throughout the computation that we

are considering. Recall from the proof of Lemma 11

that since no backsliding occurs, the probability of suc-

cess (increase of x − y) among two-party productive

reactions is at least 1/2 +∆0/(4x) and the probability

of success among third-party productive reactions is at

least 1/2 +∆0/(8x).

Thus, since x ≤ 3x0/2 throughout the computa-

tion that we are considering, the probability of suc-

cess among productive reactions involving X or Y is

at least 1/2 + ∆0/(24x0), and hence we expect the at

least x0/2 productive reaction events involving X or

Y to produce at least x0/4 + ∆/48 successes. Since

x − y ≤ 48+1
48 ∆0, it must be that fewer than x0/4 +

∆0/96 actually occur, which is an event that has proba-

bility exp(−Θ(∆2
0/x0)), which is exp(−Ω(γ lg n)) since

∆0 ≥
√
γn lg n and x0 ≤ n.

Repeating the argument above at most 48×3 = 144

times with ∆0 = ∆ the first time and with 48+i
48 ∆ ≤

∆0 < n on the ith repetition, we conclude that within

at most 288n productive reaction events we have x −
y ≥ min{4∆,n}, with probability 1− exp(−Ω(γ lg n)).

Therefore, by Lemma 11, with the same high proba-

bility, x − y ≥ min{2∆,n} from that point onward.

Summing these probabilities over all Y , we have that

x− zmax ≥ 2∆ with probability 1− exp(−Ω(γ lg n)).

Finally, we analyse the efficiency of phase 0 in terms

of interaction events:

Lemma 13 Let m ≤ n/(γ lg n). For each of the O(lg n)

stages of phase 0, the at most 288n productive reac-

tion events that suffice for high-probability successful

completion occur within Θ(mn) interaction events, with

probability 1− exp(−Ω(γ lg n)).

Proof The probability that an interaction is a produc-

tive reaction event is greater than
∑

Z∈Z(n−z)(z
2)

(n
3)

. Recall

that during phase 0, we have zsum ≥ x−
√
γn lg n. Since

n − z > n − x = zsum ≥ (n − √γn lg n)/2, it follows

that this probability is at least n−
√
γn lgn

2(n
3)

∑
Z∈Z

(
z
2

)
.

The latter is minimized when z = zsum/(m− 1) for all

z ∈ Z, in which case, its value is at least

n−√γn lg n

2
(
n
3

) (m− 1)

(n−√γn lgn
2(m−1)

2

)

which is Θ(1/m).

Thus for sufficiently large λ, the probability that a

sequence of λmn interactions gives rise to fewer than

288n productive reaction events is exp(−Θ(n/m)) =

exp(−Ω(γ lg n)).

We can now prove our main result, Theorem 5, on

multi-species consensus.

Proof Lemmas 12 and 13 show that, with probability

1 − exp(−Ω(λ lg n)), x − zmax increases in phase 0 of

the computation, within Θ(mn lg n) interactions, until

the total population zsum of the non-plurality species

is at most x−√γn lg n. The correctness and efficiency

of the remainder of the computation is immediate from

Theorem 1.

8 Initiation by Infection

8.1 Overview

Here we prove that our tri-molecular Approximate Ma-

jority results still hold if we assume that the protocol

is initiated by an epidemic that is triggered by a single

distinguished molecule. This provides a counterpart to

the results of Section 6 in Angluin et al. [10], where it

is shown that, under the same initiation assumptions,

with high probability the single-B protocol reaches con-

sensus on the initial majority value in Θ(n lg n) in-

teractions, provided the initial gap is Ω(n3/4+ε). Our

somewhat more involved analysis shows that a gap of

Θ(
√
γn lg n) suffices:

Theorem 6 For any constant γ ≥ 1, a computation

of the tri-molecular CRN that is initiated by infection

reaches a consensus of X-majority, with probability 1−
exp(−Ω(γ lg n)), in O(γn lg n) interaction events, pro-

vided the initial count of X exceeds that of Y by

Ω(
√
γn lg n).

It seems straightforward to extend the result, with the

same gap bound, to the bi-molecular protocols.

To be precise, we first recall from earlier work on epi-

demics in essentially the same model (cf. [6], Lemma 2)

that the number of interactions that suffice to infect all

nmolecules, with probability 1−exp(−Ω(γ lg n)), start-

ing from a single infected molecule, is at most c∗γn lg n,

for some suitably large constant c∗, which we will as-

sume is at least 6. Similarly, while the number of in-

fected molecules is nΘ(1) but not yet n/2, the number

of interactions necessary and sufficient to double the

number of infected molecules, with high probability, is

at most c∗n.

With this in mind (and following Angluin et al.),

we assume that in the infection model there is initially
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just one active molecule (either X or Y ) and among

the remaining n − 1 inactive molecules, the popula-

tion of X exceeds that of Y by at least 120d∗
√
γn lg n,

where d∗ = (c∗)2. Interactions involving only inactive

molecules result in no change; interactions involving

only active molecules proceed as in the standard tri-

molecular protocol, and mixed interactions result in ac-

tivation of previously inactive molecules, but otherwise

no change.

By these assumptions, the initially inactive molecules

are activated in a random sequence. We will first show

(Lemma 15) that the set of molecules that are acti-

vated by contiguous subsequences within the first quar-

ter of this random activation sequence have boundedX-

excess. That is, the difference between the population

of X and the population of Y that has been activated

is bounded (in terms of the length of the subsequence

and the initial gap), with high probability.

Building on our bound on theX-excess among newly

activated molecules, we analyse the X-excess among

active molecules. It is certainly possible that the X-

excess among active molecules is negative for some pe-

riod of time. Thus, we start by bounding the size and

growth rate of the Y -excess (the negative X-excess)

among active molecules in stages that lead to the point

where n/d∗ molecules have been activated. We show

(Lemma 16) that at the end of the first stage, involv-

ing a = n/(γn lg n)1/5 activations, the Y -excess among

active molecules is O(c∗
√
γa lg n) with high probabil-

ity. After each subsequent doubling of a, the number

of active molecules, which we refer to as a (doubling)

stage, the Y -excess among active molecules increases

geometrically, and is thus O(c∗
√
γa lg n) after a total of

a ≤ n/d∗ activations (Lemma 17).

We then show (Lemma 18) that, with high prob-

ability, one more doubling stage brings an X-excess

of newly activated molecules sufficient to overwhelm

this tentative Y -excess among active molecules. Thus

when 2n/d∗ of the molecules have been activated, the

X-excess among active molecules is at least 2
√
γn lg n.

Finally, we conclude (Lemma 19) from the results of

Section 3 that by the time all molecules have been ac-

tivated the X-excess among active molecules is at least√
γn lg n. Consensus on the initial majority follows af-

ter O(n lg n) further interactions, with high probability

and Theorem 6 follows.

8.2 The details

The main challenge in bounding the Y -excess among

active molecules is to show that non-uniformity in the

infection process cannot somehow conspire to undo the

population advantage of the unactivated majority species.

We use the following lemma to establish this; the proof

follows directly from a result of Hoeffding [23] on sam-

pling without replacement . (The reader may find it

helpful to picture red balls as X-molecules and blue

balls as Y -molecules.)

Lemma 14 Let C be a collection of ν red and blue

balls of which at least ν/2 +
√
γν lg ν are red, and con-

sider a sequence of s random selections from C, with-

out replacement. Then the number of red balls selected,

SR, satisfies |SR − E[SR]| ≤ √γs lg ν, with probability

1− exp(−Θ(γ lg ν)).

We use Lemma 14 to bound the X-excess of activa-

tion subsequences.

Lemma 15 Let S be a contiguous activation subse-

quence of length s that is contained within the first n/4

activations of the computation. Then with probability

1 − exp(−Ω(γ lg n)), the Y -excess within any prefix of

S never exceeds
√
γs lg n, in which case the X-excess is

never lower than −√γs lg n.

Proof Let S′ be the activation subsequence from the

start of the computation up to but not including the

start of S. Note that S′ has length at most n/4. It fol-

lows directly from Lemma 14 that, after the sequence of

activations in S′, theX-excess among inactive molecules

is at least 60d∗
√
γn lg n (half of our lower bound on the

initial X-excess among inactive molecules), with proba-

bility 1−exp(−Ω(γ lg n)). Assuming that the X-excess

among inactive molecules remaining at the start of S

is at least 60d∗
√
γn lg n, we can apply Lemma 14 again

to this set of inactive molecules to conclude that the

lemma is true.

We now analyse the composition of the set of active

molecules after the first n/(γn lg n)1/5 activations.

Lemma 16 After the first a = n/(γn lg n)1/5 activa-

tions the Y -excess among active molecules is at most

3c∗
√
γa lg n, with probability 1− exp(−Ω(γ lg n)).

Proof By Lemma 15, with probability 1−exp(−Ω(γ lg n)),

the Y -excess among activated molecules remains less

than
√
γa lg n during the first a = n/(γn lg n)1/5 acti-

vations. Since, with high probability, this initial batch

of activations takes place within c∗γn lg n interactions,

and the probability that an interaction gives rise to an

active reaction is at most (a/n)3 = (γn lg n)−3/5, it

follows from Lemma 2 that the a active molecules par-

ticipate in at most 4/3(a/n)3c∗γn lg n = 4/3c∗
√
γa lg n

active reactions. So with high probability, even if all

of these reactions are of type (2) (converting one X-

molecule to a Y -molecule and thus increasing the Y -

excess among active molecules by 2), the total actual
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Y -excess is less than (8/3c∗ + 1)
√
γa lg n after the first

a = n/(γn lg n)1/5 activations. This quantity is at most

3c∗
√
γa lg n, since we assume that c∗ is at least 6.

We now consider how the Y -excess among active

molecules changes with each subsequent activation dou-

bling stage, up to the point where n/d∗ molecules have

been activated.

Lemma 17 Suppose that a given doubling stage starts

with n/(γn lg n)1/5 ≤ a < n/d∗ active molecules and

a Y -excess among them of at most 14c∗
√
γa lg n. Then

the Y -excess among active molecules at the end of the

stage is at most 14c∗
√
γ(2a) lg n.

Proof There are two sources that could contribute to an

increase in the Y -excess among active molecules during

the stage:

(i) a (positive) Y -excess among the molecules activated

within the stage; and

(ii) a (positive) excess of reactions of type (2) (con-

verting an X-molecule to a Y molecule) over reactions

of type (1) (converting a Y -molecule to an X molecule),

among active (including newly activated) molecules within

the stage.

From Lemma 15, the contribution from the first of

these sources is bounded by
√
γa lg n. Thus, to estab-

lish the desired result it suffices to show that, with high

probability, the excess of active reactions of type (2),

over the stage, is at most 2c∗
√
γa lg n. (Sufficiency fol-

lows since such a type (2) reaction excess contributes at

most 4c∗
√
γa lg n to the Y -excess among active molecules,

which combined with the less than c∗
√
γa lg n from the

first source increases the initial Y -excess of at most

14c∗
√
γa lg n to at most 19c∗

√
γa lg n < 14c∗

√
γ(2a) lg n.)

But we know that the stage consists of at most

c∗n interactions with probability 1 − exp(−Ω(γ lg n)),

and hence (by Lemma 2) no more than 2c∗(2a)3/n2 =

16c∗a3/n2 active reactions. Furthermore, up to the point

(if ever) that the Y -excess among active molecules ex-

ceeds 19c∗
√
γa lg n, the probability that an active reac-

tion is of type (2) is at most 1/2 + 19/2c∗
√
γa lg n/a.

So, a type (2) reaction excess of 2c∗
√
γa lg n is real-

ized before the end of the stage only if 16c∗a3/n2 tri-

als (active reactions) with success (type (2)) proba-

bility at most 1/2 + 19/2c∗
√
γa lg n/a, give rise to at

least 8c∗a3/n2 + c∗
√
γa lg n successes, which is at least

c∗
√
γa lg n− (19/2c∗

√
γa lg n/a) · (16c∗a3/n2)

≥ c∗√γa lg n(1−152c∗a2/n2)≥ c∗√γa lg n(1−152/(c∗)3)

more than expected. By Lemma 2, if c∗ ≥ 6, this has

probability at most exp(−Θ(γ lg n)).

It follows from Lemma 17 that when n/d∗ molecules

have been activated, the actual Y -excess is at most

14c∗
√
γ(n/d∗) lg n = 14

√
γn lg n with high probability.

To continue with our overall proof, we now take ad-

vantage of the fact that the X-excess, among molecules

activated in the activation doubling stage starting with

n/d∗ active molecules, is more than enough to over-

whelm any previously accumulated actual Y excess.

Lemma 18 After the doubling stage that starts with

a = n/d∗ active molecules, the X-excess among active

molecules is at least 2
√
γn lg n.

Proof From Lemma 15, the Y -excess among activated

molecules prior to the doubling stage with a active

molecules never exceeds
√
γa lg n <

√
γn lg n with high

probability. Moreover, the X-excess among the n/d∗

molecules activated in this stage is at least 48
√
γn lg n.

(This follows since the expected number of X-molecules

activated is at least n/(2d∗) + 30
√
γn lg n, and so with

high probability the actual number is at least n/(2d∗)+

24
√
γn lg n.)

Thus the only way that the X-excess among ac-

tive molecules at the end of the stage can be less than

2
√
γn lg n is if there is an excess of more than 16

√
γn lg n

in the number of active reactions of type (2) within the

stage. Such an excess would increase the number of ac-

tive Y -molecules by more than 16
√
γn lg n and decrease

the number of active X-molecules by the same amount,

causing the net X-excess among active molecules to be

at most 48
√
γn lg n − 14

√
γn lg n − 32

√
γn lg n). Note

that without such an excess in the number of active

reactions of type (2) within the stage, the stage would

complete without the Y -excess among active molecules

ever exceeding 30
√
γn lg n.

But such a type (2) reaction excess has low proba-

bility since (i) the expected number of active reactions

in the stage is at most 8c∗a3/n2, and hence, with high

probability, the actual number A is at most 10c∗a3/n2,

(ii) the probability, up to the point (if ever) that the

Y -excess among active molecules exceeds 30
√
γn lg n,

that an active reaction has type (2), is at most 1/2 +

15
√
γn lg n/a, and so (iii) the expected number of active

reactions of type (2) is at most A/2 + (A/a)15
√
γn lg n

≤ A/2 + (150/(c∗)3)
√
γn lg n. Hence, with high proba-

bility, the excess of active reactions of type (2) is less

than 16
√
γn lg n.

Finally, we show that, with high probability, the

X-excess among active molecules remains Ω(
√
γn lg n)

when all molecules have been activated.

Lemma 19 If the X-excess among active molecules is

at least 2
√
γn lg n when 2n/d∗ molecules have been acti-

vated then it remains at least
√
γn lg n when all molecules

have been activated.

Proof It suffices to observe that, with high probability,

(i) by Lemma 14, the Y -excess in the last n − 2n/d∗
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Fig. 5 Comparison of the time (left) and success rate, i.e.,
probability of correctness (right) of tri-molecular, Double-B,
Single-B and Heavy-B CRNs for Approximate Majority. Each
point in the plot is an average over 50,000 trials. The initial
configuration has no B’s and the imbalance between X’s and
Y ’s is

√
n lnn. Plots show confidence intervals at 99% confi-

dence level.

molecules to be activated is never more than
√
γn lg n,

and hence is never enough to offset the initial X-excess

among active molecules by more than a constant factor,

and (ii) following the analysis of Lemma 3, the X-excess

continues to increase by a constant factor with every

Θ(n) successive batch of active reactions.

9 Empirical Results

Figure 5 compares time (efficiency) and success rates

(probability of correctness) of the tri-molecular and the

three bimolecular CRNs to reach consensus, as a func-

tion of the log of the initial count n of molecules.The

plots show that time grows linearly with the log of the

molecular count, and the success rate is close to 1 for

large n. A fit to the data of that figure shows that the

expected times of the tri-molecular, Double-B, Single-

B and Heavy-B CRNs grow as 3.7 lnn, 2.4 lnn, 4.2 lnn,

and 2.4 lnn respectively. For n ≥ 100, the tri-molecular

CRN has at least 99% probability of correctness and

the bi-molecular CRNs have at least 97% percent prob-

ability of correctness. These probabilities all tend to 1

as n gets larger. On the other hand, if the initial imbal-

ance is reduced to
√
n, the success rate appears to be

constant as n grows, cf. Figure 6.

Figure 7 looks at convergence of success rate of the

tri-molecular CRN with initial imbalance between X

and Y populations being ∆0 =
√
n lnn. In simulations,

Byzantine molecules consistently behave like the mi-

nority species Y . It shows clear convergence when the

count of Byzantine molecules is 1/8 and 1/4 of the ini-

tial imbalance. While the convergence is less clear if

the count is only 1/2 of the initial imbalance, it ap-

pears that the success rate converges to 1/2 as n grows.

[This could be explained by looking at the initial suc-

cess rate, x/(x + ŷ), where ŷ = (y + z)2/y. This rate

equals to (2n + ∆)/(4n + 2∆ + ∆2/y) which tends to

1/2 as n → ∞.] If the number of Byzantine molecules

is 3/4 of the initial imbalance between x and y, the

success rate stays close to 0.
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molecules ∆0 =
√
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The number of Byzantine molecules is set to 1/8, 1/4, 1/2,
and 3/4 of this initial imbalance, respectively. Each point in
the plot is an average over 50,000 trials. Plots show confidence
intervals at 99% confidence level.

Figure 8 provides some evidence that the expected

execution time of m-species-Tri, the multivalued tri-

molecular CRN, with initial gap
√
n log n, isΘ(mn lg n),

which matches the upper bound proved in Theorem 5.

The top plot shows the progression of the count of the

majority species (X) until it reaches a complete ma-

jority, for CRNs with m = 3, . . . , 32 species. The time

does seem to increase linearly in the number of species

m. This is more clear from the middle plot, which is

based on 50,000 experiments. It shows that the length of

phase 1 is increasing linearly in m, while the durations

of phases 2 and 3 remain constant (here, constants dγ
and eγ used to define when the phases end are set to 10

and 1). The graph also shows that productive reactions

involving non-majority species neither slow down nor

speed up the other phases. This is not surprising: dur-

ing interactions between non-majority species, in the

first case, these species keep randomly changing identi-
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ties, while in the second case nothing happens. Since the

counts of non-majority species are more or less equal,

the productive reactions between non-majority species

have little effect on overall computation. The bottom

figure shows counts of all species in one experiment.

Non-majority species are packed together. The green

dots show the average number of interaction events

until a productive reaction event occurs and purple

dots the average number of productive reactions per

x1-productive reaction. (Each dot corresponds to 1000

productive reactions). For a big portion of simulation

this number fluctuates around m2/3(m − 1) — this is

the expected rate at the start of simulation when all

species counts are around n/m, but then it drops sud-

denly before it shoots up in the last phase of the com-

putation, as expected.

Figure 9 compares average time needed to achieve

X-majority for CRNs with and without initiation by

infection. A fit to the data of that figure suggests that

the expected times of the Tri, Double-B, Single-B and

Heavy-B CRNs with initiation by infection grow as

4.7 lnn, 3.4 lnn, 5.2 lnn, and 3.2 lnn respectively. This

is an increase of approximately lnn in each case com-

pared with the time when all molecules are initially

active. The lnn additional time probably accounts for

the time needed to activate each molecule.

Figure 10 provides experimental confirmation that

the lower bound 1−α
1+α on the initial imbalance for tri-

molecular CRN with unequal reaction rates proved in

Theorem 3 is tight. This figure suggests the following

generalization of Theorem 3 for values of α > 1. Assume

that (unlike Approximate Majority), we are only inter-

ested in species X achieving the majority. In this case,

if the initial imbalance ∆0 = x0−y0 is negative, consen-

sus of X can still happen with high probability. In this

case, Y is initially the majority species, and we want

to determine the relative reaction rate that will ensure

that Y fails with high probability. If we slow down both

reactions by α, it will not affect the success/failure rates

of the system (although the expected overall time until

consensus is reached will be multiplied by α). Then the

rate of the reaction that is producing “majority” Y is

1/α. The experiments in Figure 10 suggest that when

the initial imbalance y0−x0 is less than 1−1/α
1+1/α = −α−1

α+1

then with high probability consensus on X-majority is

achieved. This suggests that the result of Theorem 3 ex-

tends to values α > 1 if we redefine success as “species

X wins”.
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Fig. 8 Top: Comparison of executions of the m-species-Tri
CRN for various numbers of species (m = 3, . . . , 32), with
the initial gap between the majority species X and any other
species equal to

√
n lnn with n = 1, 000, 000. Middle: com-

parison of running time of different phases of m-species-Tri
with n = 100, 000 based on 50,000 experiments. “Only X-
reactions”refers to a multi-valued trimolecular CRN without
reactions that do not involve majority species. The compar-
ison shows that reactions between non-majority species do
not have much influence in the running time of the system.
Bottom: More detailed view of the execution of the protocol
with 16 species. The figure also shows the average number of
interactions per productive reaction and average number of
productive reactions per X-productive reaction. The vertical
lines show the ends of subphases of phase 1.

10 Conclusions and Directions for Future Work

In this work we have provided a straightforward analy-

sis of a tri-molecular CRN for Approximate Majority, as
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well as CRNs for several variants of the problem: when

reaction rates are uncertain, when molecules become

active by infection, when there are multiple species,

and when molecules may react in a Byzantine fashion.

We have also provided simpler analyses of bi-molecular

CRNs that have been well-studied in previous work, ob-

taining slightly improved results in the process. Perhaps

the biggest contribution of the paper is to demonstrate

how analysis simplicity is achieved by first focusing on

the simplest of all the CRNs, namely the tri-molecular

CRN, and then leveraging this in the remaining analy-

ses.

Of course, there are many combinations of the prob-

lem variants that we have studied (for example, multi-

ple species some fraction of which react in a Byzantine

fashion) that would be interesting to analyse. We are
confident that each such combination could be analysed

using minor variations of the techniques that we have

used here; establishing this rigorously could be useful

future work.

Our techniques may also be useful for proving cor-

rectness of yet other variants, such as the Chen et al.

strand displacement implementation of Double-B [11],

which involves so-called fuel species and waste prod-

ucts in addition to molecules that represent the species

of the CRN, or CRNs in which some or all of the reac-

tions are reversible. For example, if the blank-producing

reaction (0’) of Double-B is made reversible, the modi-

fied CRN appears to still be both correct and efficient,

while having the additional nice property that a stable

state with neither X-consensus nor Y -consensus can-

not be reached, even with very low probability. On the

other hand, some caution needs to be applied when re-

versing reactions. For instance, making reactions (0’x)

and (0’y) of Single-B reversible can lead to a system

that fluctuates around a state with an equal number of
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Fig. 10 Tri-molecular CRN with unequal rates of the two
reactions: reaction (1) has rate α and reaction (2) has rate
1. The top plot shows convergence of the success rate when
α = 0.9 and the initial imbalance (∆0 = x0 − y0) is one
of the following linear functions: 0.01n, 0.02n, . . . , 0.09n. The
plot shows that with the initial imbalance at least 0.06n,
the success rate tends to 1 as n grows, and with the ini-
tial imbalance at most 0.05n, it tends to 0. The bottom plot
is constructed from a series of such experiments for various
values of α and linear functions used for the initial imbal-
ance. The green dots show values of the initial imbalance for
which success rate tends to 1 (with success rate at least 0.99
for n = 100, 000) and red dots show such values for which
success rate tends to 0 (with success rate at most 0.01 for
n = 100, 000). The blue line shows the bound obtained in
Theorem 3.

Xs and Y s, and some ratio of Bs. This would happen

when the rate of reversed reactions (0’x) and (0’y) is

greater or equal to the rate of reactions (1’) and (2’).

We believe that our analyses can easily generalize to

these scenarios.
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