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Abstract. Nucleic acid kinetic simulators aim to predict the kinetics
of interacting nucleic acid strands. Many simulators model the kinet-
ics of interacting nucleic acid strands as continuous-time Markov chains
(CTMCs). States of the CTMCs represent a collection of secondary struc-
tures, and transitions between the states correspond to the forming or
breaking of base pairs and are determined by a nucleic acid kinetic model.
The number of states these CTMCs can form may be exponentially large
in the length of the strands, making two important tasks challenging,
namely, mean first passage time (MFPT) estimation and parameter esti-
mation for kinetic models based on MFPTs. Gillespie’s stochastic simula-
tion algorithm (SSA) is widely used to analyze nucleic acid folding kinet-
ics, but could be computationally expensive for reactions whose CTMC
has a large state space or for slow reactions. It could also be expensive
for arbitrary parameter sets that occur in parameter estimation. Our
work addresses these two challenging tasks, in the full state space of
all non-pseudoknotted secondary structures of each reaction. In the first
task, we show how to use a reduced variance stochastic simulation algo-
rithm (RVSSA), which is adapted from SSA, to estimate the MFPT of
a reaction’s CTMC. In the second task, we estimate model parameters
based on MFPTs. To this end, first, we show how to use a generalized
method of moments (GMM) approach, where we minimize a squared
norm of moment functions that we formulate based on experimental and
estimated MFPTs. Second, to speed up parameter estimation, we intro-
duce a fixed path ensemble inference (FPEI) approach, that we adapt
from RVSSA. We implement and evaluate RVSSA and FPEI using the
Multistrand kinetic simulator. In our experiments on a dataset of DNA
reactions, FPEI speeds up parameter estimation compared to inference
using SSA, by more than a factor of three for slow reactions. Also, for
reactions with large state spaces, it speeds up parameter estimation by
more than a factor of two.

c© Springer Nature Switzerland AG 2019
C. Thachuk and Y. Liu (Eds.): DNA 25, LNCS 11648, pp. 80–99, 2019.
https://doi.org/10.1007/978-3-030-26807-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-26807-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-26807-7_5


Efficient Parameter Estimation for DNA CTMC Kinetics 81

1 Introduction

Nucleic acid kinetic simulators [9,29,34,35] aim to predict the kinetics of inter-
acting nucleic acid strands, such as the rate of a reaction or the sequence of inter-
actions between the strands. These simulators are desirable for building nucleic
acid-based devices whose nucleic acid sequences need to be carefully designed to
control their behaviour. For example, neural networks can be realized in DNA
using strand displacement reactions [6]. However, the rates of reactions vary by
several orders of magnitude depending on sequence and conditions and are hard
to predict, making the design of artifacts challenging. Accurate kinetic simula-
tors would allow many, though not all, unanticipated design flaws to be identified
prior to conducting wet-lab experiments, and would allow more complex molec-
ular devices to be designed and successfully implemented with fewer deficiencies
needing to be debugged experimentally.

Because of these pressing needs, there has been great progress on simula-
tors that can model the kinetics of interacting nucleic acid strands. The sim-
ulators range from coarse-grained models that consider large rearrangements
of the base pairs [34,35], and often factor in tertiary structure, to elementary
step models that consider the forming or breaking of a single base pair [9,29],
and to molecular dynamics models that follow the three-dimensional motion of
the polymer chains [27,31]. Elementary step models are of interest to us here
because they are computationally more efficient than molecular dynamics, yet
they also can represent and thus discover unexpected sequence-dependent sec-
ondary structures within intermediate states. Continuous-time Markov chains
(CTMCs) play a central role in modeling nucleic acid kinetics with elementary
steps, such as Kinfold [9] and Multistrand [28,29]. States of the CTMCs corre-
spond to secondary structures and have exponentially distributed holding times,
and transitions between states correspond to forming or breaking of a single
base pair. Nucleic acid kinetic models [24,42], along with nucleic acid thermal
stability models [2,17,38,39], specify the rate of transition between states and
the holding time of states. These simulators can stochastically sample paths
(sequences of states from an initial to a target state) and trajectories (sequences
of states from an initial to a target state, along with the times to transition
between successive states). The mean first passage time (MFPT) from an initial
to a target state can be estimated from sampled trajectories. The first passage
time of a trajectory is the first time that the trajectory occupies the target state.
Kinetic rates, such as the rate constant of a reaction [28], can then be derived
from such estimates.

Our work addresses two challenging tasks in accurately predicting the MFPT
of a reaction’s CTMC, in the full state space of all non-pseudoknotted1 secondary
structures. The first task is to estimate the MFPT of a reaction’s CTMC, given
a calibrated kinetic model. The second task is to calibrate parameters of kinetic

1 A pseudoknot is a secondary structure that has at least two base pairs in which one
nucleotide of a base pair is intercalated between the two nucleotides of the other
base pair.
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models; even though thermal stability models are well calibrated [3,23], param-
eters of kinetic models, which affect the rate of transition between states and
consequently holding times of states, are not well calibrated [42]. These tasks are
challenging, particularly for multistranded DNA kinetics, because when nucleic
acid strands interact, they are prone to the formation of many metastable sec-
ondary structures due to stochastic formation and breakage of base pairs. The
number of possible secondary structures nucleic acids can form may be exponen-
tially large compared to the number of nucleotides the strands contain. More-
over, to make accurate estimations, many sampled trajectories might be required,
which might be time-consuming to obtain (see Sect. 4). In this work, we make
progress on these tasks, by focusing on the Multistrand kinetic simulator [28,29]
(described in Sect. 2.1), that is used to analyze the folding kinetics of multiple
interacting nucleic acid strands and models the kinetics as CTMCs with elemen-
tary steps. In the rest of this section, first, we describe related work for MFPT
estimation and our contributions. Then, we describe related work for calibrating
kinetic models based on MFPTs and our contributions.

1.1 Mean First Passage Time Estimation

Exact linear algebra methods [33,42] can provide an exact solution to the MFPT
of a CTMC that can be explicitly represented. However, their accuracy could be
compromised by numerical errors and it is infeasible to use these methods for
CTMCs with large implicitly-represented state spaces. Our previous work [42]
estimates MFPTs on heuristically obtained reduced state spaces of the CTMCs.
Moreover, the state spaces are customized for each type of reaction. In contrast
to exact linear algebra methods, the MFPT could be approximated in the full
state space or reduced state space with Gillespie’s stochastic simulation algo-
rithm (SSA) [11]. SSA can be slow depending on the CTMC of the reaction. We
could adapt sequential Monte Carlo and importance sampling techniques [8,13],
but these methods require a proposal distribution that efficiently reduces the
variance of the estimator. More recently, machine learning algorithms have been
developed to successfully predict DNA hybridization rates [41] from sequence,
without enumerating the state space of the reaction. However, these methods
can not treat other reactions or kinetics.

Our Contribution. We show how to use a reduced variance stochastic simu-
lation algorithm (RVSSA), a Rao-Blackwellised version [20] of SSA, to estimate
the MFPT of a reaction’s CTMC. In SSA, the variance of MFPT estimates arises
for two reasons. First, the path to a target state affects the MFPT. Second, the
holding time in each state affects the MFPT. RVSSA removes the stochasticity
in the holding times by using expected holding times of states. We prove that
RVSSA produces a lower variance estimator of the MFPT compared to SSA.
Moreover, we show in our experiments that RVSSA has a lower variance than
SSA in estimating the MFPT of a reaction’s CTMC, when in the sampled paths
there exist a small number of states that have large expected holding times com-
pared to other states. One interesting example that we identify is the association
of poly(A) and poly(T) sequences in low concentrations (see Fig. 2b).
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1.2 Parameter Estimation

In order to make accurate MFPT estimations, the underlying parameters of
the CTMCs should be calibrated. Models of nucleic acid thermal stability [2,
17,38,39] have been extensively calibrated to experimental data [3,23]. However,
extensive calibration of nucleic acid kinetic models remains challenging [42]. Our
previous work [42] uses a maximum a posteriori approach and a Markov chain
Monte Carlo approach to calibrate DNA kinetic models on a wide range of
reactions, such as strand displacement [40], but on reduced state spaces of the
reactions. The reduced state spaces are manually designed and coded and the
largest reduced state space contains less than 1.5×104 states. Moreover, related
work [32,40] uses reaction specific models to calibrate a kinetic model. These
models are not easily adapted to other kinetic models. There have been advances
in calibrating CTMCs [1,21,30] based on transient probabilities, the likelihood
that a process will be in a given state at a given time, and these advances
have been used for calibration of nucleic acid kinetics [13] and chemical reaction
networks [10,12,19,22].

During the optimization, for every new parameter set, we could use SSA or
RVSSA to obtain an unbiased estimate of the MFPT of a reaction’s CTMC.
However, sampling new trajectories for every new parameter set could be com-
putationally expensive for large CTMCs, slow reactions, or arbitrary parameter
sets. One reason is that transitions might be repeatedly sampled. We could also
use importance sampling techniques [8,13], but these methods would require
a proposal distribution that efficiently reduces the variance of the estimator,
which is challenging when the underlying transition probabilities of the CTMC
are changing throughout parameter estimation.

Our Contribution. To estimate parameters for DNA kinetics modeled as
CTMCs based on MFPTs, we show how to use a generalized method of moments
(GMM) [14] estimator. More importantly, we show how to use a fixed path
ensemble inference (FPEI) approach that speeds up parameter estimation com-
pared to a reference method that uses SSA directly during inference (SSAI).
The GMM method is widely used in econometrics and has also recently been
used in chemical reaction networks [22]. The GMM method can be used when
a maximum likelihood estimate or a maximum a posteriori estimate is infeasi-
ble, as is the case with CTMCs that have very large state spaces. The GMM
method minimizes a weighted norm of moment conditions obtained from sam-
ples. The moment conditions are functions of model parameters and the dataset
such that the expectation of the moment conditions is zero at the true value of
the parameters. To minimize the squared norm of the moment conditions, we use
the Nelder-Mead direct-search optimization algorithm [26], which has been fre-
quently used in optimization problems that have small stochastic perturbations
in function values [4].

To speed up parameter estimation, we introduce and use FPEI. In this
method, we condense paths, where for every path, we compute the set of states
and the number of times each state is visited. Rather than generating new trajec-
tories with SSA for every parameter set variation (the SSAI method), in FPEI
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we use fixed condensed paths to speed up parameter estimation. For example,
in this work, the length of the longest path is more than 1 × 108, whereas the
number of unique states and transitions of the path is approximately 3.8 × 105

and 1.4 × 106, respectively. In FPEI, we use RVSSA to estimate the MFPT of
the fixed paths given a new parameter set. Since the MFPT estimates obtained
with fixed paths are biased, we alternate between minimizing the error of predic-
tion on fixed paths, and resampling new paths and restarting the optimization
method.

To implement RVSSA and FPEI, we augment the Multistrand kinetic simula-
tor [28,29] where for each reaction the full state space of all non-pseudoknotted
secondary structures is possible. We conduct computational experiments on
experimental DNA reactions that have moderate or large state spaces or are
slow, including hairpin closing, hairpin opening, helix dissociation with and with-
out mismatches, and helix association. We compare the performance of RVSSA
with SSA for MFPT estimation and FPEI with SSAI for parameter estimation.
Results for our example data are encouraging, showing that FPEI speeds up
parameter estimation compared to using SSAI, by more than a factor of three
for slow reactions. Also, for reactions with large state spaces, it speeds up param-
eter estimation by more than a factor of two.

2 Preliminaries

2.1 The Multistrand Kinetic Simulator

The Multistrand kinetic simulator [28,29] models the kinetics of multiple inter-
acting nucleic acid strands as a CTMC. A state of the CTMC represents a system
microstate, in other words, the configuration of the strands in the fixed volume
that we simulate. A system microstate is a collection of complex microstates. A
complex microstate is a set of strands connected by base pairing (secondary struc-
tures). In Multistrand, all possible secondary structures are permitted except for
pseudoknots. Multistrand defines the energy of a state as the sum of the standard
free energy for each complex, which is determined with Multistrand’s nucleic acid
thermal stability model. Transitions between states correspond to the forming
or breaking of a single base pair. For example, in Fig. 1, state t can transition to
states s and u. The transition rate kts from state t to state s is determined by
the energy of the states and a nucleic acid kinetic model.

ktu

kut

kst

kts
state s state ustate t

Fig. 1. State t can transition to states s and u by breaking or forming a single base
pair, respectively. The reverse transitions are also possible.
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We experiment with the Metropolis [24] and the Arrhenius [42] kinetic mod-
els that are implemented in the Multistrand software. The Metropolis kinetic
model has two free parameters kuni and kbi that distinguish between unimolec-
ular and bimolecular transitions, respectively. In the Arrhenius kinetic model,
transition rates additionally depend on the local context of the base pair that is
forming or breaking. The model differentiates between seven different half con-
texts C = {stack, loop, end, stack+loop, stack+end, loop+end, stack+stack}. For
example, in Fig. 1, in the transition from state t to state s, the half contexts of
the base pair that is breaking are a stack and a loop. An Arrhenius rate con-
stant Al and an activation energy El are associated with each half context l. The
model also has a bimolecular scaling constant α. In total, the model has 15 free
parameters.

To sample paths and trajectories for a reaction, experimental conditions need
to be determined, such as the sequence of the strands, the temperature, the
concentration of Na+ and Mg2+ cations, and the initial concentration of the
strands. We adopt the trajectory mode of Multistrand for all reactions of our
dataset. In this mode, SSA is implemented to simulate trajectories over the
CTMC of a reaction, starting in an initial state and halting when the reaction
is over, and to estimate the MFPT. For helix association and hairpin closing
reactions, all trajectories start from the state where no base pairs are formed
and end at the state where the duplex is fully formed. For hairpin opening and
helix dissociation the start and end states are reversed. Given the estimated
MFPT τ̂ r of reaction r, as computed over several trajectories, the reaction rate
constant of reaction r is computed as

k̂r =

{
1
τ̂r first order reaction
1

τ̂rur second order reaction
, (1)

where ur is the initial concentration of the reactants of reaction r in the simu-
lation [28]. Equation (1) also holds for the experimental reaction rate constant
and the experimental MFPT, called timescale, of the reaction.

2.2 Gillespie’s Stochastic Simulation Algorithm

Gillespie’s stochastic simulation algorithm (SSA) [11] has been widely used to
simulate stochastic trajectories in CTMCs [28,29]. It provides an unbiased and
consistent estimate of the MFPT from an initial state to a target state. It esti-
mates the MFPT as the mean of the first passage times of sampled trajectories.
In brief, to sample a trajectory and its first passage time, SSA advances forward
in two steps:

1. At a jump from the current state si, SSA samples the holding time Ti of
the state from an exponential distribution with a rate equal to the sum of
the transition rates from the state, in other words, Ti | si ∼ Exp(ksi

), where
ksi

=
∑

s∈S ksis, S is the state space of the CTMC, ksis is the transition
rate from state si to state s, if s is not a neighbor of si then ksis = 0,
E[Ti | si] = k−1

si
and Var(Ti | si) = k−2

si
.
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2. At a jump from the current state si, SSA samples the next state si+1 from
the outgoing transition probabilities of state si, in other words, p(si, s) =
ksis

ksi
, si �= s.

Let P be a trajectory of length Z from state s to state t, with holding times
T1, ..., TZ−1, obtained by using SSA with initial state s, and ending the first time
that state t is sampled. In SSA, the FPT of the trajectory is computed as

F SSA =
Z−1∑
i=1

Ti. (2)

By using N independently sampled trajectories, we obtain a Monte Carlo esti-
mator for the MFPT of the CTMC as τ̂SSA

N = 1
N

∑N
n=1 F SSA

n .

3 Methodology

3.1 Mean First Passage Time Estimation

In SSA, the variance of MFPT estimates arises for two reasons. First, the path
to a target state affects the MFPT. Second, the holding time in each state affects
the MFPT. Hordijk et al. [18] show how to obtain a reduced variance estimate
of a steady-state measure of an irreducible and positive recurrent CTMC. Their
constant holding-time method eliminates the variability in the random holding
time of states and instead uses expected holding times. To estimate the MFPT of
a reaction’s CTMC, we formulate a Rao-Blackwellised version [20] of SSA, which
similar to Hordijk et al. also eliminates the variability in the random holding
times of states. However, the CTMC is not restricted to be irreducible or positive
recurrent and the MFPT estimate is not necessarily a steady-state measure. We
call this method the reduced variance stochastic simulation algorithm (RVSSA).
Similar to SSA, RVSSA also produces a consistent and unbiased estimator of
the MFPT, but has a smaller variance in predicting MFPTs compared to SSA2.

In brief, in RVSSA, instead of sampling a random holding time for each state,
we use an estimator based on the expected holding time. The algorithm proceeds
as follows.

1. At a jump from the current state si, compute the expected holding time T i

before jumping to the next state, in other words, T i = k−1
si

= (
∑

s∈S ksis)
−1.

Note that E[T i | si] = k−1
si

and Var(T i | si) = 0.
2. Step 2 of SSA.

2 For our purpose here, we are only interested in the MFPT, so the smaller variance
is good. In other contexts, the full distribution of FPTs will be of interest, and for
that purpose only SSA, but not RVSSA, will be appropriate.
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Let P be a path of length Z from state s to state t, with expected holding times
T 1, ..., T Z−1, obtained by using RVSSA with initial state s, and ending the first
time that state t is sampled. In RVSSA, we compute the MFPT of the path as

Y RVSSA =
Z−1∑
i=1

T i. (3)

By using N independently sampled paths, we obtain a Monte Carlo estimator
for the MFPT of the CTMC as τ̂RVSSA

N = 1
N

∑N
n=1 Y RVSSA

n .

Theorem 1. The estimator of the MFPT from state s to state t produced by
RVSSA has a lower variance than the estimator produced by SSA.

Proof. Let P denote a random path from state s to state t. We have
E[F SSA | P ] = E[Y RVSSA | P ], and consequently

Var(E[F SSA | P ]) = Var(E[Y RVSSA | P ]). (4)

Also, E[Var(F SSA | P )] > 0, and E[Var(Y RVSSA | P )] = E[Var(
∑Z−1

i=1 T i | P )] =
0 because T i are constants and independent given P . Based on the law of total
variance

Var(Y RVSSA) = E[Var(Y RVSSA | P )] + Var(E[Y RVSSA | P ])
by Eq. (4)
=

E[Var(Y RVSSA | P )] + Var(E[F SSA | P ]) = Var(E[F SSA | P ]) <

E[Var(F SSA | P )] + Var(E[F SSA | P ]) = Var(F SSA).

(5)

Therefore, it can be concluded that Var(τ̂RVSSA
N ) = Var( 1

N

∑N
n=1 Y RVSSA

N ) =
1
N Var(Y RVSSA) < 1

N Var(F SSA) = Var(τ̂SSA
N ).

For an unbiased estimator, the expected mean squared error (MSE) of the
estimator is equal to the variance of the estimator [36]. Consequently, RVSSA
has a smaller MSE than SSA and requires fewer sampled paths to estimate the
MFPT,

E[(τ̂RVSSA
N − τ)2] =

1
N

Var(Y RVSSA) <
1
N

Var(F SSA) = E[(τ̂SSA
N − τ)2]. (6)

3.2 Parameter Estimation

In Sect. 3.1, we assume that the underlying parameters of the CTMCs are known.
Here, we focus on estimating the underlying parameters of the transition rates
when they are not known a priori.

To estimate model parameters, we formulate a generalized method of
moments (GMM) [14] objective function based on experimental and predicted
MFPTs. The GMM estimators have desirable statistical properties under suit-
able conditions, such as consistency and asymptotic normality. The GMM
method minimizes a weighted norm of moment conditions. The moment con-
ditions are functions of model parameters and observed values such that the
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expectation of the moment conditions is zero at the true value of the parame-
ters. Given a column vector g of moment conditions and its transpose gT, the
GMM method seeks the true parameter set θ∗ as

θ∗ = argmin
θ

g(θ)TWg(θ), (7)

where W is a positive-definite matrix that controls the variance of the estimator.
For optimally chosen weights, which depend on the covariance of the moment
conditions at the true parameter set θ∗, the estimator has the smallest possible
variance for the parameters. Since the true parameter set is unknown, there
exist several approaches to deal with this issue. For example, the two-step GMM
estimator [15] uses the identity matrix in the first step to estimate a parameter
set. In the second step, it uses the estimated parameters to produce the weighting
matrix and reestimates the parameters. In our experiments, we only use the
identity weighting matrix, which produces a consistent and asymptotic normal
GMM estimator, and leave other options to future work.

Let θ be a parameter set for a kinetic model that parameterizes the CTMC
of reactions, and let θ∗ be the true parameter set. For reaction r, based on the
experimental MFPT τ r and an unbiased estimator of the MFPT τ̂ r, we can
define a moment condition as gr(θ) = τ̂ r(θ)− τ r. However, since reactions occur
at timescales that cover many orders of magnitude, from slow reactions, such as
helix dissociation, to faster reactions, such as hairpin closing, and since we are
using an identity matrix, we use log10 differences instead; we define a moment
condition as

gr(θ) = log10 τ̂ r(θ) − log10 τ r, (8)

where we approximate E[gr(θ∗)] = E[log10 τ̂ r(θ∗)] − log10 τ r ≈ 0 for the true
parameter set θ∗ (if one exists). This approximation is reasonable for an unbi-
ased and low variance estimator of the experimental MFPT τ r. The Taylor
expansion of E[log10 τ̂ r(θ∗)] around log10 E[τ̂ r(θ∗)] = log10 τ r is E[log10 τ̂ r(θ∗)] ≈
E

[
log10 τ r + 1

τr (τ̂ r − τ r) − 1
2(τr)2 (τ̂ r − τ r)2

]
= log10 τ r − Var(τ̂r(θ∗))

2(τr)2 , where the
second term disappears. Also, note that based on Eq. (1), instead of Eq. (8) we
equivalently use gr(θ) = log10 τ̂ r(θ) − log10 τ r = log10 kr − log10 k̂r(θ), which
is commonly used in related work [41,42]. Based on the entire reactions of the
dataset D, we define the GMM estimator as

θ∗ = argmin
θ

∑
r∈D

(
log10 kr − log10 k̂r(θ)

)2

. (9)

This can be recognized as the least mean squared error (MSE) parameter set.
In our experiments (described in Sect. 4.3), we seek a parameter set that

minimizes the GMM estimator. However, we also considered using the negative
of Eq. (14) from our previous work [42], where gr(θ) is defined to be normally
distributed with an unbiased mean and variance σ2, and a small L2 regularization
term is also defined. With this objective function, the predictive quality of the
fixed path ensemble inference (FPEI) approach, which we describe later on, only
slightly changes for our dataset.
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To minimize the objective function, we use the Nelder-Mead direct-search
optimization algorithm [26]. To approximate a local optimum parameter set θ
with size |θ|, the algorithm maintains a simplex of |θ| + 1 parameter sets. The
algorithm evaluates the function value at every parameter set of the simplex. It
proceeds by attempting to replace a parameter set that has the worst function
value with a parameter set reflected through the centroid of the remaining |θ|
parameter sets in the simplex with expansion and contraction as needed. The
algorithm uses only the ranks of the function values to determine the next param-
eter set, and therefore has been frequently used in optimization problems that
have small stochastic perturbations in function values [4]. This robustness is
essential for its use in SSAI.

In SSAI, during the optimization, to obtain an unbiased estimate of τ r for
every parameter set variation, we use SSA. However, obtaining new trajectories
for every parameter set is computationally expensive. One reason is that transi-
tions might be repeatedly sampled. Therefore the length of a trajectory could be
much larger than the number of unique states and transitions of the trajectory
(see Sect. 4.3). We propose to use FPEI which uses an ensemble of fixed paths,
with an efficient data structure, to speed up parameter estimation. In FPEI, for
every reaction, we build a fixed set of paths with an initial parameter set θ0.
For a new parameter set θm, we use the fixed paths to estimate the MFPT. To
speed up computations, we condense paths; for every path, we compute the set
of states and the number of times each state is visited. We compute the holding
time of a state in a path as if the path is regenerated in the full state space.
To compute the holding time of a state under a new parameter set, we need to
compute the total outgoing transition rate from the state under the new param-
eter set. Therefore, we also store information about the outgoing neighbors of
the states that affect the outgoing transition rate. Alternatively, depending on
memory and storage limitations, similar to SSA and RVSSA, we could repeat-
edly compute the outgoing neighbors of the states on the fly. Given this data, as
the parameter set is updated to θm, we compute the MFPT of path P according
to RVSSA as

Y FPEI(θm) =
Z−1∑
i=1

T i(θm), where T i(θm) =
1

ksi
(θm)

, (10)

where the transition rates of the CTMC depend on the parameter set θm

and the path is obtained with θ0. Because of the condensed representation,
this formula is not literally computed, but rather a mathematically equiva-
lent one with fewer terms is computed. Given N fixed paths obtained with
θ0, we estimate the MFPT of the CTMC that is parameterized with θm as
τ̂FPEI
N (θm) = 1

N

∑N
n=1 Y FPEI

n (θm).
With fixed paths, the MFPT estimates are biased and the learned parameter

set might not perform well in the full state space where other paths are possible.
Therefore, to reduce the bias and to ensure that the ensemble of paths is a
fair sample with respect to the optimized parameters, we alternate between
minimizing the error of prediction on fixed paths, and resampling new paths and
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Algorithm 1. SSAI
θ ← θ0 // Choose initial parameter set θ0
Initialize the simplex in the Nelder-Mead algorithm using θ and its
perturbations
while stopping criteria not met do

// See Section 4.3 for our stopping criteria

θ ← Retrieve a parameter set from the Nelder-Mead algorithm
Update the free parameters of the kinetic model with θ
foreach reaction r ∈ dataset D do

foreach n=1,2,...,N do
Sample a trajectory Pn using SSA and calculate its FPT using
Eq. 2

Calculate the MFPT of the reaction using the FPTs of the trajectories
Calculate the GMM function in Eq. 9 using the MFPT of the reactions
Update the simplex in the Nelder-Mead algorithm based on the GMM
function

Algorithm 2. FPEI
θ ← θ0 // Choose initial parameter set θ0
while stopping criteria not met do

// See Section 4.3 for our stopping criteria

Update the free parameters of the kinetic model with θ
foreach reaction r ∈ dataset D do

foreach n=1,2,...,N do
Sample a path Pn using RVSSA
Condense path Pn for the reaction

Initialize the simplex in the Nelder-Mead algorithm using θ and its
perturbations
while stopping criteria not met do

θ ← Retrieve a parameter set from the Nelder-Mead algorithm
Update the free parameters of the kinetic model with θ
foreach reaction r ∈ dataset D do

foreach n=1,2,...,N do
Calculate the MFPT of path Pn using Eq. 10

Calculate the MFPT of the reaction using the MFPTs of the paths

Calculate the GMM function in Eq. 9 using the MFPT of the reactions
Update the simplex in the Nelder-Mead algorithm based on the GMM
function

restarting the optimization method. An overview of our parameter estimation
framework using SSAI and FPEI, with a GMM estimator and the Nelder-Mead
algorithm, is given in Algorithms 1 and 2, respectively.

We also considered a normalized importance sampling approach [8], to obtain
consistent estimators of the MFPTs using fixed paths. In this approach, we also
compute the set of traversed transitions and how often each of those transi-
tions occur in the path. We weigh the estimated MFPT of each path P by
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the relative likelihood of the path given the new and the initial parameter sets
L̃(θm) = L(θm)

L(θ0)
, where L(θm) is the likelihood of P under parameter assignment

θm. For RVSSA, L(θm) =
∏Z−1

i=1

ksisi+1 (θm)
∑

s∈S ksis
(θm)e

− ∑
s∈S ksis

(θm)T i(θm), and we esti-

mate the MFPT as τ̂FPEI
N (θm) = 1∑N

n=1 L̃n(θm)

∑N
n=1 L̃n(θm)Y FPEI

n (θm). In our
experiments, this approach performed poorly, since the effective sample size of
the relative likelihoods was small.

4 Experiments

To evaluate the performance of RVSSA for MFPT estimation and FPEI for
parameter estimation, in the full state space of all non-pseudoknotted secondary
structures of each reaction, we augment the Multistrand kinetic simulator [28,29]
and we conduct computational experiments. Our dataset and framework are
available at https://github.com/DNA-and-Natural-Algorithms-Group/FPEI.

4.1 Dataset

To evaluate the performance of RVSSA and FPEI, we use 21 experimentally
determined reaction rate constants published in the literature, including hairpin
closing [5], hairpin opening [5], helix association [16,37], and helix dissociation
with and without mismatches [7]. The dataset is summarized in Table 1. Each
reaction of the dataset is annotated with a temperature and the concentration
of Na+, which affect the transition rates in the kinetic models that we use.

Fig. 2. The MFPT and 95% confidence interval of SSA and RVSSA, where the kinetic
model is parameterized with θ0. In both (a) and (b), RVSSA and SSA are using
the same sampled paths. In (a), RVSSA and SSA have similar variance. The average
computation time per sampled path, defined as the total computation time divided by
the total number of sampled paths, is 3 × 102 s. In (b), RVSSA has a lower variance
than SSA. The average computation time per sampled path is 0.5 s.

https://github.com/DNA-and-Natural-Algorithms-Group/FPEI


92 S. Zolaktaf et al.

Table 1. Dataset of experimentally determined reaction rate constants. The concen-
tration of the strands is set to 1 × 10−8 M, 5 × 10−8 M, and 1 × 10−8 M, for reactions
no. 1–15, 16–19, and 20–21, respectively.

Reaction type &

source

No. Sequences T/◦C [Na]+/M log10 kr

Hairpin closing

Fig. 4 from [5]

1–5 CCCAA-(T )30-TTGGG 14.4–29.8 0.1 3.53–3.69

Hairpin opening

Fig. 4 from [5]

6–10 CCCAA-(T )30-TTGGG 14.4–29.8 0.1 2.14–3.30

Helix dissociation

(with a mismatch)

Fig. S4 from [7]

11–15 AGGACTTGT+ACAAGACCT

AGGACTTGT+ACAAGTGCT

AGGACTTGT+ACAAGTCGT

AGGACTTGT+ACAAGTCCA

AGGACTTGT†

37 0.2 0.19–0.92

Helix association

Table 1 from [16]

16–19 GCCCACACTCTTACTTATCGACT†

GCACCTCCAAATAAAAACTCCGC†

CGTCTATTGCTTGTCACTTCCCC†

ACCCTTTATCCTGTAACTTCCGC†

25 0.195 5.71–6.68

Helix association

Table 1 from [37]

20–21 25-mer Poly (dA)†

25-mer Poly (dG)†
48–78 0.4 -

†The complement of the demonstrated sequence is also a reactant.

4.2 Mean First Passage Time Estimation

Figures 2a and b show the performance of RVSSA compared with SSA for helix
association reactions no. 16 and 20, respectively. To sample paths and trajec-
tories, we parameterize the kinetic model with the Metropolis initial parameter
set [32,42], in other words, θ0 = {kuni = 8.2×106 s−1, kbi = 3.3×105 M−1s−1}. In
both Figs. 2a and b, RVSSA and SSA have the same paths, but the algorithms
generate different holding times for the states of the paths. In Multistrand’s
implementation of SSA, the effort needed to sample the holding time in the cur-
rent state is small when compared to the task of computing outgoing transition
rates. In Fig. 2a, RVSSA and SSA perform the same, whereas in Fig. 2b, RVSSA
has a lower variance than SSA, consistently. To understand the discrepancy
between the two figures, we analyze the experiments, described below.

In Figs. 3a and b, the average length of the paths for both reaction no. 16
and reaction no. 20 is large. Also, in Figs. 3c and d, both reactions have a small
number of bimolecular transitions on average. In Fig. 3e, for reaction no. 16,
the state where two strands are disconnected has a small holding time, because
the state has many fast unimolecular transitions between complementary bases
within a strand in addition to the slow bimolecular transitions. However, in
Fig. 3f, for reaction no. 20, the state where the two strands are disconnected has
a large holding time, since there are no complementary bases within a poly(A) or
poly(T) strand and the only transitions are slow bimolecular transitions. RVSSA
has a significantly lower variance for reaction no. 20 compared to SSA, because in
the sampled paths, there exists a small number of states that have large expected
holding times compared to other states. SSA has a large variance in generating
holding times for these states. Overall, in our experiments with parameter set θ0,
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(a) Reaction no. 16 (b) Reaction no. 20 (c) Reaction no. 16 (d) Reaction no. 20

(e) Reaction no. 16

(f) Reaction no. 20

Fig. 3. Histogram of the length of 100 random paths obtained with RVSSA for (a)
reaction no. 16 and (b) reaction no. 20. Histogram of the number of bimolecular join
transitions of the random paths for (c) reaction no. 16 and (d) reaction no. 20. Snapshot
of the i-th state visited, dot-parentheses notation and jump times for a random path
obtained with RVSSA for (e) reaction no. 16 and (f) reaction no. 20. The jump time
at state i is equal to the jump time at state i − 1 plus the holding time of state i − 1.
The green highlighting indicates where a bimolecular step occurs. (Color figure online)

RVSSA has a lower variance than SSA for reactions no. 20 and 21, but performs
similar to SSA for other reactions in Table 1.

4.3 Parameter Estimation

Figure 4 shows the MSE, defined as the mean of | log10 kr − log10 k̂r(θ)|2 on
different reactions, of FPEI and SSAI over various iterations, where the methods
are learning parameters for the Arrhenius kinetic model [42]. Also, it shows the
average computation time per iteration, defined as the total computation time



94 S. Zolaktaf et al.

divided by the total number of iterations. Figure 5 shows the MSE and average
computation time per iteration when the entire dataset is used. Reactions no.
20–21 are excluded in parameter estimation because of our uncertainty in our
interpretation of the reported measurements. For reactions no. 1–15, FPEI and
SSAI use 200 paths and 200 trajectories, respectively. For reactions no. 16–19,
where simulations are more time-consuming, FPEI and SSAI use 20 paths and
20 trajectories, respectively.

We conduct distinct experiments by starting with two sets of initial param-
eters, where paths and trajectories are generated in a reasonable time. In one
group of experiments (Figs. 4a, c, e, g, and 5a), we initialize the simplex in
the Nelder-Mead algorithm with the Arrhenius initial parameter set [32,42],
in other words, θ′

0 = {Al = 468832.1058 s−1/2, El = 3kcal mol−1 | ∀l ∈
C} ∪ {α = 0.0402M−1} and its perturbations (in each perturbation, a parame-
ter is multiplied by 1.05). In FPEI, we also use θ′

0 to generate fixed paths. In
another set of experiments (Figs. 4b, d, f, h, and 5b), we adapt parameter set
θ′′
0 = {Al = 468832.1058 s−1/2, El = 2kcal mol−1 | ∀l ∈ C} ∪ {α = 0.0402M−1}

from θ′
0 to increase the initial MSE in all experiments. We initialize the simplex

in the Nelder-Mead algorithm with θ′′
0 and its perturbations (in each perturba-

tion, a parameter is multiplied by 1.05). In FPEI, we also generate fixed paths
with θ′′

0 . In SSAI, we run the optimization until a limit on the number of itera-
tions is reached or until a time limit is reached, which ever comes first. We also
use this as the first stopping criteria in FPEI. In FPEI, to reduce the bias and to
ensure that the ensemble of paths is a fair sample with respect to the optimized
parameters, occasionally, the fixed paths are rebuilt from scratch and the opti-
mization restarts. To this end, we set the second stopping criteria in FPEI to 200
iterations or 200 function evaluations of the Nelder-Mead algorithm, whichever
comes first. Note that this empirical value is subject to change for different exper-
iments. We could improve the method, by investigating a more robust way of
when to update the paths. For example, we could compare the performance of
SSA with the fixed paths in shorter intervals and update the fixed paths when
their predictive quality diverges from SSA. During the optimization, we use an
infinite value for parameter sets that have rates that are too slow or too fast; we
bound downhill unimolecular and bimolecular rates (Eq. (7) and Eq. (8) of [42])
in [1 × 104, 1 × 109] s−1 and in [1 × 104, 1 × 109]M−1s−1, respectively.

In Figs. 4d–h, FPEI reaches a minimal MSE more quickly than SSAI; con-
sider the average computation time per iteration multiplied by the number of
iterations to reach a minimal MSE. However, in Figs. 4a–c, SSAI reaches a mini-
mal MSE more quickly than FPEI. This is because in Figs. 4d–h, the number of
unique states is significantly smaller than the length of the paths. For example,
in Fig. 4h, in the first set of fixed paths, the average length of a path is more
than 2.3 × 107, whereas the average number of unique states and transitions is
less than 1.5× 105 and 5.6× 105, respectively. In Fig. 4a, the average length of a
path is 4.6 × 102, whereas the average number of unique states and transitions
is 1.3 × 102 and 2.4 × 102, respectively. In Figs. 4e and f, which are slow disso-
ciation reactions, compared to SSAI, FPEI speeds up parameter estimation by
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Fig. 4. The MSE of SSAI and FPEI on different types of reactions from Table 1. The
average computation time per iteration is shown in the label of each method. The
markers show the MSE when trajectories are rebuilt from scratch using the learned
parameter set from FPEI. In Figs. 4e–h, the SSAI traces stop at earlier iterations than
the FPEI traces, even though SSAI was allocated more time than FPEI.
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more than a factor of three. In Figs. 4g–h, compared to SSAI, FPEI speeds up
parameter estimation by more than a factor of two. Also, the speed of FPEI in
all the figures could be improved with a better implementation of the method;
in our implementation, in the first iteration, computing neighbor states of all
states in a fixed condensed path is slow, whereas the later iterations which reuse
the fixed condensed paths are much faster than SSAI.

In Figs. 5a and b, where reactions no. 1–19 are all used in the optimization,
FPEI speeds up parameter estimation, by more than a factor of two compared
to SSAI. In Fig. 5a, FPEI reaches an MSE of 0.15 in 1.2 × 106 s, whereas SSAI
reaches an MSE of 0.39 in the same time. In Fig. 5b, FPEI reaches an MSE of
0.43 in 1.3 × 106 s, whereas SSAI reaches an MSE of 3.72 in the same time.

Fig. 5. As in Fig. 4, but reactions no. 1–19 are all used as the dataset.

5 Discussion

In this work, we show how to use RVSSA to estimate the MFPT of a reaction’s
CTMC. In our experiments, RVSSA has a lower variance than SSA in estimating
the MFPT of a reaction’s CTMC, when in the sampled paths there exists a small
number of states that have large expected holding times compared to other states.
Furthermore, we show how to use FPEI along with a GMM estimator and the
Nelder-Mead algorithm to estimate parameters for DNA kinetics modeled as
CTMCs. In FPEI, we use RVSSA instead of SSA, since the MFPT estimator
produced by RVSSA has a lower variance. In FPEI, we use fixed condensed
paths because sampling new paths for every parameter set is computationally
expensive. Since using fixed paths leads to biased estimates, we alternate between
minimizing the error of prediction on fixed paths, and resampling new paths and
restarting the optimization method. FPEI speeds up computations when the
number of unique states is significantly smaller than the length of sampled paths.
In our experiments on a dataset of DNA reactions, FPEI speeds up parameter
estimation compared to using SSAI, by more than a factor of three for slow
reactions. Also, in our experiments, for reactions with large state spaces, it speeds
up parameter estimation by more than a factor of two.
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FPEI can be applied to reactions modeled as CTMCs, when the fixed paths
can be produced in a timely manner. Generating paths for FPEI could be compu-
tationally expensive for slow reactions, such as helix dissociation from Morrison
and Stols [25]. The runtime also depends on the parameter set that is used.
It would be helpful to make FPEI applicable for such reactions, by speeding
up the generation of the fixed paths, for example, with importance sampling
approaches [13].

Finally, in this work, we evaluated FPEI in the context of DNA reactions. It
would be useful to adopt and evaluate FPEI in other CTMC models [9,34,35],
and other domains that require estimating MFPTs in CTMCs, such as protein
folding.
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