On Approximation Algorithms for Hierarchical MAX-SAT

Sameet Agarwal® Anne Condon'
sameet@cs.wisc.edu condon@cs.wisc.edu
Computer Sciences Department Computer Sciences Department
University of Wisconsin University of Wisconsin
1210 West Dayton St. 1210 West Dayton St.
Madison, WI 53706 Madison, WI 53706
July 2, 1997

* Agarwal’s research supported by University of Wisconsin Computer Sciences Department research funds.
TCondon’s research supported by NSF grant CCR-9257241 and by matching grants from AT&T Foundation and

IBM.

Running head: Approximating Hierarchical MAX-SAT

Contact Author:

Anne Condon
Computer Sciences Department
University of Wisconsin
1210 West Dayton St.
Madison, WI 53706

Abstract

We prove upper and lower bounds on performance guarantees of approximation algorithms
for the Hierarchical MAX-SAT (H-MAX-SAT) problem. This problem is representative of a
broad class of PSPACE-hard problems involving graphs, Boolean formulas and other structures
that are defined succinctly.

Our first result is that for some constant ¢ < 1, it is PSPACE-hard to approximate the
function H-MAX-SAT to within ratio e. We obtain our result using a reduction from the
language recognition problem for a model of PSPACE called the probabilistically checkable
debate system. As an immediate application, we obtain nonapproximability results for functions
on hierarchical graphs by combining our result with previously known approximation-preserving
reductions to other problems. For example, it is PSPACE-hard to approximate H-MAX-CUT
and H-MAX-INDEPENDENT-SET to within some constant factor.

Our second result 1s that there is an efficient approximation algorithm for H-MAX-SAT
with performance guarantee 2/3. The previous best bound claimed for this problem was 1/2.
One new technique of our algorithm can be used to obtain approximation algorithms for other
problems, such as hierarchical MAX-CUT, which are simpler than previously known algorithms

and which have performance guarantees that match the previous best bounds.

1 Introduction

Succinct representations of graphs, Boolean formulas and other structures have been studied for
over a decade, motivated by applications in VLSI circuit design, scheduling, finite element analysis,
and many other applications. A good example is the class of hierarchically defined graphs, proposed
by Lengauer [13, 14] as a means of specifying VLSI layout circuits. The hierarchical specification of
a graph may be logarithmic in the size of the graph. Partly as a result of this, optimization functions
defined on hierarchical structures are often PSPACE-hard, motivating the study of approximation
algorithms for optimization functions on such succinct structures.

Marathe et al. [17] described polynomial time approximation algorithms for hierarchical versions
of the MAX-CUT and SAT problems, both of which have a performance guarantee of 1/2. This is
not as good as the best performance guarantees for the non-hierarchical versions of these problems.
One goal of our work is to develop improved techniques for designing approximation algorithms for
hierarchically-specified problems, in order to close the gap between the performance guarantees of
hierarchical and non-hierarchical versions of a problem.

Towards this end, we focus on the PSPACE-hard H-MAX-SAT problem, that of determining
the maximum weight of any set of clauses of a hierarchically defined Boolean formula in CNF form
that can be satisfied by some truth assignment [18]. Although to our knowledge the H-MAX-
SAT problem has no immediate practical applications, we chose it for this study because it is the
hierarchical analogue of the widely studied NP-hard MAX-SAT problem. Progress on MAX-SAT
[7, 8, 20] has led to discovery of new techniques, such as those based on semi-definite programming,
that are also useful for MAX-CUT, COLORING and many other NP-hard problems. We hope that
progress on H-MAX-SAT may similarly lead to insights on other hierarchically defined problems.

We present an approximation algorithm for H-MAX-SAT that has performance guarantee 2/3.
We also present a hardness-of-approximation result for H-MAX-SAT. Since the hardness of many
other problems on hierarchical structures are based on reductions from the H-SAT problem [18],
our negative result on approximating H-SAT leads to similar negative results for several problems
on hierarchical graphs.

Before describing our results and their applications in detail, we use a simple example to explain
the H-MAX-SAT problem. An instance of the decision version of this problem, H-SAT, is a sequence
F = (I, I, ..., Fy) of parameterized formulas, each of which is defined in part using lower-

numbered formulas in the sequence, as in the following example.

Fl(;l’l) = (;fl\/Zl)

F2($2,$3) = F1($2)/\F1($2)/\ (%2\/22\/@3)/\(@2\/2’2)

Fg(@) = 1*—72(237 24) A F1 (2’3) A (23 V 24)

Corresponding to each [} is an expansion, F(F};). E(Fy), the expansion of Fy, is simply F. For
i > 1 E(F;) can be constructed by inductively replacing each instance of F; (5 < i) that occurs in
F; by E(Fj;), substituting for the parameterized variables of F; (namely z;, 2 or 3) in the natural
way, and renaming the remaining variables (z1, z2, z3 or z4) so that there are distinct copies in each
expansion. We now illustrate this construction for the above example (a precise description of the

construction is given in Section 2).

E(Fl) = (.’fl V Zl)
E(Fg) = (fg\/ZLl) A (fg\/ZLQ) A (ibgvgg\/.fg)/\ (fg\/ZQ)
E(Fg) = (23 V 2171) A (23 vV 2172) A (23 V 2271 V 24) A (23 V 2271) A (23 V 2173) A (23 V 2’4).

The expanded formula F([}) is also denoted by F(F’). The problem is to determine if F(F) is
satisfiable. The running time of an algorithm for this problem is measured as a function of the size
of the hierarchical specification of the formula, namely I’ = (F3, Fy, ..., Fg), rather than the size
of the expanded formula. In general, the size of the expanded formula F(I’) may be exponential
in the size of F.

Let H-MAX-SAT(F') be the function that maps an instance F of H-SAT to the maximum
number of satisfiable clauses of F(F). Let H-MAX-3SAT be the restriction of H-MAX-SAT to
instances with at most three literals per clause (both before and after the expansion).

Our first result is that for some constant € < 1, it is PSPACFE-hard to approzimate the function
H-MAX-35AT to within ratio €. Thus, if there is a polynomial time algorithm that computes a
function g such that g(F’) is in the range [¢H-MAX-SAT(F), (1/¢)H-MAX-SAT(F)] then PSPACE
= P. To prove this, we use a result of Condon et al. [5], which characterizes PSPACE in terms
of resource-bounded debate systems. We reduce the problem of determining if such a debate
system accepts a language L to the problem of approximating the H-MAX-3SAT function. As an
immediate application, we obtain nonapproximability results for functions on hierarchical graphs
which were previously studied by Hunt et al. [10, 18]. In what follows, we use the prefix “H-" to
denote a problem on hierarchical instances; for example H-MAX-CUT is the function that maps
a hierarchically specified graph to the size of the maximum cut of the graph. Previously, Hunt
et al. [10] gave approximation-preserving reductions from H-MAX-SAT to the H-MAX-CUT and
H-MAX-INDEPENDENT-SET problems. Combining these with our result, it follows that it is
PSPACE-hard to approximate H-MAX-CUT and H-MAX-INDEPENDENT-SET to within some
constant factor. We note that hardness of approximation results for several other PSPACE-hard

problems (but not for hierarchically defined problems) based on reductions from debate systems

can be found in [4, 5]. A hardness of approximability result for a PSPACE-hard hierarchically
defined linear programming problem can be found in [17].

Our second result is that there is an efficient approximation algorithm for the H-MAX-SAT
problem with performance guarantee 2/3. Specifically, given any H-CNF formula F’; our algorithm
efficiently produces a “hierarchical specification” of a truth assignment to the variables of F(F)
that is guaranteed to satisfy at least 2/3 the number of clauses in an optimal solution of E(F).
Previously, a performance guarantee of 1/2 for H-MAX-3SAT was shown by Marathe et al. [9, 17].
Their algorithm is based on an algorithm of Johnson [12] for MAX-SAT; roughly, their method is
to apply Johnson’s technique in a “bottom-up” manner at each level of the hierarchical formula.
Our algorithm builds on previous work of of Lieberherr and Specker [16] and Yannakakis [20] for
MAX-SAT to obtain the improved bound. Another new feature of our algorithm is the use of a
“lazy evaluation” of the hierarchical formula. This technique can also be used to simplify other
algorithms in the literature for hierarchical problems, such as the approximation algorithms of
Marathe et al. [17] for H-MAX-CUT.

Whether our algorithm can be further improved is an interesting problem for several reasons.
Algorithms for MAX-SAT that have performance guarantee 3/4 are known, but they do not have
the simple greedy structure of our algorithm. Instead, they are based on algorithms for max flow
(Yannakakis [20]), linear programming (Goemans and Williamson [7]) and semi-definite program-
ming (Goemans and Williamson [8], for MAX-2SAT). A naive application of these techniques to
hierarchical formulas would lead to a flow or programming problem of exponential size, and hence
an exponential-time algorithm. It does not appear to help even if the flow or programming prob-
lems can be expressed hierarchically, since both of these problems are PSPACE-hard. Moreover,
approximating the optimal solution to a hierarchical linear programming problem within ratio €
for any ¢ < 1 is PSPACE-hard [17]. It would be interesting to find an efficient approximation
algorithm for H-MAX-SAT which overcomes these problems to achieve a performance guarantee of
3/4 or better.

The rest of the paper is organized as follows. In Section 2, we define precisely the H-SAT
and H-MAX-SAT problems studied in this paper. We also define there the debate system model
used in our nonapproximability result for H-MAX-3SAT of Section 3. In Section 4, we present our
2/3-approximation algorithm for H-MAX-SAT.

2 Definitions

2.1 Hierarchical Satisfiability

By a CNF (kCNF) formula, we mean a Boolean formula in conjunctive normal form (k-conjunctive
normal form), in which the clauses have positive weights. Throughout the paper, clauses with
weight > 1 are shown with their weights.

A hierarchical CNF (H-CNF) formula F = (Fy(X1), Fo(X?), ..., Fx(X*)) is a sequence of &
nonterminals. The ¢th nonterminal is of the form

F(X)=(N\ F,(X;oZ)) A fi(X', 2.
1<5<l;

Intuitively, X is an ordered set of “parameters” to the formula F; called the pins of the formula.
Z' on the other hand is the set of variables which are free and are called the explicit variables.
Clearly, the sets X* and Z° should be non-overlapping, that is, they satisfy the conditions that
(UXHN(UZ)=0and ZiNZ" =0, XN X" = when i # i'. Also, the set of pins, X}, for the
top-level formula Fj is empty. The explicit variables and pins together are called terminals. In
the above formula, f;(X*, 7*) is a CNF formula with variables in the set XU Z. Without loss of
generality, we can assume that UZ* = {21, 2, ..., 2} and UX" = {21, 29,...,2:}.

The ordered set X]Z: o Z;: is “passed as parameters” to the formula F},, where o is the ordered set
concatenation operator. The sets X]Z: and Z}Z have to be such that X]i C X% and Z} C Z*. Moreover,
| XiuZi = |X").

The expanded formula E(F) of F is defined inductively, with F(Fy) = Fy. For 2 < i < k,
E(F) is obtained from F; as follows. Fach occurrence of F;, (X]i7 Z;) is replaced by a copy of the
expanded formula F(F};), where each occurrence of a pin in X% is replaced by the corresponding
terminal in the ordered set X;: o Z; Also, the explicit terminals of F/(F;;) (that is, the variables in
Z1i) are relabeled so that they are distinct in each distinct expansion of a lower-numbered formula
in F(F).

For concreteness, we use the following scheme for relabeling explicit variables. This scheme is
consistent with the example given in the introduction and is used in our approximation algorithm
of Section 4. The distinct copies of variable z; in E(F;) are labeled z,, for rp = 1,2,.... Before
starting the expansion of Fj, ry is initially set to 1. For each nonterminal F}, in turn, if 7, contains
m distinct copies of z;, labeled z;1,..., 2, then these copies are relabeled z;,,,..., 2, +m-1 and
ri is updated to rx + m. Also, if Fj, contains one copy of z;, labeled z;, then this copy is relabeled

2z r. and rg is updated to r + 1. The CNF formula E/(F}) is the expanded formula E(F).

Later in our approximation algorithm, we will also refer to the lazy expansion of F’, denoted by
FE'(F). This is similar to E(F'), except that all copies of an explicit variable z; are the same, that
is, no relabeling is done. For example, the lazy expansion of the formula F of the introductory

example is
E'(F) = 2(z3Vz1)A(z3Vz1)A(23V 22) A(23V 2V Z4) A (23 V 24).

We denote by SAT the set of satisfiable CNI formulas. For any CNF formula f and truth
assignment 7 to the variables of f, let wt(f,7) denote the sum of the weights of the clauses of f
that are satisfied by truth assignment 7. We denote by MAX-SAT the function that maps a CNF
formula f to max, wt(f,7), the maximum weight of any truth assignment of f. We denote by
H-SAT the set of H-CNF formulas F' such that F(F) is satisfiable. We denote by H-MAX-SAT
the function that maps an H-CNF formula /' to max, wt(£(F),), the maximum weight of any
truth assignment of F(F). We denote by H-MAX-ASAT the function H-MAX-SAT, restricted to
the domain consisting of H-CNF formulas in which each f; is a kCNF formula.

2.2 Approximation Algorithms for H-MAX-SAT

We next define what we mean by an approximation algorithm for H-MAX-SAT. In the case of
the NP-optimization problem SAT, an approximation algorithm computes not only the weight of
a truth assignment, but also outputs a truth assignment with that weight. Since the number of
variables in F/(I') may be exponential in |F'|, no polynomial-time algorithm can always output a
description of an arbitrary truth assignment for F'(I’). Therefore, to define what we mean by an
approximation algorithm for H-MAX-SAT, we proceed as follows. Let A be an algorithm that takes
as input a H-SAT formula /7 and variable y of F(I’). The algorithm outputs a value wr and a
truth value to y. We say that A is consistent if given any F, the value wr output by A on input
F,y is the same for all variables y of F’. We only consider consistent algorithms in what follows. We
denote by A(F’) the truth assignment defined by A for F(I); in this way, we consider the algorithm
A to be a function.

We say that A is an approzimation algorithm for H-MAX-SAT if for all instances I’ of H-
SAT, the weight of A(F') is at least wr. Note that we do not require the weight of A(F) to be
exactly wg, but rather that wg is a lower bound on A(F). This is because we know of no efficient
approximation algorithm A for H-MAX-SAT that produces the exact weight A(F’). Moreover, if
one must choose between getting the exact value of a low-quality truth assignment, or getting a
good lower bound on a high-quality truth assignment, the latter would appear to be much more

useful. Our approximation algorithm for H-MAX-SAT produces a weight lower bound wg for A(F)

that is at least 2/3 of the weight of the optimal truth assignment. We note that for the restricted
problem H-MAX-ESAT, a slight modification of our algorithm produces the exact weight of the
truth assignment A(F).

We say approximation algorithm A has performance guarantee ¢ < 1 if for all instances F of
H-SAT, wp is at least € times the maximum weight of any truth assignment for F. In this case, we
also say that A is a e-approximation algorithm for H-MAX-SAT or that A approximates H-SAT
within ratio e.

The approximation algorithms for H-MAX-SAT considered in previous papers [9, 17] and in
this paper all output a hierarchical specification of a truth assignment. A hierarchical specification
of a truth assignment of F(F) simply specifies a truth value for each variable in the set Uzt =
{z1,22,...,2s}. Note that this assignment is of length at most linear in |F’|. Also, this assignment is
a truth assignment for £’(I”), the lazy expansion of F. The hierarchical specification 7 determines
a truth assignment E(7) for E(F) in the following way. Assign to each variable z; and each
relabeled copy of z; in E(F’) the truth value of z;, 1 < j < s. Intuitively, a hierarchically specified
truth assignment assigns the same value to all occurrences of z;, rather than treating relabeled
occurrences of z; in different nonterminals as different variables. The following fact follows from

the definitions.
Fact 1 Let T be the hierarchical specification of a truth assignment for E(F). Then,
wt(E'(F),) = wt(E(F), E(1)).

Let f and ¢ be any real-valued functions with the same domain. We say g approzimates f
within ratio €, 0 < e < 1, if for all F' in the domain of f and ¢, ¢ < g(F)/f(F) < 1/e. We
say that a function g is PSPACE-hard if PSPACE C P9, that is, if every language in PSPACE is
polynomial-time reducible to g. By “approximating f within ratio € is PSPACE-hard,” we mean
that, if ¢ approximates f within ratio ¢, then g is PSPACE-hard.

2.3 Randomized Probabilistically Checkable Debate Systems (RPCDS)

We need the following definitions pertaining to debate systems from [5] in order to describe the
proof of our main nonapproximability result in Section 3. A randomized probabilistically checkable
debate system (RPCDS) consists of a verifier V and a debate format D. The debate format is a
pair of polynomial-time computable functions (f(n),g(n)). For a fixed n, a debate between two
players, 0 and 1, consistent with the debate format (f(n),¢(n)), contains g(n) rounds. At round
i > 1, Player i mod 2 chooses a string of length f(n).

The verifier is a probabilistic polynomial-time Turing machine that takes as input a pair (z, 7),
where 7 € {0,1}*, and outputs 1 or 0. The output is interpreted as € L or 2 ¢ L respectively. If
x € L, then Player 1 is said to win the debate otherwise Player 0 is said to win the debate. The
aim of Players 1 and 0 is to come up with strategies to “convince” the verifier that € L or z ¢ L
respectively.

For each z of length n, corresponding to the debate format D is a debate tree. This is a complete
binary tree of depth f(n)g(n) such that, from any vertex, one edge is labeled 0 and the other is
labeled 1. A debate is any binary string of length f(n)g(n). For a fixed z of length n, a debate
subtree is a tree of depth f(n)g(n) such that each vertex at level ¢ has 1 child if ¢ div f(n) is even
and it has two children if 7 div f(n) is odd. This subtree gives the list of all “responses” of Player
1, against all possible “arguments” of Player 0 in every debate.

For a debate subtree, we define the overall probability that the verifier V' outputs 1 to be the
average over all debates 7 in the tree, of the probability that V' outputs 1 on input (z, 7).

A language L has a RPCDS with error probability ¢ if there is a pair (D = (f(n),g(n)), V) such
that

1. For all z € L, there is a debate subtree for which the overall probability that V' outputs 1 is
1. In this case, we say that z is accepted by (D, V).

2. For each z ¢ L, for all debate subtrees, the overall probability that V outputs 1 is at most e.
In this case, we say that z is rejected by (D, V).

A language L is said to be in RPCD(r(n), ¢(n)) if there is a RPCDS which accepts L with error
probability 1/3 such that the verifier flips r(n) coins and queries ¢(n) bits of 7. Furthermore, the

verifier’s queries are non-adaptive, that is, the bits queried are completely determined by the input

and the result of the coin flips. Condon et al. [5] showed that PSPACE = RPCD(O(log), O(c0)).

3 Nonapproximability of Hierarchical-MAX-3SAT

In this section we show in Theorem 1 that for some constant ¢ < 1, it is PSPACE-hard to approxi-
mate H-MAX-3SAT within ratio e. To prove this, we show how to construct a H-3CNF formula F
from an instance x and a RPCDS D, such that F is satisfiable if and only if z is accepted by D.
Before giving the details in Theorem 1, we explain the ideas behind the construction.
Roughly, F is constructed with the following properties. A truth assignment to the variables
of the expanded formula E(F) describes a debate subtree of D on z; there is one variable per edge

in the tree. A truth value of true denotes that the edge is labeled 1 and a truth value of false

denotes that the edge is labeled 0. The set of clauses of E(F’) is composed of subformulas, one
for each path (debate) of the debate subtree. Given any random bit string of the verifier, whether
the verifier accepts or rejects on that bit string can be expressed as a Boolean function of the
((o0) variables that represent the bits of the debate read by the verifier on that random bit string.
Hence, the outcome of the verifier’s computation on a given random bit string can be written as the
conjunction of a constant number, say ¢, of clauses, each clause containing exactly 3 literals. Thus,
for a given debate, over all possible O(log\) random bit strings there are a polynomial number,
say p(n) = c2°08\) of clauses. These comprise one subformula of F(F). Let these clauses be
called a-clauses. If on a particular debate, the verifier accepts x with a probability p, the number
of clauses satisfied is at most p(n) — (1/¢)(1 — p)p(n).

Thus, the variables of E'(F) correspond to edges of a tree, and the clauses of £/(}7) are partitioned
into subformulas, one per debate or path in the tree. These subformulas have the same structure
but different variables, and all the variables in a subformula lie on one path of the tree. Because of
this tree structure underlying F/(F’), F' can be specified hierarchically in a natural way.

In addition to the a-clauses, F/(F) also has clauses that test whether the truth assignment to
the variables of F/(F’) correspond to a valid debate subtree. That is, the variables labeling the
pair of edges at each branch of the tree should have opposite truth assignments, since these edges
correspond to the two possible bits that Player 0 could write. In order to be able to specify these
clauses hierarchically, these clauses are again partitioned into subformulas, one per path in the
tree. The clauses in one subformula are called §-clauses. For each branching node along this path,
if p is the variable corresponding to the edge from this node on the path, and p’ is the variable
corresponding to the other edge from this node, the -clauses check that p # p’. Thus, the S-clauses
necessarily involve not only the variables corresponding to edges at odd levels along one path from
the root of the tree, but also involve an equal number of additional variables corresponding to edges
branching from this path. (Recall that nodes at odd levels of a debate subtree are branching, while
nodes at even levels of a debate subtree are not, where the root is at level 0.)

We now give the formal proof on the hardness of approximating H-MAX-SAT.

Theorem 1 For some constant ¢ < 1, it is PSPACFE-hard to approzimate H-MAX-35AT within

ratio ¢.

Proof: Consider a language . € PSPACE. L has a RPCDS D in which the verifier uses O(log\)
random bits and reads (O(oco) bits of the debate. Without loss of generality, we can assume that
the debate format is such that f(n) = 1, that is, the players choose one bit per round of the debate
and that ¢g(n) is even. Let N = ¢g(n)/2 be the number of rounds per player.

10

For a given input z of length n, we construct from the RPCDS D and 2 a H-3CNF formula
F ={F,F,,...,Fny1}. F; is constructed to encode the portion of the debate subtree with the
first N + 1 — ¢ responses of Players 0 and 1 fixed. Each copy of F} represents one possible debate,
encoded by the a-clauses defined above, while F41 represents the complete debate subtree.

More precisely, for each 4, F; has pins py, ..., p;, Py, -..pi and g, . .., ¢;. The explicit variables
at this level are z;_;, y;_; and y/_,. Given that ¢ypNngyn_{PN—-1 - ¢;pi are the first N —i—1 bits of
the debate, z;_, represents the choice of player 1 and y;_y and y._; are the two possible responses
of player 0. (Since Player 1 plays first, there is only one edge from nodes at even levels of the debate
subtree, which is why we don’t need two copies of z; at each level.) At the top level, zx is the first
bit of the debate chosen by player 1 and yy, yj are the choices for the response of player 0. At
each level, the p’-variables represent the complements of the p-variables. At the lowest level, the
f-clauses verify that for all 4, p; # p}. This ensures that the H-CNF formula encodes the strategy
of player 1 against all responses of player 0 thereby giving a valid debate subtree. The definition
of Fis given in Figure 1.

In Figure 1, a-clauses are the clauses representing the computation of the verifier over all random

bit strings on the debate ¢xpngy_1PN—1-- ¢, p1 and the B-clauses are

z

(pi vV Pi) A (i V DY)

k3

Il
—

Each a-clause has a weight 1. The -clauses p; V pi and p; V p} are each duplicated a number of
times equal to the number of a-clauses containing p; or p;. Alternatively, they are defined to have
weight equal to this number.

To complete the proof, we show that the above reduction is “approximation-preserving.” That
is, we show that if € L then there is an assignment to the variables of F(F) with weight 7p(n)2",
whereas if z ¢ L, then the weight of the best assignment is at most (k 4+ 6)p(n)2", where k is a
constant less than 1. Note that the number of a-clauses is p(n)2". Also, the total weight of all
B-clauses is 6p(n)27.

First suppose that € L. Then there exists a debate subtree T such that the verifier accepts on
all debates (paths of 7') and all random bit strings. We claim that in this case, F'(F) is satisfiable.
A satisfying truth assignment is obtained by assigning all copies of y; to 0 (false) and y! to 1
(true) for all ¢ and by assigning values to variables of the form z; . according to the debate subtree
T. Clearly all a-clauses are satisfied because the verifier always accepts. Also, all 3-clauses are
satisfied because in any copy of the -clauses, the pair p; and p} are replaced by a pair of variables,

one of which is a copy of y; and one of which is a copy of y.. Therefore, all clauses of the formula

11

FN—}-I(@) = FN(yN7ZN7y§\7)/\FN(y§V7ZN7yN)

FN(pN7QN7p§V) - FN—I(pN7QN7p§\77yN—17ZN_17y§V_1) A FN—I(pN7QN7p§V7y§V_17ZN_17yN—1)

E(p]\ﬂ e Pit1, N - - '7qi+17p§\f7 .. '7p;'+17pi7qu;')
= E—l(p]\ﬂ e P qy, - -7q2'7p§\[7 e '7p;'7yi—17zi_17yz/'—1)
/\E—l(pN7 e P qy, - '7qi7p§\77 .- -7p;',y2/'_1722'_17yi—1)

Fy(DNy 3 P35 ANy -3 G35 PN - - 5 D3y D25 G5 D)
= PPNy P2 AN -5 G2y Py - - s Py Y15 215 Y1)
AFL(DPNy oy D2 Ny -« o3 Gay PNy« - -5 Py Uiy 21, Y1)
Fi(PNy P2y -5 €2y Py - -5 P2y D1y 15 DY)

= a-clauses A (-clauses

Figure 1: Construction of the H-3CNF formula F

are satisfied if 2 € L. Thus there exists an assignment to the variables such that the weight of the
clauses satisfied is 7p(n)2".

Next, suppose that z ¢ L. We first show that for any assignment 7 to the variables such that
the weight of the satisfied clauses is w, there exists an assignment 7/ which satisfies clauses of weight
> w and also satisfies all g-clauses.

Suppose that 7 assigns the same value to the variables substituted for pins p; and p} in some
copy of I, say variables y; , and yl’»ﬂn. Now, if we change the value of y; ., some a-clauses containing
Y;r or J; , become false and one more -clause will be satisfied. Since the weight of the S-clause
is equal to the number of a-clauses containing ¥;, or ¥; ., the net change in weight as a result of
changing the assignment of y;, is nonnegative. Thus without loss of generality, we can consider
only truth assignments which satisfy all 3-clauses, that is, a truth assignment in which, for all 7 and
r, ¥;r and yz’»m are assigned different values. Such a truth assignment determines a debate subtree.

By the definition of language acceptance of a RPCDS, we know that the overall probability
that the verifier accepts z is < 1/3. By definition of overall probability, this implies that if the
variables of F'(F') are assigned so as to satisfy all f-clauses, then the number of a-clauses satisfied
< kp(n)2N, where k = 1 —2/(3¢). Hence the total weight of any solution of the H-3SAT formula
is at most (k + 6)p(n)2V. Thus, it is PSPACE-hard to approximate H-MAX-3SAT within ratio

(k +6)/7 of optimal.]

12

Previously, Hunt et al. [10] gave approximation-preserving reductions from H-MAX-SAT to
the H-MAX-CUT and H-MAX-INDEPENDENT-SET and H-MAX-2SAT problems (see [10] for
definitions of the hierarchical graph problems). Combining these with Theorem 1, we obtain the

following corollary.

Corollary 2 For some constant ¢ < 1, it is PSPACFE-hard to approzimate H-MAX-25AT, H-
MAX-CUT and H-MAX-INDEPENDENT-SET to within ratio e.

4 2/3-Approximation Algorithm for H-MAX-SAT

Our algorithm builds on ideas of Lieberherr and Specker [16] and Yannakakis [20]. We actually
describe our algorithm for a weighted version of H-MAX-SAT in which clauses may be labeled
with binary weights. To motivate our approach, we first describe the algorithm of Lieberherr and
Specker [16]. We then show in a series of examples how we build on their approach to obtain
our algorithm. We give a precise description of our algorithm in Section 4.1 and a proof of its
correctness in Section 4.2.

The algorithm of Lieberherr and Specker is probabilistic, and takes as input a three-satisfiable
CNF formula. A CNF formula is three-satisfiable if any three of its clauses can be simultaneously
satisfied. The expected number of clauses of the input that are satisfied by the Lieberherr-Specker
algorithm is at least a fraction 2/3 of the optimal number. Their algorithm actually achieves the
same bound on the following slightly more general type of CNF formula. We say a CNF formula is
good if it does not contain (i) a pair of unit clauses of the form v and v; or (ii) a triple of clauses of
the form v, v/ and v V ¢v’. Given a good CNF formula F’, assign = the value true with probability
2/3 if the unit clause x occurs in the formula, with probability 1/3 if the unit clause occurs in
the formula and with probability 1/2 otherwise. From the fact that F’ is good, it follows that every
clause in the formula has a probability > 2/3 of being satisfied. This randomized algorithm can
be made deterministic by a well-known procedure, called the method of conditional expectations
[19, 20].

The Lieberherr-Specker algorithm can be extended to work not just for good formulas, but for
the general MAX-SAT problem (which has not apparently been previously noted in the literature),
and it can also be extended to H-MAX-SAT. Before describing the actual algorithm for H-MAX-

SAT, let us look at a few examples.

Example 1 Consider the set of clauses S = {z,y,z V y, z, 2}, which is not good. One can check

that using Lieberherr and Specker’s algorithm, the expected number of clauses satisfied will be less

13

than 5(2/3), that is, less than 2/3 of the weight of all clauses.

We can convert the set S into an equivalent set of clauses S’ such that S’ is good. By equivalent,
we mean that under any truth assignment of variables of S, the weight of S is the same as the weight
of S” under the same truth assignment. This conversion is inspired by an algorithm of Yannakakis
[20], who shows how a 2-CNF formula can be converted into an equivalent 2-CNF formula with
no unit clauses, using max flow. Yannakakis uses this to obtain a 3/4-approximation algorithm for
MAX-2SAT. Our conversion algorithm is simpler than that of Yannakakis and does not achieve as
good a performance guarantee, but it has the advantage that it will extend to hierarchical formulas.

To obtain S’, we replace every pair of clauses of the form z and z of equal weight w by a single
clause true with weight w. (The more general case where z and z do not have equal weight is
explained in the full algorithm in Section 4.1.) Also, given three clauses of the form z, y and z V y,
each with weight w, replace the three clauses by two clauses z V y and true each with weight w.
Thus the set S is equivalent to the set of clauses S’ = {z V y, true, true}.

Applying Lieberherr and Specker’s algorithm to S’, we obtain a truth assignment with expected
weight 11/4 which is greater than 2/3 times the weight of all clauses in S’. Since an optimal solution
for S’ is also an optimal solution for S, the value of the above assignment is at least 2/3 the weight

of an optimal solution for S.

Example 2 We now consider a H-CNF formula I’ = (F7, Iy, I3) where

Fl(ibl,wg) = $1/\(f1\/i2)/\21/\(21\/$1)
Fy(z3) = Fi(zs,22) Az
Fg(@) = F2(23) /\23/\23

Expanding, we get
E(F) = Z3 A (23 V 2271) A 2171 A (2171 V 23) A 2’271 A 23 A 53.

In this example, although the clauses at the individual levels are all good, the expanded formula
is not even two-satisfiable. As a first step, we “push up” to higher levels all clauses of size 1 and
2 which contain only pins so that each clause of length 1 or 2 at any level contains at least one

explicit vertex. The H-CNF formula F, after this has been done, is as follows:

Fl(.rhibg) = 21/\(21\/$1)
FQ(.’rg) = Fl(;rg,ZQ)/\ZQ/\ (;fg\/gg)
Fg(@) = FQ(Zg) /\23/\53/\2’3

14

Then, we make each level (ignoring nonterminals) good, applying the method of the previous

example. This step yields a new formula F' = (FY, I}, I'}) as follows.

F{($1,$2) = Zl/\(gl\/;ﬁl)
F2/($3) = F{(iEg,ZQ) /\2’2/\ (fg\/ég)
F5(0) = Fj(23) A z3 Atrue

Expanding, we get
E(F’) = Z11 A (2171 V 23) A (23 V 2271) A 221 A 23 A true

We see that still £(F") is not good. The problem is due to pairs of clauses of the form vV p, v,
where v is an explicit literal and p is a pin. To correct this problem, we do the following for each
level in turn, starting with Fj. For each pair of clauses of the form vV p and v, each with weight w
where v is an explicit literal and p is a pin literal, we replace these clauses by the clauses pV v and
p, each with weight w and then push the clause p to the level where p gets replaced by an explicit
literal. Let F" = (FY, FY, FY) be the CNF formula obtained by performing all the operations on
F. Then F" is given by

F'(z1,29) = (21V 21)
Fy(z3) = F'(z3,22) A (22 V 23)
Fi(0) = Fj(z3) A z3 A 2true
Expanding, we get
E(F") = (z3Vz1)A(22V 23) A 23 A 2true

E(F") is clearly good. So, the Lieberherr-Specker algorithm can be applied to get a truth assign-
ment of E(F") with expected weight at least 2/3 of the total weight.

There are still some problems to be overcome, since in general F(F") may be of size exponential
in |F|. The first observation we use is that it is sufficient to work with the lazy expansion E'(F"),
because this is also guaranteed to be good. Moreover, Fact 1 of Section 2 shows that a truth
assignment for E'(F") is a hierarchical specification of a truth assignment for E(F") with the same
weight. However, even the lazy expansion of a hierarchical formula F’ can be of size exponential in
|F’|. Therefore, before computing the lazy expansion of F'; we simply remove arbitrary literals from
clauses of F/ with more than three literals, until these clauses have exactly three literals. Then, in
the lazy expansion of I there are only a polynomial number of distinct variables (namely explicit
variables {z1,z9,...25}) and there are only a polynomial number of possible distinct clauses of
length at most three over this set of variables. Hence, if I’ has clauses of length at most 3, the lazy

expansion of F' is of size polynomial in |F|.

15

To summarize from these examples, our approximation algorithm first converts a H-CNF for-
mula F into a H-CNF formula H such that E(H) is good, as in Example 2. Furthermore, F(F)
and F(H) are equivalent, that is, have the same weight with respect to any truth assignment. Then
clauses of H of length greater than three are shortened to be of length exactly three and the lazy
expansion of the resulting formula is computed. A truth assignment for this formula, computed
using the deterministic version of the Lieberherr-Specker algorithm, is a hierarchical specification
of a truth assignment for /(H), and hence for F(F), and has weight at least 2/3 of the total weight
of F(H). Therefore, it has weight at least 2/3 of an optimal truth assignment of E(F).

Finally, we note that once our algorithm has computed a truth assignment, say 7, it outputs
the total weight of the satisfied clauses in the formula that was obtained from H by shortening
clauses to be of length at most 3. In fact, the total weight of the clauses of H that are satisfied
may be greater than this, because a clause of H with greater than three literals may be satisfied
by 7 even if the three literals remaining in the shortened clause are assigned to false. It is for this
reason that the weight output by our algorithm on input F’ may be less than the actual weight
wt(F,) of the truth assignment 7 output by our algorithm.

4.1 Details of the 2/3-Approximation Algorithm

We now present the details of the approximation algorithm for H-MAX-SAT.

Input: A H-CNF formula F' = (Fy, Iy, Is, ..., F,), where F; = F;, NFj, N---ANFj, A f;, the set of
explicit literals of F; is Z* = {21, 29, ..., zs} and the set of pins is X* = {z1,z9,...,2,}.
Output: A hierarchical specification of a truth assignment for E(F), and a lower bound on the

weight of this truth assignment.

Step I: [Conversion of F’ to a hierarchical formula H and a rational number v} such that F(H) is
good and wt(F(F),7) = wt(E(H), 1)+ v.]
for 1 < ¢ < n do the following.

Assume that for all § < 7, we have computed a set of clauses f]p, a new formula H; and a number
;. (Here, pr is the set of clauses “pushed up” from F} as in Example 2 and v} is the weight of
the true clauses obtained when converting F};; we maintain the weight of these clauses rather than
explicitly including them in the formula.)

For each nonterminal F; that appears in I7, let hf be the set of clauses obtained by replacing

the pins in f]p by the terminals (explicit variables or pins) of F;. Let
k
fi=fiv (U hi)
=1

16

and

R S
Uy _Zvﬂ'

=1
Thus (as in Example 2), f/ is the set of clauses of F;, after clauses from lower levels are “pushed
up”, not counting true clauses, and v; is the total weight of true clauses.
Let P be the set of all clauses of f! whose length is 1 or 2 such that all literals in the clause are
pins. Let f¥ = f! — fP. Thus, every clause in f? of length 1 or 2 has at least one explicit literal.
In what follows, v will always represent an explicit literal (of the form z or Z) and p will represent

pin literals (of the form z or). Also, any clause with weight 0 is dropped.

(a) Repeat until no change: If f’ contains two unit clauses of the form z and z with weights w,
and wz, let w = min(wy,wz). Change the weights of the two clauses to w; — w and wy — w

respectively. Also, let v} = v} 4+ w.

(b) Repeat until no change: If f¥ contains three clauses of the form vy, vy and vy V vy with
weights wy, wy and ws, let w = min(wy, wq, ws). Change the weights of the three clauses to
wy — w, wy —w and w3 — w respectively. Add the clause vy V vy with weight w to f7 and let

vf = v+ w.

(c) Repeat until no change: If f} contains two clauses of the form v and v V p with weights w;
and wq, let w = min(wy,wz). Change the weights of the two clauses to w; — w and wy — w

resp. Also, add the clause p with weight w to fib and the clause v V p with weight w to f/.

(d) Repeat until no change: If there are two identical clauses C; and Cy in either f? or f¥, with

weights wy and wy, delete clause C'; and change the weight of Cy to wy + ws.

Let the set of clauses obtained by applying steps (a)—(d) to f¥ and f? be h; and f7 respectively.
Let
I{Z':I‘I]‘1 /\I{]‘2 /\"'/\ij/\hi-

endfor

Let H = (Hl,HQ, .. ,Hn)

Step II: [Contraction of H to G such that E'(G) is good and is of size polynomial in |F].]
We now perform the following contraction operations.
for 1 <i:<ndo

Assume that for each j < 7, we have computed a new formula G;.

17

(a) For each clause in h;, if the clause contains more than 3 literals, arbitrarily choose any 3 of

them and delete all the remaining literals from the clause.

(b) Repeat until no change: If there are two identical clauses Cy and Cy in h;, with weights w;

and wq, delete clause C5 and change the weight of Cy to wy + ws.

Let the set of clauses obtained in this way from h; be g; and let
Gi=Gj, NG, N NG, Ng;.

endfor

Let G = (G17G27 .. ,Gn)

Step IIT: Compute F'(G) and apply the deterministic version of the Lieberherr-Specker algorithm
to this CNF formula. Output the truth assignment computed, and the sum of its weight plus v};.

4.2 Proof of Correctness of the Approximation Algorithm

We first prove that the algorithm of Section 4.1 has a performance guarantee of 2/3. There are
two main parts to the proof. The first, Corollary 5, shows that if 7 is a truth assignment for F(G)
that has weight at least 2/3 of the total weight of all clauses in F(G), then the weight of 7 with
respect to the formula F/(F) is at least 2/3 of an optimal truth assignment for /. The proof of this
builds on a technical lemma, Lemma 3, that describes relationships between the weights of F(F}),
E(G;) and E(H;) based on the construction of Steps I and Il of the algorithm. The second main
part, Lemma 7, shows that Step Il of the algorithm produces such a truth assignment 7.

We then prove in Lemma 8 that the algorithm runs in polynomial time. Combining this with
the fact that the algorithm has performance guarantee of 2/3, the correctness of the approximation
algorithm follows immediately (Theorem 9).

Our first lemma relates the weights of E(F;), F(G;) and E(H;) with respect to an arbitrary

truth assignment 7.
Lemma 3 For all 1,

wt(E(F;),7) = wt(E(H;),)+ wt(f],7)+v]

k3

and

wt(E(H;), T)

v

wt(E(G5),).

18

Proof: We first show that the following equations are true for level .
wt(fi,7) = Z wt(fj, (1)

wt(fl, 1) = wt(hy, 1)+ wt(ff,7)+ v - Z vl (2)
wt(hi,T) > wi(gi,T). (3)

It is obvious that Equation (1) is true by definition of f/. By the construction of set h; and f7,
the two sets of clauses f/ = f’ U fZ»b and h; U f U {true} are equivalent where the true clause has
a weight

k
- Z U;l
=1
Hence Equation (2) is true. Inequality (3) follows since g; is obtained from h; by deleting some

literals from the clauses of h;. Hence under any truth assignment, the weight of the clauses satisfied
in h; is at least the weight of the clauses satisfied in g;.

We now prove the lemma by induction on level i. The basis case is when ¢ = 1. In this case,
E(Fy) = f1, E(H1) = h1, E(G1) = g1 and the result follows using Equations (1)—(3).

Now, let us assume the result to be true for all j < 7. Then we have

k
wt(E(F), 1) = E'wt(E(Fjl),T)—I—wt(fi,T)

=1
k k
= D wt +Zwt Jo)+ 2 v+ wi(fiT)
=1 =1
(by the 1nduct1ve hypothesis)
= Ewt)+ wt(hi, 7) + wt(fF,7) 4+ v}

(using Equations (1)—(2))
= wi(E(Hi),7)+wt(ff,7)+ 0]
Also, using the induction hypothesis and Equation (3),
wt(E(H;),7) > wt(E(G:), T)
This completes the proof of the lemma. |

Corollary 4 (a) For any assignment T of the variables of E(F), wt(E(F), 1) > v+ wt(E(G), T).
(b) If Fopr denotes the weight of an optimal truth assignment for E(F), then

Fopr <vi+ > wi.
CieE(G)

19

Proof: We have from Lemma 3

wt(E(F),) = wt(E(F,),7)=wt(FE(H,),T)+ v}
> wt(E(Gy), 1)+ v,
= wt(E(G), 1)+ v).

Also, if Hopr is an optimal solution for H, then
Hopr < Y wi= Y w;
C.€E(H) Ci€E(G)
and hence,

Fopr =v, + Hopr < v, + Z w;.
Ci€E(G)
o

Corollary 5 Let T be a truth assignment for E(G) with weight at least 2/3 the weight of all clauses
in F(G). Then the weight of T with respect to the formula F(F') is at least 2/3 of an optimal truth
assignment for F. That is, wt(FE(F),) > (2/3)Fopr.

Proof: The proof follows from the following inequalities.

wt(E(F),7) > v, 4+ wt(E(G),7) (from Corollary 4, (a))
> v +2/3 Z w; (by hypothesis of this lemma)
Ci€E(G)
S + >
— v w;
Ci€E(G)
> ZFOPT (from Corollary 4, (b)).

3

O

We next consider Step 111 of the algorithm, namely application of the Lieberherr-Specker algo-
rithm to E'(G), the lazy expansion of G. Recall that the Lieberherr-Specker algorithm outputs a
truth assignment with weight at least 2/3 of the total weight of the clauses of a good input. Our

next lemma shows that in fact E’(G) is good.

Lemma 6 E'(G) is good.

20

Proof: Recall that a CNF formula is good if it does not contain (i) a pair of unit clauses of the
form v and v; or (ii) a triple of clauses of the form v, v" and v Vv v'.

We first show that all h; have the following four properties. Since all of these properties concern
clauses of h; of length at most two, and since ¢; and h; have identical clauses of length at most

two, these properties also hold for g;.
(a) If v € hy, then v ¢ h;.
(b) If vy € h; and vy € h;, then v1 V U3 ¢ h;.
(c) If v € hy, then for any p, vV p ¢ h;.

(d) For any p,pi,p2, P ¢ hz and PV pe ¢ hz

Properties (a), (b) and (c) follow immediately from the repeat loops (a), (b) and (c) of Step I of the
algorithm. Property (d) follows from the fact that all clauses of length at most two which consist
of pins are pushed up from h;, via the set f7.

We now use these properties to show that £’(G) is good. Because the sets of explicit variables
Z; are disjoint, properties (a) and (b) ensure that there are no pairs of type (i) or triples of type
(ii) in E'(F) that result from the h;. Also, the fact that each variable can be passed to at most
one pin of a lower-numbered formula, together with properties (c) and (d), ensure that there are
no pairs of type (i) or triples of type (ii) in E’(F) that result from expansion of the nonterminals

at each level. O

Lemma 7 Step III of the algorithm returns a truth assignment T that satisfies a set of clauses

whose weight is at least 2/3 of the total weight of the clauses of F(G).

Proof: By Lemma 6, we know that F'(G) is good. This implies that the Lieberherr-Specker

algorithm gives a truth assignment 7 such that

wt(E'(G),7) > 2/3 > wi
CLeE/(G)

By definition of E'(G), we know that

wt(E'(G), 1)

IN

wt(E(G), 1)

and

Y owo= Y w
eF(

CeE(G) C.€E(G)
Combining with the previous inequality, we get

21

wt(FE(G),7) > 2/3 Z w;.
Ci€E(G)

Lemma 8 The algorithm of Section 4.1 runs in polynomial time.

Proof: We first show that in Step I, H can be computed in time polynomial in F.

First, note that for all ¢, f is a CNF formula without duplicate clauses such that the length
of each clause is < 2. Also, the terminals of f’ are a subset of those in F. Hence, |fF| is bounded
by a polynomial in |F|. From this, it follows that |f/| and consequently |h;| are also polynomially
bounded.

It is straightforward to see that each of the four repeat loops in Step I require at most a
polynomial number of operations. For example, loop (a) removes one unit clause from f at every
step; hence the number of iterations is at most |F'|. In loop (b), although a new clause vy V vy is
introduced at each iteration, it does not create a triple of the form vy, v, v1 V vy. This is because
v1 V vg is created only if v1 and vz are in f7, in which case v; and v, are not in f! since loop (a)
has already completed.

That G is constructed in polynomial time from H in Step Il is also straightforward to verify.

Next, we show that E'(G) has size polynomial in |F|. This is because the variables of E'(G) are
the explicit variables of I and all clauses of E’(G) have length at most three. Thus, the number
of clauses of E'(() is bounded by a polynomial in the number of explicit variables of F, and hence
by a polynomial in |F].

FE'(G) can be computed in polynomial time by computing each E’(G;) in turn, starting with
i = 1. Once E'(Gy),..., E'(Gi_1) are computed, E'(G;) is computed as follows. First, £'(G;;) is
substituted for each nonterminal G;; of G, just as in the construction of the properly expanded
formula F(G;), except that all duplicates of an explicit variables z; get the same name, namely
z;. The resulting formula has size polynomial the size of the hierarchical specification, since it is
obtained by the substitution of a linear number of formulas, each of polynomial length. Then, for
each clause that appears more than once, say with weights w, ..., w;, replace the [copies with one
copy that has weight wy + ...+ wy.

Finally, since the Lieberherr-Specker algorithm runs in polynomial time, Step III of the algo-

rithm runs in polynomial time. O

Theorem 9 The algorithm of Section 4.1 is a polynomial time approximation algorithm for H-

MAX-SAT with performance guarantee 2/3.

22

Proof: The proof follows immediately from Corollary 5, Lemma 7 and Lemma 8. a

5 Conclusions and Open Problems

We have shown that that for some constant ¢ < 1, it is PSPACE-hard to approximate H-MAX-
SAT within ratio e. This result, combined with approximation-preserving reductions of Marathe et
al. [10], also implies that for some € < 1, it is PSPACE-hard to approximate the hierarchical graph
problems H-MAX-CUT, H-MAX-INDEPENDENT-SET and H-MAX-2SAT within ratio e. It is an
open problem whether this lower bound for H-MAX-INDEPENDENT-SET can be improved to n™°.
(The standard (non-hierarchical) MAX-INDEPENDENT-SET problem is NP-hard to approximate
within a factor of n~¢, for some € < 1 [1, 6].)

We have also presented a polynomial time approximation algorithm for H-MAX-SAT with per-
formance guarantee 2/3. Our algorithm builds on ideas of Lieberherr and Specker and Yannakakis
in a non-trivial way, extending their approach for MAX-SAT to H-MAX-SAT. Another new con-
tribution of our algorithm is the use of the lazy evaluation of a hierarchical formula. We note
that the lazy evaluation idea can be used to obtain a very simple 1/2-approximation algorithm for
H-MAX-SAT, as follows. Given a H-CNF formula F’, simply shorten all of the clauses of F’ to be of
length 1. Then compute the lazy evaluation of the resulting formula to obtain an instance of SAT.
Finally, apply Johnson’s algorithm to this instance to obtain a hierarchical specification of a truth
assignment of F.

Lazy evaluation is also useful in describing simple approximation algorithms for hierarchical
graphs. In [3] we describe a simple 1/2-approximation algorithm for H-MAX-CUT based on this
idea. The resulting algorithm is similar to, but simpler than, the 1/2-approximation algorithm of
Marathe et al. [17] for H-MAX-CUT.

Our algorithm for H-MAX-SAT only outputs a lower bound on the weight of the solution
output, not its exact weight. Can the exact weight of the hierarchically specified solution output
by our algorithm for H-MAX-SAT be computed efficiently, or is there a different 2/3-approximation
algorithm that outputs the exact weight of the solution obtained? (Recall that for the restricted
problem H-MAX-ESAT, the exact weight of the solution output by our algorithm can be efficiently
computed.)

All known approximation algorithms for PSPACE-hard problems on hierarchical structures
output a hierarchical specification of a solution. Therefore, if one wants to improve on the current
best approximation algorithms for H-MAX-SAT and other hierarchically specified problems, the
following questions are important. First, for the H-MAX-SAT problem, can one prove good bounds

23

on the worst-case ratio between the best hierarchically specified solution and the optimal solution?
Our algorithm for H-MAX-SAT shows that the best hierarchically specified solution has weight at
least 2/3 of the weight of the optimal solution. Whether this is tight is not known.

A related problem is to develop an efficient approximation algorithm for H-MAX-SAT or H-
MAX-ESAT that outputs a hierarchical specification of a truth assignment with weight greater than
2/3 of the weight of the optimal hierarchically specified truth assignment. The hope is that, if the
output of the approximation algorithm is measured against the weight of the best hierarchically
specified truth assignment of the H-CNF formula, and not the weight of the best overall truth
assignment, a better performance guarantee can be achieved. A different question is whether there
are approximation algorithms with reasonable performance guarantees for H-MAX-SAT, or for
hierarchical graph problems, that output a solution other than a hierarchically specified one?

Finally in important point is that in some cases where hierarchical descriptions refer to objects of
real-world interest, they are expandable into reasonably sized non-hierarchical descriptions. Thus,
they can be solved using a heuristic for the corresponding non-hierarchical problem. However, no
polynomial-time approximation algorithm for MAX-SAT is known that can exploit the hierarchical
structure of an expanded H-MAX-SAT instance, in order to provide a performance guarantee that
is better than the best possible for the general MAX-SAT problem. Finding such an approxima-
tion algorithm for MAX-SAT would be interesting, especially given the fact that approximation
algorithms for H-MAX-SAT have a poorer performance guarantee than those for MAX-SAT.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof Verification and Hardness of
Approzimation Problems, Proc. 33rd Symposium on Foundations of Computer Science, IEEE

Computer Society Press, Los Alamitos, 1992, pp. 14-23.

[2] A. Cohen and A. Wigderson, Dispersers, Deterministic Amplification, and Weak Random
Sources, Proc. 30th Symposium on Foundations of Computer Science, IEEE Computer Society

Press, Los Alamitos, 1989, pp. 14-19.

[3] A. Condon, Approzimate Solutions for Problems in PSPACE, SIGACT News, Vol. 26 No. 2,
June 1995.

[4] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Probabilistically Checkable Debate Systems
and Approzimation Algorithms for PSPACE-hard functions, Chicago Journal of Theoretical
Computer Science, Vol. 1995, Article 4, 19 October 1995.

24

[5] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Random Debaters and the Hardness of
Approximating Stochastic Functions, SIAM Journal on Computing, Vol. 26, No. 2, March
1997, pages 369-400.

[6] U. Feige, S. Goldwasser, L. Lovdsz, M. Safra, and M. Szegedy, Approzimating Clique is Almost
NP-Complete, Proc. 32nd Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, 1991, pp. 2-12.

[7] M. X. Goemans and D. P. Williamson, New 3/4-Approximation Algorithms for the Mazimum
Satisfiability Problem, SIAM Journal on Discrete Mathematics, 7, 1994, pp. 656—-666.

[8] M. X. Goemans and D. P. Williamson, Improved Approximation Algorithms for Mazimum Cut
and Satisfiability Problems Using Semidefinite Programming, J. ACM, 42, 1995, pp. 1115-1145.

[9] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns, A unified approach to approzimation schemes for NP- and PSPACE- hard problems for
geometric graphs, Proc. Second Annual European Symposium on Algorithms, Springer-Verlag,

Berlin, 1994, pp. 424-435.

[10] H. Hunt III, M. Marathe, R. Stearns, and V. Radhakrishnan, On the Complezity and Approz-
tmability of Periodic and Hierarchical Specifications, Manuscript, SUNY at Albany, 1994.

[11] R. Impagliazzo and D. Zuckerman, How to Recycle Random Bits, Proc. 30th Symposium
on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, 1989,
pp- 248-253.

[12] D. S. Johnson, Approzimation Algorithms for Combinatorial Problems, J. Comput. System
Sci., 9 (1974), pp. 256-278.

[13] T. Lengauer, Ezploiting Hierarchy in VLSI Design, Proc. Aegean Workshop on Computing,
Lecture Notes in Computer Science, Vol. 227, Springer-Verlag, New York, 1986, pp. 180-193.

[14] T. Lengauer and K. Melhorn, The HILL System: A Design Environment for the Hierar-
chical Specification, Compaction, and Simulation of Integrated Circuit Layouts, Proc. MIT
Conference on Advanced Research in VLSI, P. Penfield Jr. ed., Artech House Company, 1984,
pp. 139-149.

[15] T. Lengauer and K. Wagner, The Correlation Between the Complezities of the Non-Hierarchical
and Hierarchical Versions of Graph Problems, J. Comput. System Sci., 44 (1992), pp. 63-93.

25

[16] K. Lieberherr and E. Specker, Complezity of Partial Satisfaction II, TR 293, Department of
EECS, Princeton University, 1982.

[17] M. Marathe, H. Hunt IlI, and S. Ravi, The Complezity of Approzimating PSPACE-Complete
Problems for Hierarchical Specifications, Proc. 20th International Colloquium on Automata,

Languages, and Programming, 1993, pp. 76-87.

[18] M. Marathe, H. Hunt III, R. Stearns, and V. Radhakrishnan, Hierarchical Specifications and
Polynomial-Time Approzimation Schemes for PSPACE-Complete Problems, Proc. 26th Sym-
posium on Theory of Computing, ACM, New York, 1994, pp. 468-477.

[19] J. Spencer, Ten Lectures on the Probabilistic Method, CBMS-NSF Regional Conference Series
in Applied Mathematics, Np. 52, SIAM, Philadelphia, PA, 1987.

[20] M. Yannakakis, On the Approzimation of Maximum Satisfiability, Proc. 3rd Symp. on Discrete
Algorithms, ACM, New York, 1992, pp. 1-9.

26

