On Combinatorial DNA Word Design*

Amit Marathe Anne E. Condon
Computer Sciences Department Computer Sciences Department
1210 West Dayton Street 1210 West Dayton Street
University of Wisconsin University of Wisconsin
Madison, WI 53706 Madison, WI 53706

Robert M. Corn
Chemistry Department
1101 University Avenue

University of Wisconsin
Madison, WI 53706

February 25, 1999

“Research supported by NSF and DARPA via grants CCR-96-13799 and CCR-97-25021.

addresses are: marathe@cs.wisc.edu, condon@cs.wisc.edu, corn@chem.wisc.edu.

The authors’ email

Abstract

We consider the problem of designing DNA codes, namely sets of equi-length words over the
alphabet {A,C,G, T} that satisfy certain combinatorial constraints. This problem is motivated
by the task of reliably storing and retrieving information in synthetic DNA strands, for use in
DNA computing or as molecular bar codes in chemical libraries. The primary constraints that we
consider, defined with respect to a parameter d, are as follows: for every pair of words w,x in a
code, there are at least d mismatches between w and x if w # x; and also between the reverse of w
and the Watson-Crick complement of z. Extending classical results from coding theory, we present
several upper and lower bounds on the maximum size of such DNA codes and give methods for
constructing such codes.

An additional constraint that is relevant to the design of DNA codes is that the free energies
and enthalpies of the code words, and thus the melting temperatures, be similar. We describe
dynamic programming algorithms that can (i) calculate the total number of words of length n
whose free energy value (as approximated by a formula of Breslauer et al.) falls in a given range,
and (ii) output a random such word. These algorithms are intended for use in heuristic algorithms
for constructing DNA codes.

1 Introduction

The design of codes that satisfy combinatorial constraints has long been studied, motivated by the
problem of sending information reliably over a noisy channel [18]. In this paper, we study code
design problems that are motivated by the task of storing and retrieving information in short DNA
strands, which we refer to as DNA code words. A (single) DNA strand is a sequence of nucleotides;
there are four possible nucleotides, denoted A, C, G, and T', at each position of the sequence, which
has chemically distinct ends known as the 3’ and 5’ ends. Since a DNA strand of length n can be
used to represent one of up to 4™ possible values, and since short DNA strands can be quickly and
cheaply synthesized, DNA code words can be used to store information at the molecular level, thus
providing a basis for biomolecular computation [1]. DNA code words are also used as molecular
bar codes, or tags, for the purpose of manipulating and identifying individual molecules in complex
chemical libraries [3, 4, 20].

These applications require success in achieving specific hybridization between a DNA code word
and its Watson-Crick complement, while minimizing false positive and false negative signals, as we
now explain. The Watson-Crick complement of a DNA strand is the strand obtained by replacing
each A by a T and vice versa, each C by a G and vice versa, and switching the 3’ and 5’ ends.
For example, the Watson-Crick complement of 3' — AACATG — 5" is 5 — TTGTAC — 3'. Specific
hybridization is the process whereby a strand and its Watson-Crick complement bond to form a
double helix. Specific hybridization can be used (along with other methods) to identify and retrieve
target DNA code words from a set of such code words. A false positive results when non-specific
hybridization occurs, such as between a DNA strand and the Watson-Crick complement of a distinct
DNA strand, in which case there are mismatches. For example, there are two mismatches between
3 — AACATG — 5 and 5’ — TAATAC — 3, in the second and third positions from the 3’ end of
the first strand. Non-specific hybridization may also occur between a DNA strand and the reverse
of a distinct strand. A false negative occurs when hybridization between a DNA strand and its
complement does not take place as intended.

Several papers have proposed the use of combinatorial constraints on the composition of a set
of DNA code words, in order to limit false positives and false negatives in specific applications
[1,2,3,4,7,8,11, 12, 13, 19, 20]. Our premise is that a theoretical framework for designing sets
of DNA code words should be useful for scalable use of DNA code words.

We focus on sets of words satisfying one or more of four constraints, which we next define
and motivate. In our study, we represent a DNA code word simply as a string over the alphabet
{A,C,G, T} and assume that the leftmost (or low order) end of the string corresponds to the 3’
end of the associated DNA code word. Thus, CCGAT represents 3' — CCGAT — 5', for example.
It is useful to define a word to be a string over a finite alphabet, where the alphabets of most
interest to us are of size 2 or 4 (such as {A,C,G,T}). Let x = z1z2 ...z, be a word. The reverse
of z, denoted by z®, is the word z,z,_1...2;. If x is over the alphabet {4, C,G, T} then the
complement of x, denoted by z*, is the word obtained by replacing each A in z by T and vice
versa, and by replacing each C' in z by G and vice versa. If z is over the binary alphabet {0,1}
then z© is obtained by replacing each 0 in = by 1 and vice versa. Finally, the Hamming distance
H(z,w) between z and word w = wiws ... w, is the number of indices ¢ for which w; # z;. The
following constraints pertain to a set of words, each of length n.

e The Hamming constraint with distance parameter d is that for all pairs of distinct words
w, z in the set, H(w,z) > d. A set of words of size M satisfying the Hamming constraint is
called a (n, M,d) code, or when the parameters are implied, simply a code. We let A,4(n,d)
denote the maximum size of a code with words of length n over alphabet size ¢. In most
reports on the use of DNA codes, a high Hamming distance is enforced between pairs of code
words (see for example [3, 7, 11, 20]), in order to limit non-specific hybridization whereby the
Watson-Crick complement of a code word = anneals to a distinct word w.

e The reverse-complement constraint with parameter d is that for all pairs of words w,z
in the set (where w may equal z), H(w%,z®) > d. In DNA code applications, the reverse-
complement constraint is intended to limit hybridization between a code word and the reverse
of another code word [7, 11]. We call a code that also satisfies the reverse-complement
constraint a reverse-complement code. We let AqRC(n,d) denote the maximum size of a
reverse-complement code, with parameters n,d defined as for codes.

e The reverse constraint with parameter d is that, for all pairs of words w,z in the code,
H(w,z®) > d. We call a code that also satisfies the reverse constraint a reverse code. We
let Af(n, d) denote the maximum size of a reverse code. Our study of this constraint is not
motivated directly by the goal of limiting false positives or false negatives in the use of DNA
code words, but indirectly by a close relationship (presented in Section 4) between Aézc(n, d)

and A(If(n, d). For example, when n is even, one can obtain a reverse complement code from
a reverse code simply by complementing the symbols in the second half of each word in the
code. Thus, constructions of reverse codes can easily be adapted to obtain constructions
of reverse complement codes. We consider the reverse constraint to be simpler than the
reverse-complement constraint and so focus on this.

e The final constraint that we consider have a somewhat different flavor. It is motivated by
the goal that all code words in the set have similar melting temperature, allowing hybridiza-
tion of multiple words to proceed simultaneously [20]. The melting temperature of a short
DNA strand can be accurately estimated using a formula of Wetmur [21], which in turn uses
estimates of two further parameters of a DNA strand, namely its free energy and enthalpy
due to Breslauer et al [5]. We use AG to denote the Breslauer estimate of the free energy
of a DNA word. As explained in Section 5, the free energy constraint is essentially the sum
of weights associated with substrings of length 2 in a word. The free energy constraint
with parameters g, € is that for all words in the code, g — € < AG < g + €. A closely related
constraint, also defined precisely in Section 5, is that the enthalpy of all words in the code
lies within a small range.

Section 3 summarizes some well known results on codes. Our new results, presented in Section
4, focus on reverse and reverse-complement codes. Following is a summary of these results.

We first show a close relationship between the maximum sizes of reverse codes and reverse-
complement codes. Specifically,
AFC(n,d) = AR(n,d) when n is even, and

AR(n,d+1) < AFC(n,d) < AR(n,d —1) when n is odd.

We then show several methods for obtaining upper and lower bounds on the size of reverse codes
with alphabet sizes 2 and 4, including the following.

¢ Halving bound: A(If(n,d) < Ay(n,d)/2. This bound follows from the fact that if S is a

(n,|S|,d) reverse code then SU S® is a (n,2|S|,d) code.

e Construction for d = 2: We give a simple inductive construction of a reverse code that is
optimal for even n, and close to optimal for odd n. For ¢ = 2 or 4,

Ag(n, 2) =q¢"1/2 when n is even, and

(" — an/ZJ)/Q < AqR(n,2) <q¢""!'/2 when n is odd.

e Product bound: A(n,d) > Af(n,d)As(n,d). In particular, reverse codes over an alphabet
of size 4 can be obtained by taking the “product” of a reverse code and a code, both over an
alphabet of size 2.

e Doubling construction: We show how to construct (27,271, 27~1) binary reverse codes,
which are optimal, i.e. A(2",2""1) =271

We apply these results to obtain explicit bounds for Af(n,d) and Af(n,d) for 2 < n < 16 and
2 < d < 8. These are presented in Tables 2 and 3.

In Section 5, we turn to the free energy constraint. Since this is more complex combinatorially
than the Hamming or reverse constraints, we are interested in an efficient algorithm for generating
code words that satisfy the free energy constraint. Our main contribution in Section 5 is a dynamic
programming algorithm that calculates the total number of words of a specified length n whose
free energy value (as approximated by a formula of Breslauer) equals a given specified value. The
running time of the algorithm is O(n?), (where the hidden constant depends on the values in the
Breslauer formula; details are given in Section 5). Variations of the algorithm can calculate the
total number of words of length n whose free energy value or enthalpy falls in a given range, or
output a random such word. These algorithms could be used by a program for generating DNA
codes, based for example on simulated annealing, which has proved valuable in the construction of
binary codes [9].

2 Related work

Deaton et al. [7, 8] observe that the well-known sphere-packing bound (see Section 3) can be used
to upper bound the size of DNA codes satisfying the Hamming constraint. They describe genetic
algorithms for finding DNA codes that satisfy several constraints, including the Hamming and
reverse complement constraints.

In his patent on methods for sorting polynucleotides using DNA tags, Brenner [3] gives a greedy
algorithm for generation of DNA codes satisfying the Hamming distance constraint. Brenner also
considers sets of words over an alphabet of size 3, where one of the 4 possible nucleotides A, C, G,

or T is absent. Mir [19] also proposed a word design for use in DNA computing over an alphabet
representing just 3 of the 4 possible nucleotides.

For prototype experiments of the Wisconsin DNA computing project, a DNA word design with
words of length 16 was developed [11]. The internal 8 bases of a word are constrained to satisfy
exactly the Hamming and reverse complement constraints with d = 4. In addition, the words also
satisfy the constraint that 4 out of the 8 bases are from the set {C,G}. A set of words of size 108
satisfying these constraints was found.

Shoemaker et al. used an algorithm to generate a set of 9,105 20-mers that satisfy the Hamming
constraint with d = 5 and are predicted to have similar melting temperatures (61 + 5°C). In
addition, the words in the set are predicted to have no secondary structure. They give no details
on their algorithm.

Finally, we list other combinatorial constraints that are relevant to DNA code design but which
we do not study in this paper. (i) The first arises, for example, in Brenner and Lerner’s work [4],
where DNA tags and the polymers to be tagged are chemically synthesized in an alternating parallel
fashion. Thus each code word (or tag) is the concatenation of “units,” one per monomeric chemical
unit in the polymer. The units are designed to have the comma free or frame-shift constraint:
no unit z occurs as a substring in the concatenation of two other distinct units yz. The purpose
of imposing this constraint is to limit the possibility of “frame shift errors” in the hybridization
process. A greedy algorithm for generating words satisfying a similar frame shift constraint is
given by Garzon et al. [12, 13]. (ii) Baum [2] developed bounds on the size of DNA word sets
satisfying several combinatorial constraints, key among them being the subword constraint that for
some parameter d, for any pair of distinct words w and z, no subword of w of length d equals a
subword of z of length d. (iii) In designing words for surface-based DNA computing, Frutos et
al. [11] enforced the GC content constraint that the fraction of G’s and C’s in each code word be
1/2. The motivation for this is to limit the range of melting temperatures of the code words. (iv)
Finally, the important forbidden subwords constraint, already mentioned in relation to the work of
Shoemaker et al. [20] above, is that no word in the code set contains as a subword a specified set
of undesirable words, such as DNA strands with secondary structure, strands that are be used as
PCR primers, or strands that are recognized by restriction enzymes.

3 Bounds on the size of a code

In this section, we briefly review previous results on codes that will later be extended or applied
in obtaining bounds on reverse codes. The text by MacWilliams and Sloane [18] provides a good
introduction to the subject. Table 1 gives some upper and lower bounds on A4(n,d), or equivalently,
on the maximum size of a DNA code with code words of length n and distance parameter d. We use
several of these upper bounds on A4(n,d) to obtain the upper bounds of Table 2 for reverse codes
over alphabet of size 4, via application of our halving bound (Theorem 4.4). In addition, we use
known lower bounds on As(n,d) to construct reverse codes over alphabet of size 4, via application
of our product bound (Theorem 4.6). By extending known techniques for construction of codes to
handle reversals, we obtain further bounds on the size of reverse codes.

The following two bounds on A4(n, d) are described in terms of two quantities. Let S be the set
from which words in the code are drawn. Then the first quantity we need is |S|, which is clearly

q". Let V(s,d') be the number of words of S that have distance at most d’ from word s, where

n
1

s € 8. V(s,d') is independent of s; denote it by V(d'). Here, V(d') = 3%, () (g — 1), where

(7;) = % denotes the number of ways to choose ¢ distinct items from a set of size

n. Proofs of following four bounds can be found in a survey article by Ericson [10] or the text by
MacWilliams and Sloane [18].

Theorem 3.1 (Sphere-Packing upper bound)

n
Aq(na d) < |S| = e

V(l(d—1)/2]) sl-ny2) (n) (- 1)1..

]

1=

The sphere-packing bound holds because the “spheres” of radius |(d — 1)/2| around each code
word s in a code, namely the sets of size V(| (d—1)/2]) for all words s in the code, cannot overlap.

Theorem 3.2 (Gilbert-Varshamov lower bound)

Aq(na d) > |S| = a

MY e () ey

A simple greedy algorithm for constructing a code yields the Gilbert-Varshamov lower bound:
repeatedly select a word w from S to be in the code, and remove from S all words that are of
distance less than d from w. At each selection, at most V(d — 1) words are removed from S and so

the selection step can be repeated at least % times.

Theorem 3.3 (Singleton upper bound)

Aqg(n,d) < "
Theorem 3.4 (Plotkin upper bound) For d > %n,

qd

Al d) < e

The following basic relationships are also useful:

Theorem 3.5 1. Ay(n,n) =g,
2. Ay(n,d) > Ay(n+1,d+1), and
3. Ay(n,d) > Ay(n+1,d)/q.

Part 1 of Theorem 3.5 is true because the code consisting of ¢ words, each containing a different
letter repeated n times, is an example of a (n,q,n)-code. The Singleton upper bound shows that
the size of this code is the best possible.

To see part 2, note that an (n, A;(n+ 1,d + 1), d)-code can be obtained from a (n + 1, A4(n +
1,d + 1),d + 1)-code by removing the first letter of each code word.

To see part 3, note that if we partition all the words in a (n + 1, A4(n + 1,d),d) code into ¢
subsets according to the starting letter, one of the subsets has size at least A4(n +1,d)/q and thus
isa (n+1,A4,(n +1,d)/q,d) code. By removing the (common) starting letter from all words in
this largest subset, a (n, A4(n + 1,d)/q,d) code is obtained.

Most of the lower bounds on A4(n, q) listed in Table 1 are obtained from tables of cyclic codes
of Kschischang and Pasupathy [17]. We note that some of the underlying cyclic codes contain
palindromic code words. If the coefficient vector for the generator polynomial for a cyclic code is
palindromic, then the code contains palindromic words. For example, the codes of Kschischang and
Pasupathy with n = 8,12,16, or 30 and d = 3, or n = 10 and d = 4, are generated by palindromic
generator polynomials.

Brouwer et al. [6] give a table of upper and lower bounds for A3(n,d) which we use in obtaining
some of our bounds on reverse codes. These bounds are obtained using a wide range of methods,
and we do not comment on them further here.

4 Bounds on the Size of Reverse and Reverse-Complement Codes

We now present new bounds on the maximum size of reverse codes and reverse complement codes,
as defined in the introduction. Recall that for ¢ € {2,4}, AqRC(n,d) denotes the maximum size
of a code of length n over an alphabet of size ¢ that satisfies the reverse and reverse-complement
constraints. Similarly, Af(n, d) denotes the maximum size of a code satisfying the Hamming and
reverse constraints.

There is a close relationship between the size of reverse and reverse-complement codes for the
alphabet {A,C,G,T}.

Theorem 4.1
ARC(n,d) = AR(n,d), for n even, and

AR(n,d+1) < AFC(n,d) < AR(n,d — 1), for n odd.

Proof First, suppose that n is even. Let {z;} be a (n, M, d) reverse code. Write each z; = a;b;,
where the lengths of a; and b; are equal. Then {a;b'} is a (n, M, d) reverse complement code, and
so Af(n,d) < ARC(n,d). We can prove the other inequality in the same manner.

When n is odd, truncating a (n, A¥(n,d+1),d + 1) code by removing the middle letter of each
code word and then applying the previous result for n even gives Af(n,d + 1) < ARC(n — 1,d).
Since ARC(n —1,d) < ARC(n,d) for odd n, the first inequality in the case that n is odd follows.
The proof of the second inequality is similar. U

The remaining results in this section pertain to reverse codes. Extending the proof of the
sphere-packing and Gilbert-Varshamov bounds, i.e. Theorems 3.1 and 3.2, we obtain the following
bound for reverse codes with d = 3.

Theorem 4.2 For n > 4,

dr izt (M) -
A7) < S D T (=D = 1))

Proof Let S be the set of all words x (length n, alphabet size ¢) such that H(z,z%) > d.
Also, let V(s,d') be the number of words of S that have distance at most d' from word s € S and
let V= (d') = min{V (s,d’)} where the min is taken over all s in S.

Following the proof of the sphere-packing bound for codes, to obtain an upper bound on the size
of a code drawn from S we consider the set D,, consisting of words which are disqualified when a
word z from S is chosen to belong to the code. A lower bound on D, is given by 2V~ ([(d —1)/2]).
This is because for any word s in S, H(s,s®) > d and hence V (s, |(d — 1)/2]) is disjoint from
V(s®,|(d —1)/2]). Therefore,

5|
A d) < o)y

We first calculate the size of S. Note that if x = z129...x, then xf = Tp_j+1. We say a

mismatch occurs at j if z; # xf, ie. if z; # xp—j41. If a mismatch occurs at j then by symmetry
)

a mismatch also occurs at z,_;11. In fact, H(z,2") is always even.

How many words = have H(x,z®) = 2i? The number of such words is the number of words
that have ¢ mismatches at indices 7 < [n/2]|. There are ; choices for these 7 indices. At

each chosen index j, there are ¢ choices for the letter z; and once this is chosen, there are ¢ — 1

choices for the letter z,,_; 1. Also, there are [n/2] — i indices j of x at which z; = £,_j41. There
are ¢ choices for the value of z; at each of these indices. In total, there are

(1)) tta = vy

words z such that H(z,z®) = 2i. Therefore,

n/2) n/2]
|S’| = Z (I_n/2J> (q(q_l))iq[n/?\—i :q[n/2'| Z <|_’I’L/2J> (q—l)i.
i=fa/z \ " ity \

Next, consider a word = z12z2. ..z, in S. We claim that for d = 3 there are at least 4(q—2) +
(n—4)(g—1) words of distance exactly 1 from z, and therefore V(1) = 1+4(¢—2)+ (n—4)(¢—1).
To show the claim, let j and j' be such that 1 < j < j' < n/2, z; # Tp_j41 and T # Tp_jri1
(j,§' exist because H(z,z) is even and at least 3). For each of the four possible indices i with
i€{j,7,n—j+1,n—j" + 1}, there are ¢ — 2 ways to change xz; to obtain a word z’ of distance
1 from z, such that H(z', (z')®) = H(z,z®) > 3. For each of the n — 4 remaining indices i, there
are ¢ — 1 ways to change z; to obtain a word z' of distance 1 from z, such that H (', (z')%) > 3.
Thus, there are at least 4(¢ — 2) + (n —4)(g — 1) words of distance exactly 1 from z, as required. U

The upper bound of Theorem 4.2 can easily be generalized to d > 3 by lower bounding V'~ (| (d—
1)/2]). Generalizing the argument above, it is not hard to show that V'~ (d') > Zg’:O <7Z> (g—2).
However, this generalization was not useful in obtaining Tables 2 and 3.

Theorem 4.3

5]

R
>
Ag(n,d) 2 o5~y

where VT (d) = maz {V(s,d)|s € S} and S is as in Theorem 4.2.

Proof As in Theorem 3.2, a greedy algorithm provides a reverse code of size |S|/2V " (d — 1).
O

Theorem 4.4 (Halving bound)

Proof The reverse constraint implies that H(z,z®) > d for every word z in S. Also x €
S = zft ¢ S. Thus, starting with a set S satisfying the Hamming and reverse constraints we can
get a new set by adding to S the reversals of all words in it. This new set satisfies the Hamming
constraint because the new words added are at least distance d apart from each other and from the
original words in S (this follows from the fact that S satisfies the Hamming and reverse constraints).

The new set is twice the size of the original. U

Theorem 4.5 (d=2 Construction)

n—1
Af(n, 2) = qT’ for even n and q € {2,4}, and
qn—l _ q|_n/2j

R
>

q ,for odd n and q € {2,4}.

Proof The proof builds on the following claim:

1

Claim 4.1 For even n, X" can be partitioned into subsets, each containing q" * words, such that

1. any two words from the same subset differ in at least two positions,
2. if a word belongs to a subset, its reversal is also in the same subset, and

3. all the ¢"'? palindromes are in the same subset.

Proof (of Claim) The partitions for the base case (n = 2) can be S? = {4A4,CC, GG, TT}, S% =
{AC,CA,GT, TG}, S? = {AG,GA,CT,TC}, 82 = {AT,TA,CG,GC) for ¢ = 4 and {00, 11}, {01, 10}
for ¢ = 2.

For the induction case, when ¢ = 4, assume that we have a partition SJ* of X", i € {1,2, 3,4},
with the above properties, with ST containing all of the palindromes. Then SZH'Q for i € {1,2,3,4}
can be defined as follows.

St = gm .82y S1.82 U S3.52 U Sh.S2,

Spt2 — 81 82y S1.S2 U ST.S2 U SY.S2,

SHt? = 8752 U Sy.S; U SE.ST U SE.S3,

Spt? = 8t .S7uUSy.S? U SY.S U Sh.53,
where A.B = {pwq|lw € A,pq € B, |p| = |q| = 1}.

It is not difficult to verify that this is a partition of "2 having all the three properties, with
S{H'? containing the palindromes. The induction step for ¢ = 2 utilizes a similar “product-of-sets”
construction. As an example, when ¢ = 2, the two subsets S; and S5 obtained by the above
construction are as follows:

11

Si S

0000 0010
0110 0100
1001 1011
1111 1101
0011 0001
0101 0111
1010 1000
1100 1110

Now, to complete the proof of Theorem 4.5 when n is even, note that if we take any of the
subsets not containing any palindromes and drop half of the words from it (either a word or its
reversal), we get a set satisfying the Hamming and reverse constraints (for d = 2). The identical
upper bound follows from Theorem 4.4 combined with Theorem 3.3.

The construction for odd n > 1 uses the sets S?il obtained above as follows:

St=8rtAusytcusyt.gusy i,

Sy =8rtousSit.GusytTusS A,
S =8rtGusitTusyAuSyl.C,
T=5ptrusytAuSyl.cusyTla,

where B.X = {w1 Xws|wiwy € B, |wi| = |wz|}. With this construction, each of the four subsets S
has ¢l"/2! palindromes. By first removing these palindromes from each subset and then dropping
half of the remaining words (either a word or its reversal), we obtain four reverse codes with
parameter d = 2, each of size (1/2)(¢"~! —¢!"/2]). O

Theorem 4.6 (Product Bound)
Af(n,d) > Af(n,d)As(n, d).

Proof Let B be a code and let A be a reverse code, both over alphabet {0,1}, with words
of length n. Then each element of the Cartesian product A x B corresponds to a word over an
alphabet of size 4, where a bit in A determines whether A/T or G/C appear in that position, while
the corresponding bit in B makes a choice from the 2 remaining possibilities. Moreover, this map is

one-to-one and the set of |A||B| words so obtained satisfies the Hamming and reverse constraints.
O

Theorem 4.7 (Doubling Construction) For n > 2

AR@2n, on 1) = on,

12

Proof Let C be a code with words of length n. Call C'a H®¢(n,d) code if it has the following
property: for all words z,y in C,

H(z,y) > d, ifzx#y
H(z,y") > d,

H(x,y°) >d, and
H(z,y"¢) > d.

Claim 4.2 Let C be a H®(n,d) code with d < n/2. Then the code C' = CC U CCY is a
HEC(2n,2d) code, where CC = {zz|z € C} and CCY = {xzC|z € C}. Moreover, the size of C' is
twice that of C.

Proof (of Claim) It is straightforward to check that for all words z’,3' € C”, the four conditions
of a HC(2n,2d) code are met. (In some cases, a condition is met because there is a Hamming
distance of d between both halves of the words being compared; in other cases it is met because
half of one string is z, the corresponding half of the other is ¢ which differs in n positions, and
d < n/2). The size of C' is twice that of C because H(z,y“) > d for all z,y in C, and so the words
in CC and CCC are disjoint. O

We now show that for n > 2, there is a HC(27,2771) code of size at least 2"~!. If C is such a
code, then C U C satisfies the Hamming and reverse constraints and has twice the size of C, and
from this the lower bound of the theorem follows. For the upper bound, we have that Ay (4r,2r) = 8r
from [18], which by the halving bounds (Theorem 4.4) implies that A%¥(2" 27~1) < 2" for n > 2.

Let n = 2. Tt is straightforward to verify that {0111,0010} is a H%¢(4,2) code of size 2. The
construction of the claim then inductively yields a H®C(27,27~1) code of size 277! for all n > 2,
as required. U

Note: It is possible to carry out a “quadrupling” construction in the case ¢ = 4 (similar to the
doubling construction for the binary case) and thus get a direct lower bound on Af(n,d) for special
values of n,d. However, this does not lead to improved results in our tables.

Finally, some useful basic relationships between the sizes of reverse codes are summarized in
the following theorem:

2 ifn > 2 is even, and
0 otherwise,

Theorem 4.8 1. Af(n,n) = {

2. Agz(n —1,d) < Af(n,d) < Af(n,d —1), and

R R
8. Af(n—1,d) > Af(n,d)/q, for odd n.

To see part 1, note that when n = 2k,k > 1 the code {A¥T* , C*G*} clearly satisfies both
constraints. Also if w is a word in such a code then the first letter of w must be different from the

13

first and last letters of all other words in the code. Therefore the code can contain at most two
words. For odd n, the middle letter always results in a match when any word is compared with its
reversal. Hence no word can belong to the code.

The proof of part 2 is straightforward. The proof of part 3 is similar to part 3 of Theorem 3.5,
the only change being that we now partition based on the middle letter (instead of the first).

5 The Free Energy Constraint

In this section, we present an algorithm to calculate the number of DNA strands (of a certain
length) whose free energy equals a given value. The algorithm relies on a heuristic proposed by
Breslauer et. al. [5] to approximate the free energy of any DNA strand. Using another heuristic
from the same paper it is possible to modify the algorithm for the calculation of the number of
DNA strands having a particular enthalpy using the formula of Breslauer et al.

The data produced by the above algorithms can be used to efficiently generate a random strand
with free energy/enthalpy close to a given value. This data could be used, for example, by a
simulated annealing algorithm for finding a set of DNA strands with similar melting temperatures.

5.1 Algorithm Outline

The free energy of the DNA strand ujius...u; is approximated by the following formula from
Breslauer et. al. [5]

-1
AGiotqr = correction factor + Z w(ug, Uiy1)
i=1

where w(z,y) is the observed free energy of the 2-mer zy. Thus, the free energy is hypothesized
to depend only on the nearest-neighbor interactions of nucleotides in the strand. The enthalpy
AH;, is approximated similarly.

Let N (I, u,e) be the number of DNA strands of length [, beginning with nucleotide u which have
free energy e. Then N(I,u,e) can be calculated for [> 1 from “previous” values by the following
equation.

N(l,u,e) = z N(- 1,v,e —w(u,v))
ve{A,C,G,T}

with the convention that strands of length 1 have free energy 0 and that N(I,u,e) equals 0 when
e <0.

The correctness of the above equation can be proved by making a case analysis on the second
nucleotide in the DNA strand; this nucleotide has to be A/C/G/T and accordingly the free energy
of the tail (the strand comprising of the last [— 1 nucleotides) is e — w(u, A/C/G/T).

14

5.2 Pseudocode

The following pseudocode elaborates on the algorithm outlined in the previous section. It sets

entries in the N-array (which is passed to the free_energy procedure as a reference parameter) to
their correct values.

procedure free_energy(integer L, integer S, array integer w([S][S],
reference array integer N[L] [S] [E])

local integer E;

// L = word length

// S = alphabet size

// w[S1[S] = 10 * free energies of all 2-mers

// E = 10 * upper bound on the free energy of any strand of length L

begin

// first calculate M, the maximum free energy of a 2-mer, and
// use it to initialize E
M= -1;
for u =1 to S

for v =1 to S

if (M < wlul [v])

then M = w[u] [v];
E=1L % M;

foru =1 to S
N[1] [ul[0] = 1; // base case for the dynamic programming algorithm
// all other entries are assumed initialized to O

for 1 =2 to L

for u=1to S
for e = 0 to E
begin

N[1] [u]l [e] = O;
for v=1to S
if (e - wlul[v] >= 0)
then N[1][ul[e] += N[1 - 1][vl[e - wlul[v]l];
end
end

The running time of the above algorithm is O(L?S?M) where M is the maximum entry in the
w-array (in this case M = 36).

Once the N-array is initialized by this procedure we can find the number of strands whose free
energies lie within the range [P, Q] in O(S(Q — P)) time. A plot showing the number of strands
corresponding to a free energy value/range can also be produced in O(LSM) time.

15

5.3 Random Generation Algorithm

This section shows how the data obtained from the dynamic programming algorithm above can
be used to randomly select a strand from all strands of a given length and free energy. Let
S = {wi,...,wn} be the set of all strands of length L and free energy E. To randomly select a
strands from S we generate a random number r in the range [1, N]. By the dynamic programming
algorithm,

N =Ng+ N¢+ Ng + Nt

where N; is the size of S}, the set of strands of S which begin with nucleotide j. Since N4, N¢, Ng, N1
are known (they are entries in the N-array) we can fix the first nucleotide in the random strand

to be generated, depending on whether r is in the range [1, N4|,[Na + 1,Na + N¢|,[Na + N¢ +

1, Nao+ N¢ + Ng| or [Ng + N¢g + Ng + 1, NJ.

Applying this process iteratively we can generate the entire strand. i.e. if r is in the range
[Ng + 1,N4 + N¢] (say), we fix the first nucleotide to be C. We then consider the set S¢ and
then choose a strand at random from this set by using the random number r — N4, which will be
uniformly distributed over the range [1, N¢].

This algorithm basically orders the strands in S using the N-array and then uniformly selects
one by generating a random number between 1 and V.

References

[1] L. M. Adleman, Molecular Computation of Solutions to Combinatorial Problems, Science, 266,
11 November, 1994, pp- 1021-1024.

[2] E. B. Baum, “DNA Sequences Useful for Computation,” Proc. 2nd DIMACS Workshop on
DNA Based Computers, June 1996.

[3] S. Brenner, “Methods for Sorting Polynucleotides using Oligonucleotide Tags,” U.S. Patent
Number 5,604,097, Feb 18, 1997.

[4] S. Brenner and R. A. Lerner, “Encoded combinatorial chemistry,” Proc. Natl. Acad. Sci. USA,
Vol 89, pp 5381-5383, June 1992.

[5] K. Breslauer,R. Frank, H. Blocker, L. Marky, “Predicting DNA duplex stability from the base
sequence”, Proc. Natl. Acad. Sci. USA 83 (1986), pages 3746-3750.

[6] A.E.Brouwer, J.B. Shearer, N.J.A. Sloane, W.D. Smith, “A New Table of Constant Weight
Codes”, IEEE Transactions on Information Theory, Vol. 36, No. 6, November 1990, pages
1334-1380.

[7] R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr., “Good
Encodings for DNA-Based Solutions to Combinatorial Problems,” Proc. of DNA Based Com-
puters II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and E. B. Baum, Editors,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, 1999,
pages 247-258.

16

8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Deaton, M. Garzon, R. C. Murphy, J. A. Rose, D. R. Franceschetti, and S. E. Stevens,
Jr., “Genetic Search of Reliable Encodings for DNA-Based Computation,” Koza, John R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors), Proceedings of the First
Annual Conference on Genetic Programming 1996.

A. A. El Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, “Using Simulated Annealing
to Design Good Codes,” IEEE Transactions on Information Theory, Vol. IT-33, No. 1, January
1987.

T. Ericson, “Bounds on the Size of a Code”, Topics in Coding Theory, Springer-Verlag, 1989.

A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, and R. M.
Corn, “Demonstration of a Word Design Strategy for DNA Computing on Surfaces,” Nucleic
Acids Research, Vol. 25, No. 23, December 1997, pages 4748-4757.

M. Garzon, R. Deaton, P. Neathery, D.R. Franceschetti, and R.C. Murphy, “A New Metric
for DNA Computing,” Proc. 2nd Genetic Programming Conference, Morgan Kaufman, 1997,
pages 472-478.

M. Garzon, R. Deaton, L.F. Nino, S.E. Stevens Jr., and M. Wittner, “Encoding Genomes for
DNA Computing,” Proc. 3rd Genetic Programming Conference, Madison, WI, 1998.

S. Litsyn, A. Vardy, “The Uniqueness of the Best Code”, IEEE Transactions on Information
Theory, Vol. 40, No. 5, November 1994, pages 1693-1698.

Y. Klein, S. Litsyn, A. Vardy, “T'wo New Bounds on the Size of Binary Codes with a Minimum
Distance of Three”, Designs, Codes and Cryptography, 6, 1995, pages 219-227.

Klaus-Uwe Koschnick, “Some New Constant Weight Codes”, IEEE Transactions on Informa-
tion Theory, Vol. 37, No. 2, November 1991, pages 370-371.

F.R. Kschischang, S. Pasupathy, “Some ternary and Quaternary Codes and Associated Sphere
Packings”, IEEE Transactions on Information Theory, Vol. 38, No. 2, March 1992, pages
227-246.

F. J. MacWilliams and N. J. A. Sloane, “The Theory of Error-Correcting Codes,” North-
Holland, 1977.

K. U. Mir, “A Restricted Genetic Alphabet for DNA Computing,” Proc. of DNA Based Com-
puters II, DIMACS Workshop June 10-12, 1996, L. F. Landweber and E. B. Baum, Editors,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 44, 1999,
pages 243-246.

D. D. Shoemaker, D. A. Lashkari, D. Morris, M. Mittman, and R. W. Davis, “Quantitative
phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coring
strategy,” Nature Genetics, Vol 16, December 1996, pages 450-456.

J. G. Wetmur. “DNA Probes: Applications of the Principles of Nucleic Acid Hybridization,”
Critical Reviews in Biochemistry and Molecular Biology 26(3/4):227-259, 1991, pages 227-259.

17

Tables

This section contains tables of the functions A4(n,d), Af(n,d), and A¥(n,d) for various values
of the parameters. Tables 1 and 2 provide both a lower bound and an upper bound on the true
value; whenever the two bounds are equal the entry is a single integer. The superscripts on entries
indicate the method by which the bound was obtained. The following chart gives an overview of
the superscripts used in the tables.

Superscript Name of Bound Relevant Theorem
or Reference

S Sphere-Packing 3.1

pl Plotkin 3.4

h Halving 4.4

g Gilbert-Varshamov 3.2

p Product 4.6

d Doubling 4.7

b Basic 3.5, 4.8

x d = 2 construction 4.5

k Kschischang and Pasupathy [17]

18

Table 1: Bounds on A4(n,d)

[md] 3 1 5 6 7 8
4 16F-19° 4P? 1 1 1 1
5 64k -64° 16*-167! 4Pt 1 1 1
6 64P-215° 16P-(26)® 4-10P! 4p! 1 1
7 256P -744° 64P-(28)® 16F-(5 x 2%)® 4-8P! 4p! 1
8 (210)k_2621° 2567 -(210)® 64" _(5 x 25)® 16%(25)® 4-7p! 4Pt
9 (212)* _9362° (210)k_(212)b (28)*-(5 x 27)b (26)*_(27)b 16* 28P! 4-6P!

10 (21%)k_33825° (212)k_(21%)® (210)k_(5 x 29)® (28)k-(29)® 16% (7 x 24)® 16*-167!
11 (216)*_123361° (214)k_(216)b (212)k_(5 x 211)P (210yk_(11yb 64F (7 x 26)P 16*_(26)®
12 (218)*_453438° (216)k_(218)b (212)k (5 x 213)P (210)k_(213)b (28)k (7 x 28)® 64%_(28)?
13 (220)%_1677721° (218)k_(220)b (21 (5 x 218)P (212)k_(215)b (210)k_(7 x 210)b (28)k_(210)P
14 (222)*_6242685° (220)k_(222b (216)k_(5 x 217)P (21 _(217)b (212)k_25110° (210)k_(212)b
15 (224)%_23342213° (222)k_(22430 (218)k_(5 5 919)b (216)k_(519)b (214)k_g0878° (212)k_(214)b
16 (226)k _87652393° (222)k_(226)b (218)k_(5 x 221)P (218)k_(221)b (216)*_264321° (212)k_(216)b

Table 2: Bounds on A (n,d)

[nd 2 3 1 5 6 7 8
2 2 0 0 0 0 0 0
3 6%-(23)" 0 0 0 0 0 0
4 (25)=:h 2P_g8s 2 0 0 0 0
5 120%-(27)" 4P _26° 2P _gh 0 0 0 0
6 (29)%:h 129-107" 4P_107" 2P_sh 2 0 0
7 2016%-(211)" 339-372h 8P_372h 2P _34° 2P _4h 0 0
8 (213)2:h 160P-1310" 128P-1310" 4P 118" 2P_118h 2P _3h 2
9 32640% -(215)h 3549-4681" 160P-4681" 89-372" 4P_372h 2P _14P 2P_gh
10 (217y=:h 11849 -16912" 3207-16912" 239-1202" 6P-1202" 2P _142h 2P _gh
11 5237767 -(219)P 39039-61680" 576P-61680" 609 -3964" 149 -3964" 4P 420" 2P 420"
12 (221)=:h 132339-226719" 12719-226719" 1739-13294" 349.13294h 89-1276" 39-1276"
13 20951042 -(223)h 450129 -838860" 39469 -838860" 4879452217 869-45221" 189-3964" 69-3964"
14 (225)=:h 1554969 -3121342" 125399-3121342" 14449 -155705" 2309-155705" 469-12555" 139-12555"
15 134209536% -(227)P 5410209-11671106" 403859-11671106" 42809 -541746" 6219-541746" 1119-40439" 279-40439"
16 (229)2:h 19013869-43826196" 1321119-43826196" 130669-1902111" 4096P-1902111" 576P-132160" 512P-132160"

Table 3: Lower bounds on A% (n,d)

[(md] 3 1 5 B 7 g]
1 19 19 09 09 09 09
5 19 19 09 09 09 09
6 19 19 19 19 09 09
7 29 19 19 19 09 09
8 8b 84 19 19 19 19
9 8b 8b 19 19 19 19
10 gb gb 19 19 19 19
11 139 8b 19 19 19 19
12 249 8b 29 19 19 19
13 409 109 39 29 19 19
14 739 179 59 29 19 19
15 1279 279 79 39 19 19
16 || 2319 469 16® 16® 16® 169

19

