
Automatable Verification of
Sequential Consistency

�

Anne E. Condon and Alan J. Hu
Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, B.C. V6T 1Z4

Canada
(condon,ajh)@cs.ubc.ca

November 6, 2001

Abstract

Sequential consistencyis a multiprocessor memory model of both practical
and theoretical importance. Designing and implementing a memory system that
efficiently provides a given memory model is a challenging and error-prone task,
so automated verification support would be invaluable. Unfortunately, the general
problem of deciding whether a finite-state protocol implements sequential consis-
tency is undecidable. In this paper, we identify a restricted class of protocols for
which verifying sequential consistency is decidable. The class includes all pub-
lished sequentially consistent protocols that are known tous, and we argue why
the class is likely to include all real sequentially consistent protocols. In principle,
our method can be applied in a completely automated fashion for verification of
all implemented protocols.

1 Introduction

Shared memory multiprocessing has become the commerciallydominant form of mul-
tiprocessing in current systems. In such a system, all processors can load information
from or store information to any memory location in a global address space shared by
all processors.

Correctly programming a shared memory multiprocessor requires an understanding
of when memory stores performed by one processor become visible to loads performed

�
The authors were supported in part by research grants from the National Science and Engineering Re-

search Council of Canada. This paper is the full presentation of work that initially appeared in the 2001
Symposium on Parallel Algorithms and Architectures [6].

1



Real Time Processor 1 Processor 2
Initially, memory locationsx andy are both 0.
Time 1 �� � � � �

2 �� �� � �
3 �	 �� � �
4 �	 � � � �

What values are loaded into registers� � and��?

Figure 1: Different memory models allow different results.With a serial memory,
the only possible outcome is� � 
 1, �� 
 2. With sequential consistency, the per-
processor program order must be respected, but the relationship between processors
is unspecified, so� � 
 0, �� 
 0 is also legal, as is� � 
 1, �� 
 0, but not� � 
 0,
�� 
 2. More relaxed models permit ignoring program order in certain circumstances,
allowing the two loads to execute out-of-order, resulting in � � 
 0 and�� 
 2.

by other processors. Amemory modelprovides such an understanding, by giving a for-
mal specification of how the memory system will behave from the programmer’s per-
spective. Perhaps the most intuitive memory model, called “serial memory”, requires
the memory system to behave as if each memory operation occurred instantaneously
and atomically in the exact order in which the processors execute load and store in-
structions in real time, in the sense that the value of every load operation is that of the
most recent store operation. Unfortunately, the hardware and performance overhead
required to implement serial memory is prohibitive for large or high-performance mul-
tiprocessor systems. Real systems use many techniques to enhance performance, such
as store buffers, caches, and out-of-order interconnect networks. Such techniques lead
to memory models where the order in which memory operations appear to have been
performed may differ from the real-time order in which they executed, might not agree
with the order in which operations were executed on a single processor (the “program
order”), and might not even be the same order on different processors. (See Figure 1.)

Sequential consistencyis a memory model introduced by Lamport [10]. A memory
system is sequentially consistent iff there always exists an interleaving of the program
orders of all the processors such that each load returns the value of the most recent store
to the same address. Sequential consistency is important both as a practical memory
model that provides intuitive ease-of-programming while allowing efficient hardware
optimizations (e.g. [9]) and also as an extensively studiedmemory model that can be
used to understand other, more relaxed models (e.g. [1]).

Memory systems use intricate finite-state protocols to implement the desired mem-
ory model. These protocols are notoriously difficult to design and debug — because
the primary objective is performance rather than simplicity — making them natural
targets for formal verification.

Ideally, we would like an algorithm that inspects a finite-state protocol and de-
termines automatically whether or not the protocol provides sequential consistency.
Unfortunately, the general problem of deciding sequentialconsistency of a finite-state
protocol is undecidable [3].

2



Real protocols, however, might not be fully general, suggesting that the undecid-
ability result may not be relevant in practice. Suppose we can characterize a class
of protocols with the following properties: membership in the class is decidable, all
members of the class are sequentially consistent, and all real protocols that implement
sequential consistency belong to the class. In that case, automatic verification of real,
sequentially consistent protocols reduces to testing for membership in the class. This
paper proposes such a protocol class.

The basis for our verification method is a graph-based definition of sequential con-
sistency that arises in the work of Gibbons and Korach [7]. For an execution trace of a
protocol, they define a constraint graph with a node for each load and store operation
in the trace. The graph has four kinds of edges: edges that enforce program order for
each processor, edges that provide a total order over all store nodes to each memory
location, edges from each store node to every load node that gets its value from that
store, and forced edges from each load node to the store node that follows in the total
store order the store node from which the load got its value. Aprotocol is sequentially
consistent if and only if all of its traces have acyclic constraint graphs.

To perform automatic formal verification using this formulation of sequential con-
sistency, we must provide an automatic way to construct the constraint graph and verify
that it is acyclic for all possible executions of the protocol. In practice, this suggests
that the construction and checking of the constraint graph must be done in (hopefully
small) finite state, so that automatic verification based on finite-state model check-
ing [5] is possible.

The remainder of this paper addresses these problems. In Section 3, we introduce
a graph description notation tailored to describe constraint graphs, and a finite-state
checker to verify that a graph so described is acyclic. We also describe how the graph
description notation and checker can be used to verify sequential consistency. In Sec-
tion 4, we show how real protocols can be annotated with finite-state information, to
obtain a finite state observer which generates a descriptionof the constraint graph.
Our method of generating this description characterizes a class of protocols for which
sequential consistency is decidable, and we argue why all real protocols are likely to
belong to this class. Finally, we derive size bounds on the finite-state observer, suggest-
ing that our method is at the edge of what is currently feasible for automatic verification
tools.

1.1 Related Work

There has been considerable work over the years on verifyingmemory system pro-
tocols and memory models. For brevity, we mention here only closely related work,
pertaining to finite-state verification of protocols with respect to sequential consistency.

Plakal et al. [12] introduce a verification approach based onlogical clocks and
apply it to a directory based protocol. Our approach is inspired by the logical clocks
approach, but in contrast to logical clocks, which are unbounded, our approach reduces
verification to a language inclusion problem between finite state automata.

Henzinger et al. [8] propose a very similar approach to ours,using a finite-state
observer to reorder loads and stores to construct a witness of sequential consistency.
Because of the finite-state limit on reordering, the method is too restrictive to handle

3



most real protocols. One could view our approach as a generalization of theirs that
handles all realistic protocols. We note that Henzinger et al. prove very strong results
for protocols in their restrictive class, namely that it is sufficient to reduce verification
of a protocol with arbitrarily large parameters (number of processors, number of blocks,
number of values per block) to a fixed-parameter problem. In contrast, our method
applies to verification of only fixed-parameter protocols.

Nalumasu et al. [11] propose the Test Model-Checking technique, in which a proto-
col is checked against various predefined finite-state automata that test certain memory
model properties. These tests can be considered to be finite-state observers. By com-
bining these tests, it is possible to verify memory models that are close to, but not
identical to, sequential consistency. Determining exactly how these test combinations
relate to sequential consistency and to the class of protocols we can handle is an open
question.

Recently, Qadeer has proposed an approach for automatically verifying that a mem-
ory protocol implements a memory model [13]. His approach and ours are superficially
similar — both involving automated constructions of finite-state witnesses that a pro-
tocol obeys a memory model — but the constructions are quite different. For example,
Qadeer’s method specifically assumes that the protocol and witness will be model-
checked and exploits this assumption to simplify the witness to look for only particular
types of error traces. In contrast, our construction flags any violation in any run of the
protocol; model checking gives complete verification, but the method is easily adapted
to a testing scenario. In their current versions, our approach handles a more general
class of protocols than Qadeer’s, which does not handle Afeket al’s Lazy Caching
protocol [2], for example. On the other hand, Qadeer’s complexity bounds (on the
size of the finite state witness) are better than ours, and he considers memory models
other than just sequential consistency. Which method (or what combination of the two
methods) will be most useful in practice remains to be determined.

On the experimental side, we have implemented a technique related to that pre-
sented in this paper and experimented with a substantial, realistic memory system pro-
tocol [4]. The general approach is the same as in this paper, but the underlying model
for recording and checking constraints is different, resulting in wildly impractical com-
plexity bounds for automatically generating the finite-state witness. Nevertheless, we
were able to demonstrate that the method does allow verification, using current model-
checking tools, of the sequential consistency of a substantial cache protocol, provided
that some human insight is used to generate an efficient witness. In contrast, the present
paper presents a revised theoretical framework that encompasses a broader class of pro-
tocols, yet allows proving much stronger complexity bounds, suggesting that this work
will apply to more protocols and be fully automatable in practice.

2 Definitions

2.1 Protocols

We define a protocol as basically a finite-state machine, but with some specializations
to simplify our notation. Aprotocol P is a tuple�p�b�v�Q�q0 �A � A � �δ � δ� �� �. The

4



constantsp, b, andv specify the number of processors, memory blocks, and data values
in the protocol. The symbol� denotes the initial value of each block. The set of states
is Q, of which q0 is the initial state. The setA is the set of all actions of the protocol
that are LD and ST operations, namely actions of the form LD�P�B�V � and ST�P�B�V �,
where 1� P � p, 1 � B � b, and 1� V � v. For notational convenience, we use *’s
to denote sets of LD and ST actions over all values of a parameter: e.g., ST(*,B�V)
denotes the set�ST�P�B�V � � 1 � P � p�. Thus,A 
 ST(� �� � �) � LD(� � � � �). A �
is the set of actions of the protocol other than LD and ST operations. Corresponding
to A and A � there are two transition relations,δ and δ�, with δ � Q �A �Q and
δ� � Q �A � �Q .

A sequence of actionsA1 �A2 � � � � �Ak is aprotocol run if there is a sequence of states
q0 �q1 �q2 � � � � �qk such that for allj, with 1 � j � k, the transition�q j�1 �A j �q j � 	 δ � δ�.
A protocol trace is the subsequence of a protocol run that includes only the actions in
A (i.e., the ST and LD operations). Two protocolsP andP � areequivalent if the set
of traces ofP equals the set of traces ofP �. Note that the runs and traces of a protocol
are finite, so our theory uses regular automata rather thanω-automata.

2.2 Sequential Consistency

Intuitively, a serial trace is one in which each LD returns the value of the most recent
(prior to the LD) ST to the same block. If there were no prior STs to that block, the
load must return� . Formally, a traceT 
 t1 �t2 � � � � �tk is aserial trace if for all blocks
B and valuesV, for all 1 � j � k:

�t j 	 LD �� �B�V �� 
�
� �V 
 �� 
 � i� j �ti �	 ST�� �B�����

�
h� j �th 	 ST�� �B�V � 
 � ih�i� j �ti �	 ST�� �B����

�
� �

A reordering of a trace of lengthk is simply a permutationΠ of the num-
bers from 1 tok. Let Π 
 π�1� �π�2� � � � �π�k� be a reordering of a traceT. Let
T � 
 tπ�1� �tπ�2� � � � �tπ �k�. Π is called aserial reordering andT � is the corresponding
serial trace ifΠ andT � have the following two properties. First,Π preserves the “per
processor” order ofT, i.e., for all processorsP, if ta andtb are operations of processor
P thena � b if and only if π�1�a� � π�1�b�. Second,T � must be a serial trace.

A protocol issequentially consistentif all of its traces have a serial reordering.

3 Verifying Sequential Consistency Using Constraint
Graphs

In our method for verifying that a protocol is sequentially consistent, a finite-state
observer watches a protocol as it executes and gathers information about how to reorder
the trace. The observer presents this information, in the form of a finite-state constraint
graph, to a checker. A key task of the checker, which is also finite state, is to ensure
that the graph is acyclic. Verification reduces to proving that the checker accepts all

5



"Observer"
Augmented

Protocol

Constraint Graph
Description

Observer

Checker

Accept/Reject?

Model Check:
Does the checker
always accept?

Automatically
converted into

Original
Protocol

Trace
Equivalence?

Compose with Checker

Figure 2: Verification Method Overview. The Observer is simply the original protocol
augmented with reordering information. Automatic creation of the observer is dis-
cussed in Section 4. The observer generates a description ofa constraint graph, which
is checked by a finite-state checker. The same checker is usedfor all protocols. Con-
straint graphs and the checker are described in Section 3. The trace equivalence check
can be omitted in practice because the observer is created ina non-interfering way from
the original protocol.

constraint graphs generated by the observer. Figure 2 illustrates the main steps in the
verification process. Overall, the method exploits the “less is more” principle: a total
reordering of a trace is too much to be collected and checked with a finite number of
states, but partial information about the reordering is sufficient to deduce sequential
consistency.

We first define sequential consistency using graph-theoretic notation. Application
of this definition to protocol verification requires a finite state method for testing if a
graph is acyclic. In Section 3.2, we identify a class of graphs for which this test can be
done. We describe the finite state cycle-checker in Section 3.3. We combine everything
into our verification method in Section 3.4.

6



3.1 A Graph-Based Definition of Sequential Consistency

A constraint graph Gfor a traceT records ordering constraints on the operations in
T which are sufficient to ensure thatT has a serial reordering. The nodes ofG are
labeled by operations ofT. Nodes are numbered by consecutive integers, starting from
1, according to their order in the trace. Edges ofG include program order edges, along
with inheritance edges, which indicate from which ST operation a LD inherits its value;
ST order edges, which provide a total ordering of all ST nodes to the same block, and
forced edges, which force the constraint that on any path from a ST node to aLD node
that inherits its value, there is no other ST node to the same block. More precisely,
edges ofG must satisfy the followingedge annotation constraints:

1. Each edge may be annotated as an inheritance, program order, ST order, or forced
edge. An edge may have zero or more annotations.

2. For each processorP, if u nodes ofG are labeled by operations ofP then G
hasu � 1 program order edges that define a total order on theseu operations,
consistent with trace order. There are no other program order edges.

3. For each blockB, if u nodes ofG are labeled by ST operations toB, thenG has
u� 1 ST order edges that define a total order on theseu operations. There are no
other ST order edges.

4. Each node labeled by LD(P�B�V), V �
 �, has one incoming inheritance edge
from a ST(P� �B�V) node (whereP may equalP�). There are no other inheritance
edges.

5. (a) Let �i � j �k� be a triple of nodes with the property that there is a ST order
edge fromi to k and an inheritance edge fromi to j. Then there is a forced
edge on some path fromj to k. Specifically, if j is labeled by LD(P�B�V),
V �
 � , then there is either a forced edge directly fromj to k or there is a
(program order) path fromj to another nodej �, where j � also inherits its
value fromi, and a forced edge fromj � to k.

(b) Similarly, let j be a node labeled by a LD(P�B��) operation, Then there is
a forced edge on a path to the first node in the ST order for blockB.

An example of a constraint graph is given in Figure 3. The following claim is
implicit in the work of Gibbons and Korach [7] and follows directly from the definition
of constraint graph.

Lemma 3.1 A trace T has a serial reordering if and only if some constraint graph for
T is acyclic.

Proof: Suppose thatT 
 t1 �t2 � � � � �ti has a serial reorderingΠ and letT � be the corre-
sponding serial trace. LetG be the graph obtained fromΠ as follows. The nodes of the
graphG are labeled by operations ofT, and are numbered according to their order in
T. There is an edge from the node numbereda to node numberedb if and only if

� ta is an operation of processorP andtb is the first operation ofP to follow ta in
T �, in which case the edge is a program order edge, or

7



1 2 4 5

3

ST(P1,B,1) LD(P2,B,1) LD(P2,B,1) LD(P2,B,2)

ST(P1,B,2)po−STo

inh

inh

po po

inh

forced

Figure 3: A Constraint Graph. Edge labels indicate inheritance (inh), program order
(po), store order (STo), or “forced” edges. The inheritanceedge from node 1 to node 4
and the store order edge from node 1 to node 3 forces an edge from node 4 to node 3,
which prevents trace orders in which the LD in node 4 does not get its value from the
most recent ST.

� ta is a ST operation to blockB andtb is the first ST operation to blockB to follow
ta in T �, in which case the edge is a ST order edge, or

� tb is a LD operation to blockB andta is the last ST operation inT � to blockB
beforetb, in which case the edge is an inheritance edge, or

� for somei, the triple�i �a�b� is such that there is a ST order edge fromi to b and
an inheritance edge fromi to a, in which case the edge is a forced edge, or

� a is a node labeled by a LD(P�B��) operation, andtb is the first ST operation to
blockB in T � (if any), in which case the edge is a forced edge.

It is straightforward to show that graphG is a constraint graph forT, in which every
edge has at least one annotation. In particular, edges ofG satisfy edge constraint 2
becauseT � respects the program order ofT and by construction (bullet 1), and satisfy
edge constraint trivially 3 by construction (bullet 2). To see that edges ofG satisfy
edge constraint 4 note that, sinceT � is a serial trace, there is no ST operation to block
B in T � earlier than any LD(P�B��) operation, and soG does not have any inheritance
edge into a node labeled LD(P�B��) for anyP andB. Also, by construction (bullet 3),
all other LD�P�B�V) nodes have one incoming inheritance edge from the most recent
ST to blockB in T �, and this ST node must be in ST(� �B�V), again sinceT � is serial.
Edge constraint 5 is satisfied trivially by construction (bullets 4 and 5). Moreover,G is
acyclic because all edges other than forced edges respect the orderΠ, and forced edges
cannot introduce cycles. To see the latter fact, note that iftriple �i � j �k� is as in edge
constraint 5, with all three nodes labeled by operations to block B, then there is a ST
order edge fromi to k in G andk must follow i in T �, and thus must followj sincei is
the last ST toB precedingj.

8



Conversely, suppose thatG is an acyclic constraint graph for traceT. Then in
fact any total order of the node numbers ofG that respects the edges ofG is a serial
reordering ofT. To see this, letT � be the trace corresponding to a total ordering of
the nodes ofG. The program order edges ofG ensure thatT � respects program order.
The inheritance, forced, and ST order edges together ensurethat the trace is serial:
by definition, a node labeled LD(P�B�V) has an inheritance edge from a ST node in
ST(� �P�V), and a forced edge ensures that the next ST in ST order must follow the LD
node. Finally, note that at least one such total order of the nodes ofG must exist since
G is acyclic.

3.2 Node Bandwidth Bounded Graphs

For verification purposes, we are interested in constraint graphs (with ordered nodes)
that arenode bandwidth bounded. We denote the set�1�2� � � � � i� by Ni . We say that
a graph with node setNn is k-node bandwidth boundedif for all i, at mostk nodes in
Ni have edges to or from nodes in the setNn� Ni . For example, the graph in Figure 3
is 3-node-bandwidth bounded. Note that node bandwidth boundedness is a property of
both the graph and a fixed node ordering. Also, note that our definition differs from
the usual edge-based notion of graph bandwidth, e.g., the number of edges between
nodes inNi andNn� Ni may be unbounded. For brevity, we omit the word “node” and
simply refer to bandwidth bounded graphs.

We will represent a directed,k-bandwidth bounded graphG as a string, called a
k-graph descriptor, in a way that facilitates a finite state test that a graph is acyclic. For
later convenience, nodes and edges ofG may have labels from some finite alphabets
A andE , respectively. (In our application,A will be the set of trace operations, and
symbols inE will denote the edge annotations of section 3.1.) Intuitively, our graph
description notation simply lists nodes by number and edgesas pairs of node numbers,
with additional labels (if any) immediately following the node or edge to which they
belong. A naive approach numbers all nodes and lists them in order. For example, the
graph in Figure 3 corresponds to the description:

1, ST(P1�B�1), 2, LD(P2�B�1), (1,2), inh, 3, ST(P1�B�2), (1,3), po-STo, 4,
LD(P2�B�1), (1,4), inh, (2,4), po, (4,3), forced, 5, LD(P2�B�2), (3,5), inh, (4,5),
po

Our approach is like the naive approach, but is finite-state by exploitingk-bandwidth
boundedness. In our approach, node numbers are not used directly to identify nodes
and edges. Rather, each node may have one or more ID’s (identification numbers)
between 1 andk

�
1. When all edges in or out of the node with IDi have been listed,i

may be used to identify another node. The graph in Figure 3 is 3-bandwidth bounded,
so we can describe it as:

1, ST(P1�B�1), 2, LD(P2�B�1), (1,2), inh, 3, ST(P1�B�2), (1,3), po-STo, 4,
LD(P2�B�1), (1,4), inh, (2,4), po, (4,3), forced, 1, LD(P2�B�2), (3,1), inh, (4,1),
po

In this example, once all edges into the first four nodes of thegraph have been listed,
the number 1 is recycled to refer to node 5.

9



As will become clear from our formal definition below, a node may have more than
one ID (with respect to a givenk-graph descriptor). This is useful, for example, when
modeling the following situation: the value of a ST node in the constraint graph is in
multiple cache locations of a finite state protocol, in whichcase it is convenient that
these location addresses are the graph IDs for the ST node.

More formally, with respect to some fixedk and symbol alphabetsA andE , we
define anode descriptorto be a symbol inNk�1, possibly followed by a symbol inA
(that is, a node ID possibly followed by a node label) and anedge descriptorto be
a symbol of the form�i � j � where i � j 	 Nk�1, possibly followed by a symbol inE .
A k-graph descriptor is simply a sequence of node descriptors and edge descriptors,
along with symbols from the set�add-ID�I �I � � �1 � I �I � � k

�
1�. Intuitively, the add-

ID(I �I �) symbol causes the IDI � to be added to the node with IDI , if any (andI � is no
longer associated with any other node).

Testing if a string is a proper graph descriptor (does not have two consecutive sym-
bols fromA , for example), is easily done in finite state.

Let sbe ak-graph descriptor. The graphG represented by shas a number of nodes
equal to the number of node descriptors ofs, with theith node having the label (if any)
of the ith node descriptor. Associated with each prefixs� of s is a set ofactivenodes,
each of which has a non-empty set of ID’s. Here, for each nodei, we define the ID-set
of i with respect tos�, denoted by ID-set(i �s�), as follows. Ifs� has fewer thani node
descriptors, then ID-set(i �s�) is empty. Ifs� has exactlyi node descriptors, and ends
with a node descriptor which has IDI , then ID-set(i �s�) 
 �I �. Next, suppose thats�
has more thani node descriptors.

� If s� 
 s�� �I and I 	 ID-set(i �s��), then ID-set(i �s�) is defined to be ID-
set(i �s��)��I �. (ID I is now being used to label another node, and so is no longer
in the ID-set of theith node.)

� If s� 
 s�� �add-ID�I �I � � and I 	 ID-set(i �s��), then ID-set(i �s�) is defined to be
ID-set(i �s��)� �I ��. (Add I � to the ID-set of nodei.)

� If s� 
 s�� �add-ID�I � �I � with I �
 I � andI 	 ID-set(i �s��), then ID-set(i �s�) is defined
to be ID-set(i �s��)��I �. (Again, ID I is now being used to label another node,
and so is no longer in the ID-set of theith node.)

� Otherwise, ID-set(i �s�) = ID-set(i �s��). (No change to the ID-set of theith node.)

Then, the edges ofG are defined as follows: for each prefix of the forms� � �I �I � � of s, if
for some pair�i � j � of nodes ofG, I 	 ID-set(i �s�) andI � 	ID-set(j �s�) then edge�i � j �
is in G. Moreover, ifs� � �I �I � � �β is also a prefix ofs then the edge�i � j � has labelβ.

The next lemma shows that anyk-bandwidth bounded graph can be represented by
ak-graph descriptor in which the size of the ID set for active nodes is exactly 1.

Lemma 3.2 Any k-bandwidth bounded graph can be represented by a k-graph de-
scriptor.

Proof: We prove a slightly stronger property, namely that anyk-bandwidth bounded
graphG can be represented by ak-graph descriptors in which all of the nodes inNn�1

10



with edges to noden, plusn itself, are in the active set associated withs, and the size
of the ID-set for each active node is exactly 1. The proof proceeds by induction on the
number of nodes ofG. For simplicity, we ignore edge and node labels, but these can be
trivially be added to an (unlabeled) graph descriptor. The base case, whenG has one
node, is also trivial to prove.

For the induction step, letG haven � 1 nodes. LetG� be the graph obtained by
removing noden and all of its incident edges fromG. Let graphG�� be obtained by
adding toG� edge�i �n� 1� if and only if edge�i �n� is in G, and edge�n� 1� i� if and
only if edge�n� i� is in G. Let E�� be the set of edges added toG�, in order to obtainG��.
We claim thatG�� is alsok-bandwidth bounded. In fact, for alli �1 � i � n� 2, the set
of nodes inNi with edges to or fromNn� i in graphG is the same as the set of nodes in
Ni with edges to or fromNn�1� i in graphG��.

By the induction hypothesis,G�� has ak-graph descriptor,s�� in which all of the
nodes inNn�2 with edges to noden�1, plusn�1 itself, are in the active set associated
with s��. To obtain ak-graph descriptor forG, first remove all descriptors of edges in
E��. Next, append tos�� a node descriptor for noden. The ID for this node descriptor
can be found as follows. If there are onlyk active nodes associated withs�, then some
ID in the range�1� � � � �k �

1� is not in the ID-set of any of these nodes (since each
active node has an ID-set of size 1). Otherwise, of thek

�
1 active nodes, one does not

have any edge to or from noden. The ID of this node can then be recycled for noden.
If s� is the strings�� with the node descriptor for noden appended, then all nodes ofG
with edges to or fromn, plusn itself, are in the active set associated withs�. Finally,
append tos� the edge descriptors of each edge to or from noden, to obtain thek-graph
descriptors for graphG.

3.3 Checking for Cycles in a Bandwidth Bounded Graph

Lemma 3.3 There is a finite state cycle-checker that, given as input a k-graph descrip-
tor, accepts if and only if the string represents an acyclic graph.

Proof: While reading node descriptors, edge descriptors, and add-ID symbols from
left to right in the input string, the cycle-checker maintains a so-calledactive graph
containing at mostk

�
1 nodes, in which each node has an associated ID-set. The

checker ignores node and edge labels. Upon reading a node ID or edge pair, the cycle-
checker does the following:

� Suppose that a node ID, sayI , or an add-ID�I � �I � symbol is read. If there is a
node with ID-set�I � in the active graph, then for all pairs of edges�H �I � � �I �J�
in the active graph (whereH �I �J refer to node IDs) a new edge�H �J� is added,
if not already in the graph. (The edge�H �J� is referred to as the contraction
of �H �I � and �I �J�). Then the node with ID-set�I � and all incident edges are
removed from the graph. Otherwise, ifI is in the ID-set of some node that has
an ID-set of size greater than 1, thenI is removed from the ID-set of this node.
Finally, if the symbol read is a node-IDI , then a new node with IDI is added to
the graph and if the symbol read is add-ID�I � �I � thenI is added to the ID-set of
the node whose ID-set containsI � (if any).

11



� When edge�I �I � � is read, an edge is added from node with IDI to the node with
ID I �. If addition of this edge introduces a cycle in the graph, theautomaton
rejects.

If, upon reaching the end of the string, the checker has not rejected, it accepts. Correct-
ness of the checker follows from the fact that the edge contraction plus node removal
done in the first test of the checker preserves cycles in the graph.

3.4 Observer-Checker Verification Method

In our method for protocol verification, theobservergenerates the same set of traces
as the protocol, but augments each trace with a description of a k-bandwidth bounded
graph. Given a run of the observer, thecheckerchecks that the graph is an acyclic
constraint graph for the trace.

Let P be a protocol. LetA be the set of LD and ST operations ofP . An ob-
serverfor P is itself a finite state protocol. The alphabet (set of actions) of an observer
consists of the symbols used in ak-graph descriptor for somek, in which the node
label set isA and the edge label setE is �inh, po, forced, STo, po-STo, po-inh, po-
forced�, whereinh, po, STo andforced indicate inheritance, program order, ST order
and forced edges, respectively, andpo-STo, po-inh, andpo-forced denote edges with
two annotations. Note that each run of an observer contains atrace as a subsequence,
namely the subsequence of symbols fromA .

Definition 3.1 An observerO for P is awitness forP if (i) the set of traces ofO equals
the set of traces ofP , and (ii) each run ofO describes an acyclic constraint graph (as
defined in section 3.1).

Theorem 3.1 Let P , O be protocols. IfO is a witness forP , thenP is sequentially
consistent. Moreover, testing whetherO is a witness forP can be reduced to the
language inclusion problem for finite state automata.

Proof: If protocol O is a witness for protocolP , then sequential consistency ofP

follows directly from property (i) of Definition 3.1 above and from Lemma 3.1.
In testing whetherO is a witness forP , the check for property (i) can trivially be

reduced to the language equivalence problem for finite stateautomata. In practice, this
check is trivial by construction, since the observer is a noninterfering augmentation of
the protocol.

We next describe thechecker, a finite state automaton that checks property (ii) of
Definition 3.1. We assume thatk (the bandwidth bound) is fixed. The alphabet of the
checker equals that of the observer. Given as input a runr of observerO, the checker
does the following:

� Run the cycle-checker of Lemma 3.2 fork-bandwidth bounded graphs onr. If
the cycle-checker rejects, then reject. Otherwise,r is an acyclic,k-bandwidth
bounded graph.

� In concert, check that edges satisfy the edge annotation properties listed in sec-
tion 3.1 - we next describe in detail below how this check is done. If the edge
annotation properties are satisfied, then accept, else reject.

12



By the definition of a witness in section 3.1, the checker accepts if and only ifr de-
scribes an acyclic constraint graph.

The check for part (i) can be done in a finite number of states, using the finite state
cycle checker of section 3.3.

We now show that the edge annotation checks needed for part (ii) can also be done
with a finite number of states. To perform these checks, the checker associates each
node in the active graph with its label (namely LD or ST operation) as well as its ID-set.

First, consider the check that the operations of each processor are totally ordered
by program order edges. The checker associates two logical bits with each active node,
calledprogram-edge-inandprogram-edge-out. These are initially set to false. When
an edge�I �I � � with program order label is added to the graph, the checker does not
annotate the edge with its label. Rather, ifprogram-edge-outof the node with IDI is
set to true, the checker rejects, since there must be more than one program order edge
out of I . OtherwiseI ’s program-edge-outbit is set to true. Similarly, ifprogram-edge-
in of the node with IDI � is set to true, the checker rejects, since there must be more than
one program order edge into ofI �. Otherwise theprogram-edge-inbit of I � is set to true.
Finally, the checker tests that, over all nodes, exactly onenode hasprogram-edge-in
set to false when it is removed from the active graph (this is the first node in program
order) and that exactly one node hasprogram-edge-outset to false (this is the last node
in program order), and that these two nodes be distinct. All of this can be done in finite
state. The check that the ST operations to a given block are totally ordered by ST order
edges is similar.

Next, we describe the check that each node labeled by LD(P�B�V), V �
 �, has
one incoming inheritance edge from a node with label in ST(*,B�V). The checker
maintains a single logical bit,inheritance-edge-in, for each node in the active graph
with a LD(P�B�V) label whereV �
 �. When an inheritance edge�I �I � � is added to the
graph, the checker rejects ifI � does not have an associatedinheritance-edge-inbit or if
the inheritance-edge-inbit of I � is already true. Also, ifI �’s operation is LD(P�B�V),
the checker rejects if the label of nodeI is not in ST(� �B�V). Otherwise,inheritance-
edge-inof I � is set to true. Finally, if theinheritance-edge-inlabel of a node is false
when the node is removed from the active graph, then the checker rejects.

It remains to describe how to check that the constraints on forced edges are satisfied,
assuming that the checks on program order, ST order, and inheritance edges above
are satisfied. For each triple�i � j �k� of nodes with the properties thatj is labeled by
LD(P�B�V), there is a ST order edge fromi to k and there is an inheritance edge fromi
to j, it must be checked that there is either a forced edge directly from j to k or there is
a (program order) path fromj to another nodej �, where j � also inherits its value from
i, and there is a forced edge fromj � to k.

For this check, a variable calledforced-edge-on-path-tois associated with each LD
node j when an inheritance edge is added intoj. This variable is uninitialized unless
there is already a ST order edge fromi to some nodek, wherei is the node from which
j inherits its value. In the latter case, theforced-edge-on-path-tovariable is initialized
to point to nodek. Otherwise, this initialization happens when the ST order edge is
added fromi to k. In addition, inheritance edges and forced edges are labeled as such,
and when two edges�H �I � and �I �J� are contracted, where�I �J� is a forced edge and
H andI are in the same program order (i.e. are labeled with operations by the same

13



processorP), the resulting contracted edge�H �J� is labeled as a forced edge.
The test is complicated by the fact that nodej may no longer be part of the active

graph (i.e. have a non-empty ID-set) before a forced edge is added on some program
order path fromj to k. To handle this, the checker defers the removal of any LDj from
the graph until either (i) the variableforced-edge-on-path-tois initialized, say tok, and
there is a forced edge fromj to k, or (ii) another LD nodej � is added to the active
graph, wherej � follows j in program order and inherits its value from the same node
as j does. The graph maintained by the checker consists of activenodes and deferred
nodes, and deferred nodes are no longer maintained once one of the conditions (i) or
(ii) is met. Thus, the number of nodes whose removal from the graph is deferred is
bounded, since for each ST nodei in the active graph, there is at most one deferred LD
node j per program order. This ensures that the check can be done in finite state.

The last edge annotation property that needs to be checked isas follows: for each
node j labeled by a LD(P�B��) operation, there is a forced edge on a path to the first
node in the ST order for blockB. For each processorP and blockB, the checker does
not remove from the graph the last node, sayj, labeled LD(P�B��) in P’s program
order, until it has identified the first node, sayk, in the ST order for blockB. The node
k is identified when its ID-set becomes empty and it has no incoming ST order edge.
Oncek is identified andj is no longer an active node of the graph, the checker rejects
if there is no forced nodej to k.

4 Verification of Real-World Protocols

We claim that every real-world sequentially consistent protocol has a finite state wit-
ness observer and that the observer can be generated automatically from the protocol.
To provide intuition that supports this claim, we first argueinformally that a weaker
property holds for real-world sequentially consistent protocols, namely that the wit-
ness graph corresponding to each protocol run is bandwidth bounded. Later in this
section we make this intuition precise, and also show the stronger property that the
witness graph corresponding to each run is not only bandwidth bounded but can be
generated in finite state from the run.

Let Rbe a run of a protocol and letR1 be a prefix ofR. LetR2 be the corresponding
suffix of R, so thatR
 R1R2. We need to show that if we view the operations ofR as
nodes of a constraint graph, the number of operations ofR1 with edges to operations
of R2 is bounded. We consider each type of edge in turn. It is easy tosee that at
mostp operations ofR1 have program order edges to operations ofR2, namely the last
operation in each processor’s program order, if any.

We next consider inheritance edges; here we appeal to our understanding of how
real-world sequentially consistent protocols work. Theseprotocols create “views” of a
block via ST operations, then copy these views into various protocol storage locations
(such as queues, network message packets, or caches of otherprocessors) where they
can be read via the LD operation, and eventually delete or overwrite views. Multiple
views of a block may exist in the protocol state. For example,one processor may do
a ST to a block, thus creating a new view, while stale views of the block still exist
in other caches. We call a ST operation ofR1 inh-activeif one or more copies of the

14



value (view) written by that ST is stored in the protocol state upon completion of run
R1. If a ST is inh-active, its value may be inherited by LDs inR2. A key point is that,
since the protocol is finite-state, only a constant number ofSTs ofR1 can be inh-active.
Moreover, in real-world protocols, LDs ofR2 that inherit their values from STs ofR1

can only do so from STs ofR1 that are inh-active, because these LDs obtain their values
from storage locations of the protocol.

Third, we consider ST order edges. Again, we appeal to a property of real-world
protocols here, namely that for all runs, for each blockB, the order of STs toB in the
run is in fact the same as the order of the STs in the corresponding serial reordering.
Thus, if we call ST nodes ofR1 with no outgoing ST order edgeSTo-activenodes,
the number of STo-active nodes is at most the number of blocksb of the protocol.
(Our class of verifiable protocols will actually be defined insection 4.2 to encompass
protocols that do not satisfy this per-block real-time ST reordering property.)

Finally, we consider forced edges. The only LD nodes ofR1 that may have forced
edges to STs ofR2 are those LDs which inherit their values from STo-active STsof
R1. For each STo-active operationS of R1 and each processorP, at most one LD of
processorP in R1 need have a forced edge to a node inR2, namely the last LD in
P’s program order that inherits its value fromS. (This follows from edge constraint
5 of section 3.1.) Call such a LD operation aforced-activeLD. Thus, the number of
forced-active LDs ofR1 is at mostpb. In addition, there may be ST nodes ofR1 that
have incoming forced edges from LD nodes inR2. Call theseforced-activeSTs. Each
forced-active ST is the immediate successor of an inh-active ST in ST order; thus, the
number of forced-active STs is bounded by the number of inh-active STs, and therefore
is bounded.

In section 4.1 we define a class of protocols for which the inheritance edges of
a constraint graph can be generated in finite state. Protocols in this class have two
properties, motivated by our informal arguments above. First, on a LD transition, the
value of the LD is obtained from a known storage location of the protocol. Second,
by tracking the movement of data among protocol storage locations, it is possible to
automatically infer which ST conferred its value to each storage location. Then in
section 4.2 we describe conditions under which the ST order edges of a constraint
graph can be generated in finite state. In section 4.3, we define a classΓ of protocols
that simultaneously satisfy the conditions of sections 4.1and 4.2. We show that for
protocols inΓ, the forced edges of a protocol run can also be generated in finite state,
and conclude that such protocols have finite state observers.

4.1 Tracking Labels for Protocols

When a LD is performed by a protocol, how can we tell from whichST it inherits its
value? We need to know from which storage locationl of the protocol the LD gets
its value, and which ST operation conferred its value to location l . We now describe
protocols withtracking labelswhich provide an automatic way to infer this knowl-
edge. While real protocol descriptions do not explicitly have tracking labels, for all
sequentially consistent protocols known to us, with an appropriate protocol description
language the labeling could be generated automatically from the protocol description.

15



First, we must formalize the concept of storage locations. We have previously de-
fined a protocol as a finite-state machine. Now, let us augmentthe finite-state machine
with a finite numberL of storage locations, each able to hold a value chosen from some
finite domain. The state of an augmented protocol is defined tobe an�L�

1�-tuple con-
sisting of the state of the finite-state machine, followed bythe values in each storage
location. Transitions can change the finite-state machine state, as well as assign val-
ues (chosen from the finite domain) to all storage locations.Obviously, protocols with
storage locations are theoretically exactly as expressiveas our original definition of
protocols, because the augmented state space is still finite. Explicitly defining storage
locations, however, allows capturing how real protocols are described in practice.

In practical descriptions of real memory system protocols,the memory block values
that are stored and loaded are not encoded arbitrarily into the protocol state. Instead,
they are explicitly held in storage locations, for example,in caches, queues, network
messages, memory, etc. Furthermore, the set of operations performed on these storage
locations is very restricted. In particular, new values areinjected into the protocol only
by ST transitions, since the memory system does not create data. All other assignments
of memory block values are simply copies from previously-assigned storage locations
or perhaps a predefined value indicating an invalid value.

If a protocol uses storage locations in this manner, we can add tracking labels that
help determine which ST provided the value for each LD. The tracking labels are of
two types.

� Each transition inδ (whereδ is the set of transitions on LD and ST operations)
is labeled by a location identifierl 	 �1�L�. Intuitively, the operation is read from
or written to locationl . Formally, the LD/ST tracking function is a mapping
f : δ � �1�L�.

� For each transitiont in δ� (whereδ� is the set of transitions on actions other
than LD and ST operations) and eachl 	 �1�L�, the copy tracking label,cl �t �,
indicates whether the value stored in locationl is unchanged by the transitiont
or whether it has been copied from another location, namelycl �t �. Formally, for
eachl , there is a copy tracking functioncl : δ� � �1�L� (with cl �t � 
 l if the value
is unchanged).

In typical protocol descriptions arising in practice, LD and ST operations explicitly
deal with some storage location in the implementation, and values are copied from one
storage location to another in assignment statements, so itwould be easy to generate
the tracking functions directly from the description. Notethat although the actual value
of L is enormous for a real memory system — being the sum of the sizes of the entire
memory plus any caches, queues, and buffers — in practice, memory system protocols
are verified for small values ofp, b, andv, soL tends to be moderate as well.

Intuitively, for every runR and locationl of a protocolP with tracking labels, the
ST index ofl with respect toR is either 0 or is the index of the ST operation from which
locationl inherits its value upon completion of runR. Formally, theST index, denoted
by ST-index(R� l ), can be defined inductively using the tracking labels as follows.

1. If �R� 
 0 thenST-index(R� l ) 
 0.

16



2. If R
 R� �A, if the transitiont taken onA is a ST operation with tracking labell ,
and ifA is theith trace operation ofR, thenST-index(R� l ) 
 i. Otherwise, ifA is
not a LD or ST operation thenST-index(R� l ) 
 ST-index(R� �cl �t �). Otherwise,
ST-index(R� l ) = ST-index(R� � l ).

Example: An example to illustrate ST indexes and tracking labels is given in Figure 4.
This example describes a run of an extremely simple protocolwith two processors,P1
andP2, and three blocks,B1�B2� andB3. Each processor has two cache locations in
which values of blocks can be stored (Figure 4(b), Initial State). Thus, there are four
locations in all:P1’s locations are numbered 1 and 2, andP2’s locations are numbered
3 and 4. In the figures, each location contains information about which block is being
stored there, if any, and what its value is.

Part (a) of the figure shows a short runR of the protocol.R is of length four and
has three ST operations and one “Get-Shared” operation. TheGet-Shared operation
causes the value ofB1 stored in location 1 byP1 after the first action ofR to be copied
to location 3 ofP2; it is reminiscent of how values of blocks can be shared or copied in
real protocols, albeit highly simplified. Part (b) of the figure shows the protocol state
changing for each action inR. The tracking label of each transition corresponding to
each action in runR is also given. The first operation ofR, ST(P1�B1�1) has tracking
label 1, indicating thatB1’s value is written to to location 1. The second operation,
ST(P2�B2�2), has tracking label 4; thusB2’s value is written into location 4. The third
action of R is not a LD or ST operation and so there are four copy tracking labels
c1 � � � � �c4 associated with this action, one per location. Note thatc3 
 1 since the
value now stored in location 3 is copied from location 1, butci 
 i for i 
 1�2, and
4, since the contents of locations 1, 2, and 4 are unchanged bythe Get-Shared action.
The last operation ofR, ST(P1�B3�3), has tracking label 1 indicating that blockB1 is
overwritten byB3 in location 1. Thus, upon completion of runR, the ST index of each
location is given by part (c) of the figure.

Let R� �LD �P�B�V � be a prefix ofR in which the LD�P�B�V � operation is thejth
trace operation ofR. Intuitively, if the LD operation gets its value from location l
and locationl inherits its value from theith trace operation ofR (which must be a ST
operation), then�i � j � is an inheritance edge. More precisely, lett be the transition taken
on the LD operation, and let the tracking label oft be l . Then, ifST-index�R� � l � �
 0
the edge�ST-index�R� � l � � j � is aninheritance edgeof R.

For any runR of a protocol with tracking functionsf andcl , 1 � l � L, let the
inheritance graphof R with respect to these tracking functions be the graph whose
nodes are the trace operations ofR, numbered by their order inR, and whose edges are
the inheritance edges ofR. This graph isL-bandwidth bounded, whereL is the total
number of locations in a state of the protocol. This is because, for any prefixR� of
R, at mostL ST operations are “active”, in the sense that they are indexed in the set
�ST-index�R� � l �� and thus may be in future inheritance edges. Indeed, we have the
following lemma.

Lemma 4.1 LetP be a protocol with L locations and tracking functions f� �cl �. There
is a finite state automaton that, given a run R ofP , generates a descriptor of the
inheritance graph of R.

17



Protocol RunR
 ST�P1�B1�1� �ST�P2�B2�2� �Get-Shared�P2�B1� �ST�P1�B3�3�
(a)

Protocol Tracking Resulting
Operation Labels State

Initial State

P1 P2

location contents
1 �
2 �

location contents
3 �
4 �

ST(P1�B1�1) 1

P1 P2

location contents
1 B1 : 1
2 �

location contents
3 �
4 �

ST(P2�B2�2) 4

P1 P2

location contents
1 B1 : 1
2 �

location contents
3 �
4 B2 : 2

Get-Shared(P2, B1)

c1 1
c2 2
c3 1
c4 4

P1 P2

location contents
1 B1 : 1
2 �

location contents
3 B1 : 1
4 B2 : 2

ST(P1�B3�3) 1

P1 P2

location contents
1 B3 : 3
2 �

location contents
3 B1 : 1
4 B2 : 2

(b)

ST-index�R,1� 3
ST-index�R,2� 0
ST-index�R,3� 1
ST-index�R,4� 2

(c)

Figure 4: ST Index and Tracking Labels. Part (a) shows a shortprotocol run of length
4. Part (b) shows the protocol running, with the corresponding tracking labels and
updates to the state. Part (c) lists the ST-index of each location with respect to the run.

18



Proof: The generator generates the graph while executing the protocol on runR, and
outputs an extended graph descriptor. Upon transitiont 
 �q�A�q� �, the generator does
the following:

� If A is a ST operation andt has tracking labell then output “l , A”. (Recall that
this adds a new node to the graph with IDl and label A.)

� For eachl , if cl �t � �
 l then output “add-ID(cl �t � � l )”. (Intuitively, the ST node
with ID cl �t � is being copied to locationl , sol is added to the set of IDs for this
ST node. More generally, the number of IDs of a ST node equals the number of
copies of the ST in the protocol state.)

� If A is a LD operation andt has tracking labell then output “L
�

1�A� �l �L �
1�,

inh”. (This causes a new node with IDL
�

1, labeledA, to be added to the graph,
and an inheritance edge to be added intoA.)

4.2 Finite State ST Reordering

We now consider the ST order edges. Intuitively, in order to guarantee that sequential
consistency will be decidable, we restrict the protocols tothose in which a bounded-
size, finite-state automaton can generate the ST order edges. This restriction guarantees
that, in theory, a decision procedure could try all possibleautomata. In practice, all
memory protocols of which we are aware obey very strong versions of this restriction.

Let R be a run of protocolP . A ST order graphfor R is a graph whose nodes are
the trace operations ofR, numbered by their order inR. As in section 3.1, for each
block B, if there areu ST operations toB in R then there areu� 1 ST order edges in
the graph which define a total order on theseu operations.

A ST order generatorfor P is a finite state automaton that, given runR as input,
generates ak-graph descriptor that describes the ST order graph, for some k. Let �G �
denote the number of states in a ST order generatorG , and let�P � denote the number
of states in the protocolP . We impose a further requirement that�G � � �P �.

Protocols implemented in practice actually obey the even stronger restriction that
�G � 
 0. In other words, they obey thereal-time ST reorderingproperty that for all
traces, for each blockB, the trace order of STs toB is in fact the same as the corre-
sponding serial reordering. Thus, the ST order generator istrivial.

We believe it unlikely that a real protocol will ever be designed that requires
�G � � �P �. Having �G � � �P � would imply that the correct ST order depends on more
information about the behavior of the protocol than the protocol itself is able to distin-
guish. Although the undecidability result of Alur et al. [3]demonstrates the existence
of protocols for which no finite-state ST order generator exists, practical protocol de-
signs manage complexity by ensuring that all needed information is always encoded in
the protocol state.

One well-known protocol that does require a non-trivial (but still finite-state, and
much smaller than our restriction) ST order generator is theLazy Caching protocol of
Afek et al. [2], but this protocol has not been implemented ina real machine. We now

19



explain briefly why the lazy caching protocol has a finite state ST order generator. In
the lazy caching protocol, a processorP can perform a ST(P�B�V) operation at any
time, whereupon the pair�B�V � is added to an out-queue for processorP. Another
operation of the protocol, namelymemory-write, removes a (block,value) pair from a
queue of a processor, and writes the value into memory. Thus,it is the order in which
thememory-write steps are performed, rather than the order in which STs are done in
real time, that determine the serial ordering of the ST operations to a block.

We next describe a ST order generator for a single blockB of the protocol, which,
given a runR of the lazy caching protocol, generates a descriptor of the graph whose
nodes correspond to the STs to blockB in runRand whose edges are the ST order edges
for these nodes. While scanning the run from left to right, each time an operation
in ST(*,B�V) appears in the run, the generator adds a new node to a graph that it
maintains in its internal state. The generator also recordsthe program order of these
nodes. The first time that amemory-write operation is done to blockB at processor
P, the generator records that this is done by processorP. On the next memory-write
to blockB, say by processorP�, the generator adds a ST-order edge from the first ST
node in the program order ofP to the first node in the program order ofP�. On each
subsequent memory-write to blockB, say by processorP��, the generator adds an edge
from the last ST in the ST order determined by the edges added so far, to the first node
in the program order ofP�� which does not yet have an incoming ST order edge. Each
time a node or edge is added to the graph, the corresponding node or edge descriptor is
output by the generator. Furthermore, once a node has both anincoming and outgoing
ST order edge, it can be removed from the internal graph maintained by the generator,
thus keeping the internal graph finite.

The overall ST order generator is the cross product of the ST order generators for
each blockB. The size of the internal graph maintained by the ST order generator is
bounded as a function of the sizes of the queues of the processors, since this limits the
number of STs that can already have appeared in the run but arenot yet serially ordered
by a memory-write operation.

4.3 TheΓ Protocol Class

Let P be a protocol. Letf � �cl �1 � l � L� be tracking functions and letG be a ST
order generator (with�G � � �P �). With respect tof � �cl �, andG , for each runR of P ,
let W �R� be the graph whose nodes are the trace operations ofR. The edges ofW �R�
are the inheritance edges of the inheritance graph with respect to f and �cl �, the ST
order edges given byG , the forced edges implied by these inheritance and ST order
edges, and the program order edges given by the order of operations inR.

Definition 4.1 A protocol P belongs to the classΓ if for some tracking functions
f � �cl � and some ST order generatorG , for all runs R ofP , the graph W�R� is an
acyclic constraint graph.

Theorem 4.1 Every protocol inΓ has a finite state witness observer.

Proof: We describe a finite state observerO that, givenP in Γ, along with associated
tracking functionsf � �cl � and ST order generatorG , converts a runR of P into a

20



descriptor for a constraint graphW�R�.
O adds each LD and ST operation ofR to the graph as the operation is read. From

Claim 4.1 and section 4.2, the inheritance and ST order edgescan be generated in finite
state. It is also trivial to generate the program order edges.

It remains to extend the observer so that forced edges are also generated. For this
purpose, each nodeN� labeled by a LD(P�B�V) operation remains in the active graph
maintained by the observer until one of the following eventsoccurs. Let the inheritance
edge toN� be from nodeN. (i) Another node,N��, labeled by LD(P�B�V) is added to
the graph, along with inheritance edge�N �N�� �. NodeN� can now be removed because
there is a path of program order edges from theN� to N��. (ii) A ST order edge fromN,
say to nodeS, is present in the graph. In this case, a forced edge is added fromN� to S.

The number of LD nodes that need to be in the active graph for the purpose of
generating forced edges is bounded byp (the number of processors) times the number
of ST nodes with no outgoing ST order edges. The latter numberis bounded, since the
ST order graph is bandwidth bounded. In addition, if ST nodeShas an incoming ST
order edge�N �S� where the value of the ST labelingN may be read by future LDs, then
Smust be maintained in the active graph. The number of such ST nodesS is at mostL.

Thus, the witness graph is bandwidth bounded, where the bound depends only on
G , L, p, andb and does not otherwise depend onR, and so the observer is finite state.

To summarize, we have shown the following. LetP be a protocol for which track-
ing labels can be generated automatically and the real-timeST reordering property
holds (or more generally, for which a ST order generator exists). Then, sequential
consistency can be verified by an algorithm that first generates the observer from the
protocol in a noninterfering fashion (so that the the set of traces of the observer equals
those of the protocol) and then uses a model checker (based onour cycle-checker) to
verify that every graph descriptor generated by the observer describes an acyclic con-
straint graph. Note that the checker is independent of the protocol.

4.4 Size of Observer

In order to apply our constraint graph method to the verification of a protocol, the
major obstacle will be the size of the observer. In addition to the protocol state, the
observer needs to maintain in its state a subgraph of the constraint graph that may have
a number of nodes up to the bandwidth bound of that graph. Here, we describe an upper
bound on the number of bits of extra state required by the observer, under reasonable
assumptions.

First, we bound the bandwidth of the constraint graphs of a protocolP with L loca-
tions. We consider here the case that the protocol has real-time ST ordering, and that
the value of a ST is stored in some protocol location at least until the ST following it in
ST order has been done. In this case, with respect to a prefix ofa run, at mostL distinct
ST nodes may be actively stored in protocol locations and thus may have future outgo-
ing inheritance edges. Up topbLD nodes may contribute to the bandwidth needed for
generating forced edges. Nodes needed for generation of program order edges and ST
order edges are already counted among these nodes, so the total bandwidth is bounded
by L

�
pb.

21



For each active node of the constraint graph, the node label must be stored. This
requires up to lgp

�
lgb

�
lgv

�
1 bits. Here lg denotes the ceiling of log to the base

2; 1 bit indicates whether the label is a LD or ST, and parameters P�B, andV are
represented using the other bits. Also, IDs for each ST node are needed, in order to
generate inheritance edges. An additionL lgL bits are needed to store IDs.

Edges of the constraint graph must also be represented. If the active nodes are
stored in a linear array, no extra storage is needed for edges. Roughly, this is because
the nodes can be stored in an order consistent with the partial order of the constraint
graph, so that graph edges can be inferred. For example, in the linear array order, a ST
to blockB is followed (not necessarily contiguously) by LD nodes thatinherit its value,
and no other ST to the same block separates them, so inheritance edges are completely
determined by the linear order.

Thus, an upper bound on the number of bits of extra state needed by the observer (in
addition to the protocol state) is�L �

pb� �lg p
�

lgb
�

lgv
�

1�� L lgL bits. This upper
bound is likely to be substantially less than the number of bits in the protocol itself.
Real memory system protocols, however, are already roughlyat the limits of current
model checking tools, so any additional state is problematic in practice. Fortunately,
some simple optimizations should help to reduce the size of the observer. For example,
the value of a node is needed only to check that each LD gets thesame value as the
ST from which it supposedly inherits its value. This check can be done independently
from the cycle-testing check, thereby saving lgv bits per node.

5 Future Work

Understanding how the size of the observer can be reduced, perhaps by imposing fur-
ther assumptions on the class of protocols to be handled, is an important direction for
future work from a practical point of view, and will help to relate this work to that of
Qadeer [13]. Extending these techniques to other memory models is another important
direction of this research.

Experimental results will be needed to assess the applicability of our results in
practice. We intend to apply our techniques to substantial memory system protocols
using model checking tools and explore means to combat stateexplosion.

An interesting theoretical question is whether the problemof testing sequential con-
sistency is undecidable for protocols that are bandwidth bounded. The reduction used
in the undecidability result of Alur et al. [3] exploits protocols that are not bandwidth
bounded.

Finally, we note that our method can also be used for testing that a particular run of
a protocol does not violate sequential consistency, building on the approach proposed
by Gibbons and Korach [7]. The finite-state observer and checker could be simulated
together with detailed implementation descriptions that are too complex for formal
verification.

22



Acknowledgments

We thank Mark Hill, Dan Sorin, Manoj Plakal and the other members of the Wiscon-
sin Multifacet group for sharing their insights and intuition about proving sequential
consistency.

References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.

IEEE Computer, pages 66–76, December 1996.

[2] Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching.ACM Transactions on
Programming Languages and Systems, 15(1), January 1993.

[3] Rajeev Alur, Ken McMillan, and Doron Peled. Model-checking of correctness conditions
for concurrent objects. InEleventh Symposium on Logic in Computer Science, pages 219–
228. IEEE, 1996.

[4] Tim Braun, Anne E. Condon, Alan J. Hu, Kai S. Juse, Marius Laza, Michael Leslie, and
Rita Sharma. Proving sequential consistency by model checking. In International High-
Level Design, Validation, and Test Workshop. IEEE, 2001.

[5] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Dexter Kozen, editor, Workshop on Logics of
Programs, pages 52–71, May 1981. Published 1982 as Lecture Notes in Computer Science
Number 131.

[6] Anne E. Condon and Alan J. Hu. Automatable verification ofsequential consistency. In
13th Symposium on Parallel Algorithms and Architectures, pages 113–121. ACM, 2001.

[7] Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM Journal on
Computing, 26(4):1208–1244, August 1997.

[8] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Verifying sequential con-
sistency on shared-memory multiprocessor systems. InComputer-Aided Verification: 11th
International Conference, pages 301–315. Springer, 1999. Lecture Notes in Computer
Science Vol. 1633.

[9] Mark D. Hill. Multiprocessors should support simple memory-consistency models.IEEE
Computer, pages 28–34, August 1998.

[10] Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs.ACM Transactions on Computer, 28(9):690–691, September 1979.

[11] Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, and Ganesh Gopalakrishnan. The
‘test model-checking’ approach to the verification of formal memory models of multipro-
cessors. InComputer-Aided Verification: 10th International Conference, pages 464–476.
Springer, 1998. Lecture Notes in Computer Science Vol. 1427.

[12] M. Plakal, D. Sorin, A. Condon, and M. Hill. Lamport Clocks: Verifying a directory cache
coherence protocol. InSymposium on Parallel Algorithms and Architectures, pages 67–76,
1998.

[13] Shaz Qadeer. On the verification of memory models of shared-memory multiprocessors.
Research Report 175, Compaq Systems Research Center, 2001.

23


