Automatable Verification of
Sequential Consistenty

Anne E. Condon and Alan J. Hu
Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver, B.C. V6T 1Z4
Canada
(condon,ajh)@cs.ubc.ca

November 6, 2001

Abstract

Sequential consistendg a multiprocessor memory model of both practical
and theoretical importance. Designing and implementingeanory system that
efficiently provides a given memory model is a challenging arror-prone task,
so automated verification support would be invaluable. dofately, the general
problem of deciding whether a finite-state protocol implateeequential consis-
tency is undecidable. In this paper, we identify a restdatiass of protocols for
which verifying sequential consistency is decidable. Thessincludes all pub-
lished sequentially consistent protocols that are knowastoand we argue why
the class is likely to include all real sequentially coraistprotocols. In principle,
our method can be applied in a completely automated fashiomefification of
all implemented protocols.

1 Introduction

Shared memory multiprocessing has become the commerda@ihynant form of mul-
tiprocessing in current systems. In such a system, all ggars can load information
from or store information to any memory location in a globddieess space shared by
all processors.

Correctly programming a shared memory multiprocessoriregian understanding
of when memory stores performed by one processor becontdevisiloads performed

*The authors were supported in part by research grants freldtional Science and Engineering Re-
search Council of Canada. This paper is the full presemtaifowork that initially appeared in the 2001
Symposium on Parallel Algorithms and Architectures [6].



Real Time Processor1l Processor?2
Initially, memory locationx andy are both 0.
Timel ST r1, x

2 STr2,y
3 LD r2, y
4 LD r1, x

What values are loaded into registetsandr2?

Figure 1: Different memory models allow different resulté/ith a serial memory,
the only possible outcome sl = 1, r2 = 2. With sequential consistency, the per-
processor program order must be respected, but the redhtpbetween processors
is unspecified, se#1 =0, r2 =0 s also legal, as is1 = 1, r2 = 0, but notr1 = 0,

r2 = 2. More relaxed models permit ignoring program order inaiartircumstances,
allowing the two loads to execute out-of-order, resultimgi = 0 andr2 = 2.

by other processors. lmemory modgbrovides such an understanding, by giving a for-
mal specification of how the memory system will behave frompghogrammer’s per-
spective. Perhaps the most intuitive memory model, caléedial memory”, requires
the memory system to behave as if each memory operationreccinstantaneously
and atomically in the exact order in which the processorsweeload and store in-
structions in real time, in the sense that the value of evaagl bperation is that of the
most recent store operation. Unfortunately, the hardwadepserformance overhead
required to implement serial memory is prohibitive for ke high-performance mul-
tiprocessor systems. Real systems use many techniquesao@nperformance, such
as store buffers, caches, and out-of-order interconnéeonks. Such techniques lead
to memory models where the order in which memory operatippgar to have been
performed may differ from the real-time order in which thegeuted, might not agree
with the order in which operations were executed on a singlegssor (the “program
order”), and might not even be the same order on differerdgasors. (See Figure 1.)

Sequential consistenéya memory model introduced by Lamport[10]. A memory
system is sequentially consistent iff there always existmeerleaving of the program
orders of all the processors such that each load returnsthe of the most recent store
to the same address. Sequential consistency is importémialsaa practical memory
model that provides intuitive ease-of-programming whileveing efficient hardware
optimizations (e.g. [9]) and also as an extensively studiednory model that can be
used to understand other, more relaxed models (e.g. [1]).

Memory systems use intricate finite-state protocols to @npnt the desired mem-
ory model. These protocols are notoriously difficult to desand debug — because
the primary objective is performance rather than simplieit making them natural
targets for formal verification.

Ideally, we would like an algorithm that inspects a finitatstprotocol and de-
termines automatically whether or not the protocol progsidequential consistency.
Unfortunately, the general problem of deciding sequegtalsistency of a finite-state
protocol is undecidable [3].



Real protocols, however, might not be fully general, sutiggghat the undecid-
ability result may not be relevant in practice. Suppose we a@aracterize a class
of protocols with the following properties: membership lre tclass is decidable, all
members of the class are sequentially consistent, andaipretocols that implement
sequential consistency belong to the class. In that casematic verification of real,
sequentially consistent protocols reduces to testing fembrership in the class. This
paper proposes such a protocol class.

The basis for our verification method is a graph-based digfinitf sequential con-
sistency that arises in the work of Gibbons and Korach [7}.dfoexecution trace of a
protocol, they define a constraint graph with a node for eaall nd store operation
in the trace. The graph has four kinds of edges: edges thatanprogram order for
each processor, edges that provide a total order over afl stmdes to each memory
location, edges from each store node to every load node #tatitg value from that
store, and forced edges from each load node to the store hatitoliows in the total
store order the store node from which the load got its valuprokocol is sequentially
consistent if and only if all of its traces have acyclic coastt graphs.

To perform automatic formal verification using this formtida of sequential con-
sistency, we must provide an automatic way to constructahetcaint graph and verify
that it is acyclic for all possible executions of the protbda practice, this suggests
that the construction and checking of the constraint grapbtine done in (hopefully
small) finite state, so that automatic verification based oitefistate model check-
ing [5] is possible.

The remainder of this paper addresses these problems. fiois8cwe introduce
a graph description notation tailored to describe consttigiiaphs, and a finite-state
checker to verify that a graph so described is acyclic. We déscribe how the graph
description notation and checker can be used to verify sg@leonsistency. In Sec-
tion 4, we show how real protocols can be annotated with fisti¢e information, to
obtain a finite state observer which generates a descripfidthe constraint graph.
Our method of generating this description characterizdass ©f protocols for which
sequential consistency is decidable, and we argue whyallpretocols are likely to
belong to this class. Finally, we derive size bounds on thitefstate observer, suggest-
ing that our method is at the edge of what is currently feadim automatic verification
tools.

1.1 Related Work

There has been considerable work over the years on verifyigigory system pro-
tocols and memory models. For brevity, we mention here oldgeaty related work,
pertaining to finite-state verification of protocols witlspect to sequential consistency.

Plakal et al. [12] introduce a verification approach basedogical clocks and
apply it to a directory based protocol. Our approach is iespby the logical clocks
approach, butin contrast to logical clocks, which are umiieadl, our approach reduces
verification to a language inclusion problem between firtitiesautomata.

Henzinger et al. [8] propose a very similar approach to ousfg a finite-state
observer to reorder loads and stores to construct a witrfessgaential consistency.
Because of the finite-state limit on reordering, the metlsobo restrictive to handle



most real protocols. One could view our approach as a genatiah of theirs that
handles all realistic protocols. We note that Henzinget.girave very strong results
for protocols in their restrictive class, namely that it igficient to reduce verification
of a protocol with arbitrarily large parameters (humbermfgessors, number of blocks,
number of values per block) to a fixed-parameter problem. oimtrast, our method
applies to verification of only fixed-parameter protocols.

Nalumasu et al. [11] propose the Test Model-Checking teghmiin which a proto-
col is checked against various predefined finite-state aatthat test certain memory
model properties. These tests can be considered to be diate-observers. By com-
bining these tests, it is possible to verify memory modeét tire close to, but not
identical to, sequential consistency. Determining eyautiw these test combinations
relate to sequential consistency and to the class of prts@acan handle is an open
question.

Recently, Qadeer has proposed an approach for automgptiesilying that a mem-
ory protocol implements a memory model [13]. His approachaurs are superficially
similar — both involving automated constructions of finsti¢te witnesses that a pro-
tocol obeys a memory model — but the constructions are giffereint. For example,
Qadeer’'s method specifically assumes that the protocol amedss will be model-
checked and exploits this assumption to simplify the wisrtedook for only particular
types of error traces. In contrast, our construction flagsvéalation in any run of the
protocol; model checking gives complete verification, It tnethod is easily adapted
to a testing scenario. In their current versions, our apgrdendles a more general
class of protocols than Qadeer’s, which does not handle Afekd’s Lazy Caching
protocol [2], for example. On the other hand, Qadeer’s cexipt bounds (on the
size of the finite state witness) are better than ours, an@dhsiders memory models
other than just sequential consistency. Which method (@twbmbination of the two
methods) will be most useful in practice remains to be deitezth

On the experimental side, we have implemented a technidatdeto that pre-
sented in this paper and experimented with a substantiistie memory system pro-
tocol [4]. The general approach is the same as in this papethb underlying model
for recording and checking constraints is different, résglin wildly impractical com-
plexity bounds for automatically generating the finitetstaitness. Nevertheless, we
were able to demonstrate that the method does allow veiificatsing current model-
checking tools, of the sequential consistency of a suliatarsiche protocol, provided
that some human insight is used to generate an efficientsgtie contrast, the present
paper presents a revised theoretical framework that enasseg a broader class of pro-
tocols, yet allows proving much stronger complexity boyrsdggesting that this work
will apply to more protocols and be fully automatable in pice

2 Definitions

2.1 Protocols

We define a protocol as basically a finite-state machine, ibtsome specializations
to simplify our notation. Aprotocol P is a tuple(p,b,v,Q,qo,-2U.A2',0Ud,1). The



constant$, b, andv specify the number of processors, memory blocks, and datava
in the protocol. The symbal denotes the initial value of each block. The set of states
is Q, of which qp is the initial state. The set is the set of all actions of the protocol
that are LD and ST operations, namely actions of the forniR,B,V) and STP,B,V),
where 1< P < p, 1<B<b, and 1<V < v. For notational convenience, we use *'s
to denote sets of LD and ST actions over all values of a paemmetg., ST(*B,V)
denotes the sefST(P,B,V) | 1 < P < p}. Thus, 4 = ST(x,*,%) U LD(x,*,%). 4’
is the set of actions of the protocol other than LD and ST djmers. Corresponding
to 4 and 4’ there are two transition relations,and &, with 8 C Q x 4 x Q and
dCQxaxq.

A sequence of actionfs;, Ay, ..., A is aprotocol run if there is a sequence of states
o, 1,02, - -, 0k such that for allj, with 1 < j <k, the transitior(qj_1,A;,q;) € 6UJ'.
A protocol trace is the subsequence of a protocol run that includes only ttierescin
4 (i.e., the ST and LD operations). Two protoc@lsand?’ areequivalent if the set
of traces ofP equals the set of traces #f. Note that the runs and traces of a protocol
are finite, so our theory uses regular automata ratherdhamtomata.

2.2 Sequential Consistency

Intuitively, a serial trace is one in which each LD returns tlalue of the most recent
(prior to the LD) ST to the same block. If there were no priois3d that block, the
load must return.. Formally, a tracd =tj,tp,...,t is aserial traceif for all blocks

B and value¥/, forall 1< j <k:

(tj e LD(%,B,V)) =

(V=1) AVi<j[ti & ST(x,B,%)]
V .
( E|h<j[th € ST(x,B,V) /\Vih<i<j(ti & ST(x,B,%)] )

A reordering of a trace of lengthk is simply a permutatiord1 of the num-
bers from 1 tok. Let N = 1(1),1(2),...7(k) be a reordering of a tracé. Let
T = tya), ), - - -t~ M is called aserial reordering andT' is the corresponding
serial trace iff1 andT’ have the following two properties. Firgf, preserves the “per
processor” order of , i.e., for all processorB, if t; andt, are operations of processor
P thena < bif and only if T (a) < 1(b). SecondT’ must be a serial trace.

A protocol issequentially consistentf all of its traces have a serial reordering.

3 Verifying Sequential Consistency Using Constraint
Graphs

In our method for verifying that a protocol is sequentiallynsistent, a finite-state
observer watches a protocol as it executes and gathergiafimn about how to reorder
the trace. The observer presents this information, in tha faf a finite-state constraint
graph, to a checker. A key task of the checker, which is alstefstate, is to ensure
that the graph is acyclic. Verification reduces to provinattthe checker accepts all



Original

- Protocol
¥
Trace Automatically
Equivalence? converted into
AN
~{ "Observer"
Augmented
Protocol
\L Compose with Checker
Observer
Constraint Graph | "~ _
Description R
Model Check:
Checker Does the checker
. always accept?
\b Accept/Reject? way P

Figure 2: Verification Method Overview. The Observer is diyrthe original protocol
augmented with reordering information. Automatic creatad the observer is dis-
cussed in Section 4. The observer generates a descriptioafstraint graph, which
is checked by a finite-state checker. The same checker isfasall protocols. Con-
straint graphs and the checker are described in Section8traibe equivalence check
can be omitted in practice because the observer is creasattin-interfering way from
the original protocol.

constraint graphs generated by the observer. Figure 2rdkes the main steps in the
verification process. Overall, the method exploits thes'lissmore” principle: a total
reordering of a trace is too much to be collected and chech#idanfinite number of
states, but partial information about the reordering iiceht to deduce sequential
consistency.

We first define sequential consistency using graph-theometation. Application
of this definition to protocol verification requires a finitet® method for testing if a
graph is acyclic. In Section 3.2, we identify a class of gsafuin which this test can be
done. We describe the finite state cycle-checker in Sect®r/8e combine everything
into our verification method in Section 3.4.



3.1 A Graph-Based Definition of Sequential Consistency

A constraint graph Glor a traceT records ordering constraints on the operations in
T which are sufficient to ensure th@thas a serial reordering. The nodes®fare
labeled by operations df. Nodes are numbered by consecutive integers, starting from
1, according to their order in the trace. Edge&adhclude program order edges, along
with inheritance edgesvhich indicate from which ST operation a LD inherits itswe]

ST order edgeswvhich provide a total ordering of all ST nodes to the samelgland
forced edgeswhich force the constraint that on any path from a ST nodeltb aode

that inherits its value, there is no other ST node to the saoekb More precisely,
edges ofs must satisfy the followingdge annotation constraints:

1. Each edge may be annotated as an inheritance, program®fd&der, or forced
edge. An edge may have zero or more annotations.

2. For each processdt, if u nodes ofG are labeled by operations & thenG
hasu— 1 program order edges that define a total order on thesgerations,
consistent with trace order. There are no other progranr e@dges.

3. For each blocB, if u nodes ofG are labeled by ST operationsBy thenG has
u—1 ST order edges that define a total order on thuesgerations. There are no
other ST order edges.

4. Each node labeled by LBB,V), V # L, has one incoming inheritance edge
from a STP',B,V) node (Wherd® may equaP’). There are no other inheritance
edges.

5. (a) Let(i,j,k) be a triple of nodes with the property that there is a ST order
edge fromi to k and an inheritance edge frano j. Then there is a forced
edge on some path frofto k. Specifically, ifj is labeled by LDP,B,V),

V # 1, then there is either a forced edge directly froto k or there is a
(program order) path fronj to another nodg’, wherej’ also inherits its
value fromi, and a forced edge froiji to k.

(b) Similarly, letj be a node labeled by a LB(B, L) operation, Then there is
a forced edge on a path to the first node in the ST order for Bock

An example of a constraint graph is given in Figure 3. Theofgihg claim is
implicit in the work of Gibbons and Korach [7] and follows datly from the definition
of constraint graph.

Lemma 3.1 Atrace T has a serial reordering if and only if some constrajiraph for
T is acyclic.

Proof: Suppose thal =ty,ty,...,ti has a serial reorderifd and letT’ be the corre-
sponding serial trace. L& be the graph obtained frofh as follows. The nodes of the
graphG are labeled by operations &f and are numbered according to their order in
T. There is an edge from the node numbex¢d node numbereb if and only if

e t, is an operation of processBrandty is the first operation o to follow t; in
T’, in which case the edge is a program order edge, or



inh

Figure 3: A Constraint Graph. Edge labels indicate inhedéa(inh), program order
(po), store order (STo), or “forced” edges. The inheritaetge from node 1 to node 4
and the store order edge from node 1 to node 3 forces an edgenfsde 4 to node 3,

which prevents trace orders in which the LD in node 4 does abitg value from the

most recent ST.

e tyis a ST operation to blocR andty is the first ST operation to blodkto follow
ta in T/, in which case the edge is a ST order edge, or

e ty is a LD operation to blocl andt, is the last ST operation i’ to block B
beforety, in which case the edge is an inheritance edge, or

e for somel, the triple(i,a,b) is such that there is a ST order edge frofmb and
an inheritance edge froirto a, in which case the edge is a forced edge, or

e ais a node labeled by a LIP(B, L) operation, and, is the first ST operation to
blockBin T’ (if any), in which case the edge is a forced edge.

It is straightforward to show that grafgh is a constraint graph foF, in which every
edge has at least one annotation. In particular, edg&s sHtisfy edge constraint 2
becausd’ respects the program order bfand by construction (bullet 1), and satisfy
edge constraint trivially 3 by construction (bullet 2). Teesthat edges db satisfy
edge constraint 4 note that, sintkis a serial trace, there is no ST operation to block
Bin T’ earlier than any LCR, B, 1) operation, and s& does not have any inheritance
edge into a node labeled LB@B, L) for anyP andB. Also, by construction (bullet 3),
all other LD(P,B,V) nodes have one incoming inheritance edge from the moshtrece
ST to blockB in T', and this ST node must be in STB,V), again sincel’ is serial.
Edge constraint 5 is satisfied trivially by constructionligis 4 and 5). Moreovef; is
acyclic because all edges other than forced edges respamtdénl, and forced edges
cannot introduce cycles. To see the latter fact, note thaipik (i, j, k) is as in edge
constraint 5, with all three nodes labeled by operationddokB, then there is a ST
order edge froni to k in G andk must followi in T’, and thus must follow sincei is

the last ST td preceding.



Conversely, suppose th&t is an acyclic constraint graph for trade Then in
fact any total order of the node numbers®that respects the edges @fis a serial
reordering ofT. To see this, lef’ be the trace corresponding to a total ordering of
the nodes of5. The program order edges Gfensure thal’ respects program order.
The inheritance, forced, and ST order edges together etisar¢he trace is serial:
by definition, a node labeled LB(B,V) has an inheritance edge from a ST node in
ST(x,P,V), and a forced edge ensures that the next ST in ST order mlst the LD
node. Finally, note that at least one such total order of ttkea ofG must exist since
Gis acyclic. O

3.2 Node Bandwidth Bounded Graphs

For verification purposes, we are interested in constramplys (with ordered nodes)
that arenode bandwidth boundedVe denote the sdtl,2,...,i} by Ni. We say that

a graph with node sé{,, is k-node bandwidth boundaefifor all i, at mostk nodes in

N; have edges to or from nodes in the Bgt- N;. For example, the graph in Figure 3
is 3-node-bandwidth bounded. Note that node bandwidth dedimess is a property of
both the graph and a fixed node ordering. Also, note that ofimitien differs from
the usual edge-based notion of graph bandwidth, e.g., thibeuof edges between
nodes iNN; andN,— N; may be unbounded. For brevity, we omit the word “node” and
simply refer to bandwidth bounded graphs.

We will represent a directed-bandwidth bounded grap® as a string, called a
k-graph descriptor, in a way that facilitates a finite stast tieat a graph is acyclic. For
later convenience, nodes and edge§&ahay have labels from some finite alphabets
A and E, respectively. (In our applicatiorg will be the set of trace operations, and
symbols inE will denote the edge annotations of section 3.1.) Intulgiveur graph
description notation simply lists nodes by number and edggmirs of node numbers,
with additional labels (if any) immediately following theode or edge to which they
belong. A naive approach numbers all nodes and lists therrdieroFor example, the
graph in Figure 3 corresponds to the description:

1, STPL,B,1), 2, LD(P2,B,1), (1,2), inh, 3, STRL,B,2), (1,3), po-STo, 4,
LD(P2,B,1), (1,4), inh, (2,4), po, (4,3), forced, 5, LBZ,B,2), (3,5), inh, (4,5),
po

Our approach is like the naive approach, but is finite-statexploiting k-bandwidth
boundedness. In our approach, node numbers are not usetydiceidentify nodes
and edges. Rather, each node may have one or more ID’s {idatitin numbers)
between 1 an&+ 1. When all edges in or out of the node with iDave been listed,
may be used to identify another node. The graph in Figure 3iariwidth bounded,
so we can describe it as:

1, STPL,B,1), 2, LD(P2,B,1), (1,2), inh, 3, STRL,B,2), (1,3), po-STo, 4,
LD(P2,B,1), (1,4), inh, (2,4), po, (4,3), forced, 1, LPZ,B,2), (3,1), inh, (4,1),
po

In this example, once all edges into the first four nodes ofjfagh have been listed,
the number 1 is recycled to refer to node 5.



As will become clear from our formal definition below, a nodaynmave more than
one ID (with respect to a givelkegraph descriptor). This is useful, for example, when
modeling the following situation: the value of a ST node ie ttonstraint graph is in
multiple cache locations of a finite state protocol, in whielse it is convenient that
these location addresses are the graph IDs for the ST node.

More formally, with respect to some fixddand symbol alphabetd and ‘£, we
define anode descriptoto be a symbol ifNy..1, possibly followed by a symbol itk
(that is, a node ID possibly followed by a node label) andedge descriptoto be
a symbol of the forn{i, j) wherei, j € Ny,1, possibly followed by a symbol irE.

A k-graph descriptor is simply a sequence of node descriptors and edge desstiptor
along with symbols from the s¢add-1D(1,1') | 1 < 1,1 < k+ 1}. Intuitively, the add-
ID(1,1") symbol causes the ID to be added to the node with IDif any (andl’ is no
longer associated with any other node).

Testing if a string is a proper graph descriptor (does noéao consecutive sym-
bols fromA4, for example), is easily done in finite state.

Let sbe ak-graph descriptor. The grafih represented bylsas a number of nodes
equal to the number of node descriptorsofith theith node having the label (if any)
of theith node descriptor. Associated with each prefigf sis a set ofactivenodes,
each of which has a non-empty set of ID’s. Here, for each mogte define the ID-set
of i with respect tcg, denoted by ID-sei(s), as follows. Ifs has fewer tham node
descriptors, then ID-sét§) is empty. Ifs has exactlhi node descriptors, and ends
with a node descriptor which has ID then ID-set(;s') = {I}. Next, suppose tha
has more thannode descriptors.

o If § =d'I and | € ID-set(,s’), then ID-sefi,s) is defined to be ID-
setf,s")—{1}. (ID | is now being used to label another node, and so is no longer
in the ID-set of theth node.)

e If § =4d" /add-IDO(1,!l") andI € ID-set(,s"), then ID-seti,s) is defined to be
ID-setf,s")u{l'}. (Add I’ to the ID-set of nodeé)

e If § =95 add-ID(l',1) with | #1’ andl € ID-set(,s’), then ID-sef, s) is defined
to be ID-set(,s’)—{I}. (Again, ID1 is now being used to label another node,
and so is no longer in the ID-set of tite node.)

e Otherwise, ID-set(s) = ID-set(,s”). (No change to the ID-set of thith node.)

Then, the edges @ are defined as follows: for each prefix of the fosi{l,1") of s, if
for some paifi, j) of nodes ofG, | € ID-set(,s) andl’ €ID-set(j,s) then edgdi, j)
is in G. Moreover, ifs, (1,1"),B is also a prefix obthen the edgéi, j) has labep.
The next lemma shows that akybandwidth bounded graph can be represented by
ak-graph descriptor in which the size of the ID set for activee®mis exactly 1.

Lemma 3.2 Any k-bandwidth bounded graph can be represented by a kagdap
scriptor.

Proof: We prove a slightly stronger property, namely that &fyandwidth bounded
graphG can be represented bykagraph descriptos in which all of the nodes itN,_1

10



with edges to node, plusn itself, are in the active set associated wsttand the size

of the ID-set for each active node is exactly 1. The proof peats by induction on the
number of nodes d&. For simplicity, we ignore edge and node labels, but thesdea
trivially be added to an (unlabeled) graph descriptor. Thsebcase, whe@ has one

node, is also trivial to prove.

For the induction step, le haven > 1 nodes. LeG’' be the graph obtained by
removing noden and all of its incident edges fro®. Let graphG” be obtained by
adding toG' edge(i,n— 1) if and only if edge(i,n) is in G, and edgén— 1,i) if and
only if edge(n,i) is in G. LetE” be the set of edges added®h in order to obtairG”.
We claim thatG” is alsok-bandwidth bounded. In fact, for dll1 <i < n-—2, the set
of nodes inN; with edges to or fronN,,_; in graphG is the same as the set of nodes in
N; with edges to or fronN,_1_j in graphG”.

By the induction hypothesi&G” has ak-graph descriptors’ in which all of the
nodes inN,_» with edges to node— 1, plusn— 1 itself, are in the active set associated
with §’. To obtain ak-graph descriptor fo6, first remove all descriptors of edges in
E”. Next, append t&’ a node descriptor for node The ID for this node descriptor
can be found as follows. If there are oryactive nodes associated with then some
ID in the range{1,...,k+ 1} is not in the ID-set of any of these nodes (since each
active node has an ID-set of size 1). Otherwise, ofthel active nodes, one does not
have any edge to or from node The ID of this node can then be recycled for node
If §'is the strings” with the node descriptor for nodeappended, then all nodes Gf
with edges to or fronm, plusn itself, are in the active set associated wathFinally,
append ta' the edge descriptors of each edge to or from nude obtain thek-graph
descriptors for graphG. O

3.3 Checking for Cycles in a Bandwidth Bounded Graph

Lemma 3.3 There is a finite state cycle-checker that, given as inpugieelph descrip-
tor, accepts if and only if the string represents an acyctapd.

Proof: While reading node descriptors, edge descriptors, and@dymbols from

left to right in the input string, the cycle-checker maintia so-calledctive graph
containing at mosk + 1 nodes, in which each node has an associated ID-set. The
checker ignores node and edge labels. Upon reading a nodeddye pair, the cycle-
checker does the following:

e Suppose that a node ID, sbyor an add-1BI’,1) symbol is read. If there is a
node with ID-sef{1 } in the active graph, then for all pairs of eddet 1), (1,J)
in the active graph (whernd, 1,J refer to node IDs) a new eddeél,J) is added,
if not already in the graph. (The eddH,J) is referred to as the contraction
of (H,l1) and(l,J)). Then the node with ID-sefl } and all incident edges are
removed from the graph. Otherwise]ifs in the ID-set of some node that has
an ID-set of size greater than 1, theis removed from the ID-set of this node.
Finally, if the symbol read is a node-ID then a new node with ID is added to
the graph and if the symbol read is addfll) thenl is added to the ID-set of
the node whose ID-set contaiHg(if any).

11



e When edg€l,l’) is read, an edge is added from node withl I the node with
ID I'. If addition of this edge introduces a cycle in the graph, doeomaton
rejects.

If, upon reaching the end of the string, the checker has jedted, it accepts. Correct-
ness of the checker follows from the fact that the edge cotitraplus node removal
done in the first test of the checker preserves cycles in tiyghgi’

3.4 Observer-Checker Verification Method

In our method for protocol verification, thebservergenerates the same set of traces
as the protocol, but augments each trace with a descripfiark-dbandwidth bounded
graph. Given a run of the observer, tbleeckerchecks that the graph is an acyclic
constraint graph for the trace.

Let 2 be a protocol. Letq be the set of LD and ST operations #f An ob-
serverfor P is itself a finite state protocol. The alphabet (set of adtjaf an observer
consists of the symbols used inkagraph descriptor for somie in which the node
label set is4 and the edge label sét is {inh, po, forced, STo, po-STo, po-inh, po-
forced}, whereinh, po, STo andforced indicate inheritance, program order, ST order
and forced edges, respectively, gm@STo, po-inh andpo-forced denote edges with
two annotations. Note that each run of an observer contdirzsa as a subsequence,
namely the subsequence of symbols frdm

Definition 3.1 An observelO for P is awitness for? if (i) the set of traces oD equals
the set of traces aP, and (ii) each run ofO describes an acyclic constraint graph (as
defined in section 3.1).

Theorem 3.1 Let P, O be protocols. IfO is a witness for?, then? is sequentially
consistent. Moreover, testing wheth@ris a witness for? can be reduced to the
language inclusion problem for finite state automata.

Proof: If protocol O is a witness for protocoP, then sequential consistency &f
follows directly from property (i) of Definition 3.1 above dfrom Lemma 3.1.

In testing whetheO is a witness forP, the check for property (i) can trivially be
reduced to the language equivalence problem for finite stat@mata. In practice, this
check is trivial by construction, since the observer is aimtenfering augmentation of
the protocol.

We next describe thehecker a finite state automaton that checks property (ii) of
Definition 3.1. We assume thkt(the bandwidth bound) is fixed. The alphabet of the
checker equals that of the observer. Given as input a rfrobserverO, the checker
does the following:

e Run the cycle-checker of Lemma 3.2 fiebandwidth bounded graphs on If
the cycle-checker rejects, then reject. Otherwisis, an acyclic k-bandwidth
bounded graph.

e In concert, check that edges satisfy the edge annotatiqgepies listed in sec-
tion 3.1 - we next describe in detail below how this check isalolf the edge
annotation properties are satisfied, then accept, elset reje

12



By the definition of a witness in section 3.1, the checker ptscé and only ifr de-
scribes an acyclic constraint graph.

The check for part (i) can be done in a finite number of statgisguhe finite state
cycle checker of section 3.3.

We now show that the edge annotation checks needed for paariialso be done
with a finite number of states. To perform these checks, tleeldr associates each
node in the active graph with its label (nhamely LD or ST opergtas well as its ID-set.

First, consider the check that the operations of each psocese totally ordered
by program order edges. The checker associates two logisavith each active node,
calledprogram-edge-irand program-edge-outThese are initially set to false. When
an edge(l,1’) with program order label is added to the graph, the checkes dot
annotate the edge with its label. Rathepiégram-edge-oudf the node with 1DI is
set to true, the checker rejects, since there must be maneti@program order edge
out of I. Otherwisd’s program-edge-oubit is set to true. Similarly, iprogram-edge-
in of the node with ID’ is set to true, the checker rejects, since there must be imane t
one program order edge into ldf Otherwise the@rogram-edge-imit of I is set to true.
Finally, the checker tests that, over all nodes, exactly myde hagprogram-edge-in
set to false when it is removed from the active graph (thikésfirst node in program
order) and that exactly one node lmegram-edge-ouget to false (this is the last node
in program order), and that these two nodes be distinct. fAliis can be done in finite
state. The check that the ST operations to a given block talytordered by ST order
edges is similar.

Next, we describe the check that each node labeled byIB)Y), V # L, has
one incoming inheritance edge from a node with label in H;§¥). The checker
maintains a single logical bitnheritance-edge-infor each node in the active graph
with a LD(P,B,V) label where/ # 1. When an inheritance edgk ') is added to the
graph, the checker rejectslifdoes not have an associatateritance-edge-ibit or if
theinheritance-edge-itit of |’ is already true. Also, if”’s operation is LDP,B,V),
the checker rejects if the label of notlés not in ST, B,V). Otherwisejnheritance-
edge-inof |’ is set to true. Finally, if thénheritance-edge-itabel of a node is false
when the node is removed from the active graph, then the eheejects.

It remains to describe how to check that the constraints metbedges are satisfied,
assuming that the checks on program order, ST order, anditeahee edges above
are satisfied. For each trip(g j,k) of nodes with the properties thatis labeled by
LD(P,B,V), there is a ST order edge frano k and there is an inheritance edge from
to j, it must be checked that there is either a forced edge djrfrotin j to k or there is
a (program order) path frojto another nod¢’, wherej’ also inherits its value from
i, and there is a forced edge frojinto k.

For this check, a variable callédrced-edge-on-path-ie associated with each LD
nodej when an inheritance edge is added intdrhis variable is uninitialized unless
there is already a ST order edge froto some nodé&, wherei is the node from which
j inherits its value. In the latter case, tfieced-edge-on-path-taariable is initialized
to point to nodek. Otherwise, this initialization happens when the ST orakyeeis
added fromi to k. In addition, inheritance edges and forced edges are ldlslsuch,
and when two edge@d, ) and(l,J) are contracted, whei@, J) is a forced edge and
H andl are in the same program order (i.e. are labeled with operatiy the same

13



processoP), the resulting contracted ed@id, J) is labeled as a forced edge.

The test is complicated by the fact that ngd@ay no longer be part of the active
graph (i.e. have a non-empty ID-set) before a forced edgddecon some program
order path fromj to k. To handle this, the checker defers the removal of anyj fifom
the graph until either (i) the variabferced-edge-on-path-is initialized, say t&k, and
there is a forced edge fromto k, or (ii) another LD nodej’ is added to the active
graph, wherg’ follows j in program order and inherits its value from the same node
asj does. The graph maintained by the checker consists of autides and deferred
nodes, and deferred nodes are no longer maintained oncef time @onditions (i) or
(ii) is met. Thus, the number of nodes whose removal from ttaply is deferred is
bounded, since for each ST nada the active graph, there is at most one deferred LD
nodej per program order. This ensures that the check can be domitedfiate.

The last edge annotation property that needs to be checkeadf@lows: for each
nodej labeled by a LDP,B, L) operation, there is a forced edge on a path to the first
node in the ST order for blodR. For each processé&rand blockB, the checker does
not remove from the graph the last node, gayabeled LDP,B, 1) in P's program
order, until it has identified the first node, dayin the ST order for blocB. The node
k is identified when its ID-set becomes empty and it has no ineg@r8T order edge.
Oncek is identified andj is no longer an active node of the graph, the checker rejects
if there is no forced nod¢to k. O

4 Verification of Real-World Protocols

We claim that every real-world sequentially consistentgeol has a finite state wit-
ness observer and that the observer can be generated aotdip&iom the protocol.

To provide intuition that supports this claim, we first argnformally that a weaker
property holds for real-world sequentially consistenttpcols, namely that the wit-
ness graph corresponding to each protocol run is bandwltinded. Later in this
section we make this intuition precise, and also show ttenggr property that the
witness graph corresponding to each run is not only banéviddunded but can be
generated in finite state from the run.

LetRbe arun of a protocol and |8 be a prefix oR. LetR; be the corresponding
suffix of R, so thatR = RjR,. We need to show that if we view the operationdRads
nodes of a constraint graph, the number of operatior® afith edges to operations
of Ry is bounded. We consider each type of edge in turn. It is easeéothat at
mostp operations oR; have program order edges to operationRgfnamely the last
operation in each processor’s program order, if any.

We next consider inheritance edges; here we appeal to owrstadding of how
real-world sequentially consistent protocols work. Thes#ocols create “views” of a
block via ST operations, then copy these views into variogotogol storage locations
(such as queues, network message packets, or caches opaibessors) where they
can be read via the LD operation, and eventually delete omaite views. Multiple
views of a block may exist in the protocol state. For exampie processor may do
a ST to a block, thus creating a new view, while stale viewshefllock still exist
in other caches. We call a ST operationRafinh-activeif one or more copies of the

14



value (view) written by that ST is stored in the protocol stapon completion of run

R;. If a ST is inh-active, its value may be inherited by LDSR A key point is that,
since the protocol is finite-state, only a constant numb&af ofR; can be inh-active.
Moreover, in real-world protocols, LDs & that inherit their values from STs &%
canonly do so from STs é¥; that are inh-active, because these LDs obtain their values
from storage locations of the protocol.

Third, we consider ST order edges. Again, we appeal to a propéreal-world
protocols here, namely that for all runs, for each bl&8khe order of STs t® in the
run is in fact the same as the order of the STs in the correspgisérial reordering.
Thus, if we call ST nodes dR; with no outgoing ST order edggTo-activenodes,
the number of STo-active nodes is at most the number of blbabsthe protocol.
(Our class of verifiable protocols will actually be definedsettion 4.2 to encompass
protocols that do not satisfy this per-block real-time Sdrdering property.)

Finally, we consider forced edges. The only LD nodeRpthat may have forced
edges to STs oR, are those LDs which inherit their values from STo-active $Ts
R;. For each STo-active operati@of Ry, and each process&; at most one LD of
processoiP in R; need have a forced edge to a nodeRin namely the last LD in
P’s program order that inherits its value frof (This follows from edge constraint
5 of section 3.1.) Call such a LD operatioricaced-activeLD. Thus, the number of
forced-active LDs oR; is at mostpb. In addition, there may be ST nodesRf that
have incoming forced edges from LD node®}n Call thesdorced-activeSTs. Each
forced-active ST is the immediate successor of an inh-a&Win ST order; thus, the
number of forced-active STs is bounded by the number of oiv@STs, and therefore
is bounded.

In section 4.1 we define a class of protocols for which the ritduece edges of
a constraint graph can be generated in finite state. Praacdhis class have two
properties, motivated by our informal arguments abovestfFon a LD transition, the
value of the LD is obtained from a known storage location &f pinotocol. Second,
by tracking the movement of data among protocol storagetitots, it is possible to
automatically infer which ST conferred its value to eachrage location. Then in
section 4.2 we describe conditions under which the ST ordge® of a constraint
graph can be generated in finite state. In section 4.3, weeadafalasd™ of protocols
that simultaneously satisfy the conditions of sectionsahd 4.2. We show that for
protocols inl", the forced edges of a protocol run can also be generatedtia $iate,
and conclude that such protocols have finite state observers

4.1 Tracking Labels for Protocols

When a LD is performed by a protocol, how can we tell from wh&hit inherits its
value? We need to know from which storage locatiaf the protocol the LD gets
its value, and which ST operation conferred its value totiocd. We now describe
protocols withtracking labelswhich provide an automatic way to infer this knowl-
edge. While real protocol descriptions do not explicitlwéaracking labels, for all
sequentially consistent protocols known to us, with an appate protocol description
language the labeling could be generated automaticalhg fiee protocol description.

15



First, we must formalize the concept of storage locations.Hake previously de-
fined a protocol as a finite-state machine. Now, let us augtherfinite-state machine
with a finite numbet. of storage locations, each able to hold a value chosen frome so
finite domain. The state of an augmented protocol is definbd &n(L + 1)-tuple con-
sisting of the state of the finite-state machine, followedhmsy values in each storage
location. Transitions can change the finite-state machate,sas well as assign val-
ues (chosen from the finite domain) to all storage locati@isziously, protocols with
storage locations are theoretically exactly as expressveur original definition of
protocols, because the augmented state space is still fingaicitly defining storage
locations, however, allows capturing how real protocoésdescribed in practice.

In practical descriptions of real memory system protod¢bksmemory block values
that are stored and loaded are not encoded arbitrarily irggtotocol state. Instead,
they are explicitly held in storage locations, for examjiecaches, queues, network
messages, memory, etc. Furthermore, the set of operatofsmed on these storage
locations is very restricted. In particular, new valuesiafected into the protocol only
by ST transitions, since the memory system does not cretaeAlhother assignments
of memory block values are simply copies from previouslgigised storage locations
or perhaps a predefined value indicating an invalid value.

If a protocol uses storage locations in this manner, we cdrtragking labels that
help determine which ST provided the value for each LD. Theking labels are of
two types.

e Each transition id (whered is the set of transitions on LD and ST operations)
is labeled by a location identifi¢re [1,L]. Intuitively, the operation is read from
or written to locationl. Formally, the LD/ST tracking function is a mapping
f:0—[1,L].

e For each transition in & (whered' is the set of transitions on actions other
than LD and ST operations) and edch [1,L], the copy tracking labek; (t),
indicates whether the value stored in locatida unchanged by the transitidn
or whether it has been copied from another location, naméy. Formally, for
eachl, there is a copy tracking functiam: & — [1,L] (with ¢ (t) = if the value
is unchanged).

In typical protocol descriptions arising in practice, LDda8T operations explicitly
deal with some storage location in the implementation, ahdes are copied from one
storage location to another in assignment statements,veouid be easy to generate
the tracking functions directly from the description. Ndtat although the actual value
of L is enormous for a real memory system — being the sum of the sizthe entire
memory plus any caches, queues, and buffers — in practiaeomyesystem protocols
are verified for small values gf, b, andv, soL tends to be moderate as well.

Intuitively, for every runR and locatiorl of a protocol®? with tracking labels, the
ST index ofl with respect tdRis either 0 or is the index of the ST operation from which
locationl inherits its value upon completion of ri Formally, theST indexdenoted
by ST-index(R,l), can be defined inductively using the tracking labels dsvi.

1. If |R| =0 thenST-index(R,1) = 0.

16



2. If R=R,A, if the transitiont taken onA is a ST operation with tracking labkl
and ifAis theith trace operation dR, thenST-index(R,1) = i. Otherwise, ifAis
not a LD or ST operation theBT-index(R,1) = ST-index(R, ¢/ (t)). Otherwise,
ST-index(R,1) = ST-index(R,,1).

Example: An example toillustrate ST indexes and tracking labelsviein Figure 4.
This example describes a run of an extremely simple protwitbltwo processor$1
andP2, and three block€31,B2, andB3. Each processor has two cache locations in
which values of blocks can be stored (Figure 4(b), Initi@t&f. Thus, there are four
locations in all:P1’s locations are numbered 1 and 2, &#is locations are numbered
3 and 4. In the figures, each location contains informatiaugatwhich block is being
stored there, if any, and what its value is.

Part (a) of the figure shows a short rBrof the protocol.R is of length four and
has three ST operations and one “Get-Shared” operation.GEtShared operation
causes the value &1 stored in location 1 bi?1 after the first action dRto be copied
to location 3 ofP2; it is reminiscent of how values of blocks can be shared prazbin
real protocols, albeit highly simplified. Part (b) of the figishows the protocol state
changing for each action iR. The tracking label of each transition corresponding to
each action in rumR is also given. The first operation 8 ST(P1,B1,1) has tracking
label 1, indicating thaB1's value is written to to location 1. The second operation,
ST(P2,B2,2), has tracking label 4; thu&2’s value is written into location 4. The third
action of R is not a LD or ST operation and so there are four copy trackégls
c1,...,C4 associated with this action, one per location. Note that 1 since the
value now stored in location 3 is copied from location 1, Qut i fori = 1,2, and
4, since the contents of locations 1, 2, and 4 are unchang#tebget-Shared action.
The last operation dR, ST(P1, B3, 3), has tracking label 1 indicating that bloBR is
overwritten byB3 in location 1. Thus, upon completion of r&Rathe ST index of each
location is given by part (c) of the figuré.

Let R,LD(P,B,V) be a prefix ofR in which the LO{P,B,V) operation is thejth
trace operation oR. Intuitively, if the LD operation gets its value from locati |
and location inherits its value from thé&h trace operation dR (which must be a ST
operation), thefi, j) is an inheritance edge. More preciselytlbe the transition taken
on the LD operation, and let the tracking labeltdfel. Then, if ST-index(R,1) #0
the edggST-index(R,, 1), j) is aninheritance edgef R.

For any runR of a protocol with tracking function§ andc, 1 <1 <L, let the
inheritance graphof R with respect to these tracking functions be the graph whose
nodes are the trace operationdphumbered by their order iR, and whose edges are
the inheritance edges & This graph id_-bandwidth bounded, wheleis the total
number of locations in a state of the protocol. This is beeatm any prefixR' of
R, at mostL ST operations are “active”, in the sense that they are irtlax¢he set
{ST-index(R,I)} and thus may be in future inheritance edges. Indeed, we have t
following lemma.

Lemma 4.1 Let? be a protocol with L locations and tracking functiong € }. There
is a finite state automaton that, given a run R®f generates a descriptor of the
inheritance graph of R.

17



Protocol RurR = ST(P1, B1, 1), ST(P2, B2, 2), Get-Share(P2, B1), ST(P1, B3, 3)

(@)
Protocol Tracking Resulting
Operation Labels State
P1 P2
Initial State location | contents location | contents
1 1 3 1
2 1 4 1
P1 P2
location | contents location | contents
ST(P1,B1,1) 1 1 Bl 1 3 n
2 1 4 1
P1 P2
location | contents location | contents
ST(P2,B2,2) 4 T BT 3 T
2 1 4 B2:2
|1 P1 P2
_ c2 |2 location | contents location | contents
Get-Shared(P2, B1 &1 T BT T 3 BT T
Cs | 4 2 L 4 B2:2
P1 P2
location | contents location | contents
ST(P1,B3,3) 1 1 B3:3 3 Bl:1
2 1 4 B2:2
(b)
ST-index(R,1) | 3
ST-index(R,2) | O
ST-index(R,3) | 1
ST-index(R,4) | 2
(©)

Figure 4: ST Index and Tracking Labels. Part (a) shows a gitotbcol run of length
4. Part (b) shows the protocol running, with the correspogdracking labels and
updates to the state. Part (c) lists the ST-index of eacltitotwaith respect to the run.

18



Proof: The generator generates the graph while executing thequiata runR, and
outputs an extended graph descriptor. Upon transitieriq, A, '), the generator does
the following:

e If Ais a ST operation andhas tracking labdl then output I, A". (Recall that
this adds a new node to the graph withllBnd label A.)

e For eachl, if ¢ (t) # | then output “add-1Dg(t),1)". (Intuitively, the ST node
with ID ¢ (t) is being copied to locatioh sol is added to the set of IDs for this
ST node. More generally, the number of IDs of a ST node eqghalstmber of
copies of the ST in the protocol state.)

e If Ais a LD operation antlhas tracking labdl then output t + 1, A (I,L + 1),
inh”. (This causes a new node with ID+ 1, labeledA, to be added to the graph,
and an inheritance edge to be added o

O

4.2 Finite State ST Reordering

We now consider the ST order edges. Intuitively, in orderutargntee that sequential
consistency will be decidable, we restrict the protocolthtwse in which a bounded-
size, finite-state automaton can generate the ST order €tlgissestriction guarantees
that, in theory, a decision procedure could try all posséléomata. In practice, all
memory protocols of which we are aware obey very strong eassof this restriction.

Let Rbe a run of protocofP. A ST order graptor R is a graph whose nodes are
the trace operations &, numbered by their order iR. As in section 3.1, for each
block B, if there areu ST operations td® in R then there are— 1 ST order edges in
the graph which define a total order on thesaperations.

A ST order generatofor P is a finite state automaton that, given rdras input,
generates &-graph descriptor that describes the ST order graph, foedorhet |G|
denote the number of states in a ST order genegt@nd let|?| denote the number
of states in the protoca. We impose a further requirement thgy < |P|.

Protocols implemented in practice actually obey the eveamger restriction that
|G| = 0. In other words, they obey ttreal-time ST reorderingroperty that for all
traces, for each blocB, the trace order of STs B is in fact the same as the corre-
sponding serial reordering. Thus, the ST order generatadvial.

We believe it unlikely that a real protocol will ever be dewmg that requires
|G| > |P|. Having|G| > || would imply that the correct ST order depends on more
information about the behavior of the protocol than the geot itself is able to distin-
guish. Although the undecidability result of Alur et al. [@monstrates the existence
of protocols for which no finite-state ST order generatosexipractical protocol de-
signs manage complexity by ensuring that all needed infoom& always encoded in
the protocol state.

One well-known protocol that does require a non-trivialt(siill finite-state, and
much smaller than our restriction) ST order generator id #wy Caching protocol of
Afek et al. [2], but this protocol has not been implemented meal machine. We now

19



explain briefly why the lazy caching protocol has a finiteestaT order generator. In
the lazy caching protocol, a proces$drcan perform a ST, B,V) operation at any
time, whereupon the paiiB,V) is added to an out-queue for procesBor Another
operation of the protocol, namefgemory-write, removes a (block,value) pair from a
queue of a processor, and writes the value into memory. Thigghe order in which
thememory-write steps are performed, rather than the order in which STs areido
real time, that determine the serial ordering of the ST dpmrato a block.

We next describe a ST order generator for a single bBbokthe protocol, which,
given a runR of the lazy caching protocol, generates a descriptor of taplgwhose
nodes correspond to the STs to bl@&k runRand whose edges are the ST order edges
for these nodes. While scanning the run from left to rightheme an operation
in ST(*,B,V) appears in the run, the generator adds a new node to a graplt th
maintains in its internal state. The generator also rectirelprogram order of these
nodes. The first time thatmemory-write operation is done to blocR at processor
P, the generator records that this is done by proceBsddn the next memory-write
to block B, say by processd¥, the generator adds a ST-order edge from the first ST
node in the program order &f to the first node in the program orderi®f On each
subsequent memory-write to bloBk say by processd?”’, the generator adds an edge
from the last ST in the ST order determined by the edges aduf, g0 the first node
in the program order d?” which does not yet have an incoming ST order edge. Each
time a node or edge is added to the graph, the corresponditegareedge descriptor is
output by the generator. Furthermore, once a node has baticaming and outgoing
ST order edge, it can be removed from the internal graph reiaied by the generator,
thus keeping the internal graph finite.

The overall ST order generator is the cross product of therS&r@enerators for
each blockB. The size of the internal graph maintained by the ST ordeegear is
bounded as a function of the sizes of the queues of the prarsgsince this limits the
number of STs that can already have appeared in the run bonotyet serially ordered
by a memory-write operation.

4.3 Thel Protocol Class

Let P be a protocol. Leff,{c;,1 <1 <L} be tracking functions and lef be a ST
order generator (withG| < ||). With respect tof,{c }, andg, for each rurR of 2,

let W(R) be the graph whose nodes are the trace operatioRs ©he edges oW(R)

are the inheritance edges of the inheritance graph witregtgp f and{c }, the ST
order edges given by, the forced edges implied by these inheritance and ST order
edges, and the program order edges given by the order oftapera R.

Definition 4.1 A protocol P belongs to the clas§ if for some tracking functions
f,{a} and some ST order generatdr, for all runs R of?, the graph WR) is an
acyclic constraint graph.

Theorem 4.1 Every protocol in" has a finite state witness observer.
Proof: We describe a finite state obser@that, given? in I', along with associated

tracking functionsf,{c } and ST order generataf, converts a rurR of 2 into a

20



descriptor for a constraint grapti(R).

O adds each LD and ST operation®to the graph as the operation is read. From
Claim 4.1 and section 4.2, the inheritance and ST order eziyebe generated in finite
state. It is also trivial to generate the program order edges

It remains to extend the observer so that forced edges avgaiwerated. For this
purpose, each nod¥ labeled by a LDR,B,V) operation remains in the active graph
maintained by the observer until one of the following everttsurs. Let the inheritance
edge toN’ be from nodeN. (i) Another nodeN”, labeled by LDP,B,V) is added to
the graph, along with inheritance edgd¢, N”). NodeN’ can now be removed because
there is a path of program order edges fromihéo N”. (ii) A ST order edge fronN,
say to nodes, is present in the graph. In this case, a forced edge is added\ to S.

The number of LD nodes that need to be in the active graph fptirpose of
generating forced edges is boundeddfthe number of processors) times the number
of ST nodes with no outgoing ST order edges. The latter numstiEyunded, since the
ST order graph is bandwidth bounded. In addition, if ST n8d&s an incoming ST
order edgéN, S) where the value of the ST labelifgmay be read by future LDs, then
Smust be maintained in the active graph. The number of sucho8&ssis at most..

Thus, the witness graph is bandwidth bounded, where thecodepends only on
G, L, p, andb and does not otherwise dependRrand so the observer is finite state.
O

To summarize, we have shown the following. [be a protocol for which track-
ing labels can be generated automatically and the real-Bmeeordering property
holds (or more generally, for which a ST order generatortgkisThen, sequential
consistency can be verified by an algorithm that first gepsrtite observer from the
protocol in a noninterfering fashion (so that the the setaxés of the observer equals
those of the protocol) and then uses a model checker (basedrarycle-checker) to
verify that every graph descriptor generated by the obs&®scribes an acyclic con-
straint graph. Note that the checker is independent of tbpol.

4.4 Size of Observer

In order to apply our constraint graph method to the verificabf a protocol, the
major obstacle will be the size of the observer. In additoithe protocol state, the
observer needs to maintain in its state a subgraph of theéreamtgyraph that may have
a number of nodes up to the bandwidth bound of that graph., Merdescribe an upper
bound on the number of bits of extra state required by thergbseaunder reasonable
assumptions.

First, we bound the bandwidth of the constraint graphs obéogol® with L loca-
tions. We consider here the case that the protocol hasire@lST ordering, and that
the value of a ST is stored in some protocol location at leasitthe ST following itin
ST order has been done. In this case, with respect to a predirurf, at most. distinct
ST nodes may be actively stored in protocol locations and thay have future outgo-
ing inheritance edges. Up fab LD nodes may contribute to the bandwidth needed for
generating forced edges. Nodes needed for generation gfggroorder edges and ST
order edges are already counted among these nodes, saaheatodwidth is bounded
by L+ pb.

21



For each active node of the constraint graph, the node labst be stored. This
requires up to Igp+lgb+ Igv+ 1 bits. Here Ig denotes the ceiling of log to the base
2; 1 bit indicates whether the label is a LD or ST, and parammé¥d, andV are
represented using the other bits. Also, IDs for each ST noel@@eded, in order to
generate inheritance edges. An additidg L bits are needed to store IDs.

Edges of the constraint graph must also be represented.e ladtive nodes are
stored in a linear array, no extra storage is needed for edRmsghly, this is because
the nodes can be stored in an order consistent with the partiar of the constraint
graph, so that graph edges can be inferred. For examples imdar array order, a ST
to blockBiis followed (not necessarily contiguously) by LD nodes thagrit its value,
and no other ST to the same block separates them, so intoeriggiges are completely
determined by the linear order.

Thus, an upper bound on the number of bits of extra state ddgdbe observer (in
addition to the protocol state) {& + pb)(Ig p+Igb+Igv+ 1) + LIgL bits. This upper
bound is likely to be substantially less than the number tsf ini the protocol itself.
Real memory system protocols, however, are already rouathtlye limits of current
model checking tools, so any additional state is problematpractice. Fortunately,
some simple optimizations should help to reduce the sizeeodbserver. For example,
the value of a node is needed only to check that each LD getsatine value as the
ST from which it supposedly inherits its value. This check ba done independently
from the cycle-testing check, thereby saving lgjts per node.

5 Future Work

Understanding how the size of the observer can be reducetgeby imposing fur-
ther assumptions on the class of protocols to be handled,important direction for
future work from a practical point of view, and will help tolaée this work to that of
Qadeer [13]. Extending these techniques to other memorehalanother important
direction of this research.

Experimental results will be needed to assess the apgiiyabf our results in
practice. We intend to apply our techniques to substantahory system protocols
using model checking tools and explore means to combatestatesion.

An interesting theoretical question is whether the probdétasting sequential con-
sistency is undecidable for protocols that are bandwidtimbed. The reduction used
in the undecidability result of Alur et al. [3] exploits pomols that are not bandwidth
bounded.

Finally, we note that our method can also be used for testiatgt particular run of
a protocol does not violate sequential consistency, mdldin the approach proposed
by Gibbons and Korach [7]. The finite-state observer andladrezould be simulated
together with detailed implementation descriptions that tao complex for formal
verification.

22



Acknowledgments

We thank Mark Hill, Dan Sorin, Manoj Plakal and the other menstof the Wiscon-
sin Multifacet group for sharing their insights and intaitiabout proving sequential
consistency.

References

[1] SaritaV. Adve and Kourosh Gharachorloo. Shared memongistency models: A tutorial.
IEEE Computerpages 66—76, December 1996.

[2] Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazgahing. ACM Transactions on
Programming Languages and Systedfs(1), January 1993.

[3] Rajeev Alur, Ken McMillan, and Doron Peled. Model-chéeuk of correctness conditions
for concurrent objects. IEleventh Symposium on Logic in Computer Sciepages 219-
228. IEEE, 1996.

[4] Tim Braun, Anne E. Condon, Alan J. Hu, Kai S. Juse, Mariag4, Michael Leslie, and
Rita Sharma. Proving sequential consistency by model ¢hgcKkn International High-
Level Design, Validation, and Test WorkshtpEE, 2001.

[5] Edmund M. Clarke and E. Allen Emerson. Design and synshafssynchronization skele-
tons using branching time temporal logic. In Dexter Kozatitae, Workshop on Logics of
Programs pages 52—71, May 1981. Published 1982 as Lecture Notesmp@er Science
Number 131.

[6] Anne E. Condon and Alan J. Hu. Automatable verificatiorsefjuential consistency. In
13th Symposium on Parallel Algorithms and Architectupeges 113-121. ACM, 2001.

[7] Phillip B. Gibbons and Ephraim Korach. Testing sharedmages. SIAM Journal on
Computing 26(4):1208—-1244, August 1997.

[8] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamémiifying sequential con-
sistency on shared-memory multiprocessor system&omputer-Aided Verification: 11th
International Conferengepages 301-315. Springer, 1999. Lecture Notes in Computer
Science \ol. 1633.

[9] Mark D. Hill. Multiprocessors should support simple mery-consistency modeldEEE
Computey pages 28-34, August 1998.

[10] Leslie Lamport. How to make a multiprocessor computet torrectly executes multipro-
cess programsACM Transactions on Compute28(9):690-691, September 1979.

[11] Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, aadesh Gopalakrishnan. The
‘test model-checking’ approach to the verification of fofmmeemory models of multipro-
cessors. IrComputer-Aided Verification: 10th International Conferenpages 464—476.
Springer, 1998. Lecture Notes in Computer Science Vol. 1427

[12] M. Plakal, D. Sorin, A. Condon, and M. Hill. Lamport Cke&: Verifying a directory cache
coherence protocol. IBymposium on Parallel Algorithms and Architecturesges 6776,
1998.

[13] Shaz Qadeer. On the verification of memory models ofedvanemory multiprocessors.
Research Report 175, Compag Systems Research Center, 2001.

23



