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Abstract. Models of nucleic acid thermal stability are calibrated to a
wide range of experimental observations, and typically predict equilib-
rium probabilities of nucleic acid secondary structures with reasonable
accuracy. By comparison, a similar calibration and evaluation of nucleic
acid kinetic models to a broad range of measurements has not been at-
tempted so far. We introduce an Arrhenius model of interacting nucleic
acid kinetics that relates the activation energy of a state transition with
the immediate local environment of the affected base pair. Our model
can be used in stochastic simulations to estimate kinetic properties and is
consistent with existing thermodynamic models. We infer parameters for
our model using an ensemble Markov chain Monte Carlo (MCMC) ap-
proach on a training dataset with 320 kinetic measurements on hairpin
closing and opening, helix association and dissociation, bubble closing
and toehold-mediated strand exchange. Our new model surpasses the
performance of the previously established Metropolis model both on the
training set and on a testing set of size 56 composed of toehold-mediated
3-way strand displacement with mismatches and hairpin opening and
closing rates: reaction rates are predicted to within a factor of three for
93.4% and 78.5% of reactions for the training and testing sets, respec-
tively.

1 Introduction

Although nucleic acids are commonly synthesized and applied in various set-
tings, it remains difficult to predict the kinetics of their interaction and con-
formational change. Accurate models of nucleic acid kinetics are desirable for
biological and biotechnological applications, such as understanding the vari-
ous roles of RNA within the cell and the design of sensitive molecular probes.
Within the field of molecular programming, hairpin motifs and toehold-mediated
strand displacement are commonly used to implement autonomous devices such
as DNA walkers and logic gates. Models of nucleic acid thermal stability have
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Fig. 1: Five types of reactions that we simulate and for which reaction rate constants
have been measured. (a) Hairpin closing and opening. (b) Bubble closing. (c) He-
lix association and dissociation. (d) Toehold-mediated 3-way strand displacement. (e)
Toehold-mediated 4-way strand exchange.

been extensively calibrated to experimental data [4, 16] and enable secondary
structure software such as RNAsoft, ViennaRNA, RNAstructure, NUPACK,
and mfold [3, 12, 26, 27, 29] to efficiently predict the equilibrium probabilities
of nucleic acid secondary structures. In comparison, a similar extensive calibra-
tion and evaluation of nucleic acid kinetic models has not been attempted so
far, despite the development of kinetic models and simulation software such as
Multistrand and Kinefold [7, 9, 21, 22, 25]. Of particular interest is a study by
Srinivas et al., which demonstrates that the Metropolis model of Multistrand is
incompatible with observations of toehold-mediated strand displacement [23].

We develop a nucleic acid kinetic model based on Arrhenius dynamics that
surpasses the performance of the Metropolis model. States in our continuous-
time Markov chain (CTMC) model correspond to non-pseudoknotted secondary
structures and each transition in the model corresponds to either the opening
or closing of a base pair. A key difference with the Metropolis model is the
use of activation energy, which depends on the immediate local environment
surrounding the affected base pair. To calibrate and evaluate the Arrhenius and
the Metropolis models, we compile a dataset of 376 experimentally determined
reaction rate constants that we source from existing publications and cover a
wide range of reactions, including hairpin closing and opening, bubble closing,
helix association and dissociation, toehold-mediated 3-way strand displacement,
and toehold-mediated 4-way strand exchange (see Fig. 1). To efficiently infer
parameters and to obtain posterior parameter distributions, we use an ensemble
Markov chain Monte Carlo (MCMC) approach. Similar to the Metropolis model,
our model is consistent with existing thermodynamic models and Gillespie’s
stochastic simulation algorithm can be used to estimate kinetic rate constants
for a variety of reactions. However, obtaining precise predictions using explicit
stochastic simulation is computationally expensive, making MCMC parameter
inference difficult. Instead we employ a reduced state space approach, enabling
reaction rate constants to be computed efficiently and exactly using a sparse
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matrix representation. Our state space is based on ‘zipper models’ that were
investigated previously to model DNA hybridization [11].

Our results are encouraging and suggest that the new Arrhenius model is
applicable to a wide range of DNA dynamic interactions and can be efficiently
trained with our framework. The rest of this paper is organized as follows. Sec-
tion 2 describes preliminaries and the Metropolis kinetic model, Section 3 in-
troduces our Arrhenius kinetic model, Section 4 introduces our kinetic dataset,
Section 5 introduces our inference framework, Section 6 describes our results
comparing the inferred parameters to the database of experimental measure-
ments, and in Section 7 we discuss the limitations of our approach and directions
for future research.

2 Preliminaries

In this section, we briefly discuss the type of reactions we are interested in
modeling, and we discuss the Metropolis kinetic model (Section 2.1).

When DNA strands interact, base pairs form and break stochastically under
the influence of thermal noise, resulting in a highly stochastic back-and-forth dy-
namic process. When two strands share a mutual base pair, we regard the strands
as connected and we define a complex to be a set of connected strands. A single
complex can have many different secondary structures. Similar to Kinfold [9]
and Multistrand [20,21], we model the kinetics of interacting DNA strands as a
CTMC, where the state space S is a set of non-pseudoknotted secondary struc-
tures. Transitions between states correspond to the forming or breaking of a
single base pair, which may be called an elementary step. For example, in Fig. 2,
state i can transition to states h and j. The rate at which a transition triggers is
determined by a kinetic model, that is, the Metropolis or the Arrhenius model,
and we distinguish between unimolecular and bimolecular transitions. Because
all transitions in our model are reversible, we group transitions into pairs of for-
ward and reverse reactions; a transition in the model is called bimolecular if a
complex grows or shrinks by one strand, and is called unimolecular otherwise. As
a result, successful helix association and helix dissociation both require at least
one bimolecular transition to trigger, despite the latter reaction being strictly
first order.

Experimentally observable reactions involve pathways of multiple elemen-
tary step transitions, are also inherently reversible, and thus can be classified
similarly. We are interested in modeling both unimolecular and bimolecular re-
actions. In a unimolecular reaction, a complex of strands is altered through the
formation or disruption of base pairs, but all strands in the complex remain con-
nected. An example of a unimolecular reaction is hairpin closing (Fig. 1a), where
a DNA strand hybridizes itself and forms a hairpin loop. Another example of a
unimolecular reaction is bubble closing (Fig. 1b). Helix association (Fig. 1c) is a
bimolecular reaction. Toehold-mediated 3-way strand displacement (Fig. 1d) is
another example of a bimolecular reaction, where one of the strands in a du-
plex is replaced by the invader strand. The duplex consists of an incumbent
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strand and a complementary strand. In addition to the hybridized domain, the
incumbent strand also contains an unhybridized region called a toehold. The
invading strand binds to the toehold region of the substrate and then displaces
the incumbent strand via three-way branch migration. Another bimolecular ex-
ample is toehold-mediated 4-way strand exchange (Fig. 1e), where two duplexes
simultaneously exchange strands via four-way branch migration.

kij

kji

khi

kihstate h state i state j

p0 = 1 p = 51 p0 = 0 p0 = 0 p = 41p = 51

Fig. 2: State i can transition to states h and j. See Section 5.1 for definitions of the
pointers p0 and p1.

2.1 The Metropolis Kinetic Model

The Metropolis model is one of the kinetic rate models implemented in Multi-
strand [20,21]. The Multistrand model considers a finite set of strands in a fixed
volume (‘the box’) and defines the energy of a state as the sum of the standard
free energy for each complex and a volume-dependent entropy term. To ensure
that simulations converge to the Boltzmann distribution over the states at equi-
librium, the transition rates between any two adjacent states i and j must satisfy
detailed balance:

kij/kji = exp
{
−
(
∆G0

box(j)−∆G0
box(i)

)
/RT

}
(1)

where kij is the transition rate from state i to state j, ∆G0
box(i) is the free

energy of state i, R is the gas constant, and T is the temperature. For a state i
containing N strands and M complexes, the free energy is

∆G0
box(i) =

M∑
c=1

∆G0
complex(c) + (N −M)∆G0

volume (2)

where ∆G0
complex(c) is the difference in Gibbs free energy of complex c rela-

tive to the reference state and standard buffer conditions ([Na+] = 1 M), and
∆G0

volume = −RT lnu is the loss of entropy resulting from fixing the position
of a strand of concentration u relative to the standard concentration (1 M).
Unimolecular transition rates are given by

kij =

{
kuni if ∆G0

box(j) < ∆G0
box(i)

kuni exp
(
∆G0

box(i)−∆G0
box(j)

RT

)
otherwise

(3)
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where kuni > 0 is the unimolecular rate constant (units: s−1). For bimolecular
transitions i→ j where two previously unconnected strands form a mutual base
pair, the rate is given as

kij = kbiu (4)

and the rate of dissociation for the bimolecular transition j → i is given by

kji = kbie
−∆G

0
box(i)−∆G0

box(j)+∆G0
volume

RT ×M (5)

where kbi > 0 is the bimolecular rate constant (units: M−1s−1). We treat
θ = {ln kuni, ln kbi} as 2 free parameters in the model that we calibrate to ex-
perimental measurements. We emphasize that the rate of dissociation, Eq. 5, is
independent of concentration u and ∆G0

volume, which follows from the definition
of the free energy in a state (Eq. 2).

3 The Arrhenius Kinetic Model

In our Arrhenius kinetic model, the activation energy of each transition depends
on the immediate context of the closing or opening base pair. Our classification
incorporates some, but not all, factors that may affect the activation energy of
a transition. For example, the activation energy might depend on the strand se-
quence, but modeling this dependence would increase the number of free param-
eters, and we anticipate to have insufficient experimental evidence to accurately
distinguish all relevant factors. However, we emphasize that transitions in the
model still depend on the nucleotide sequence via the nearest neighbor model of
base pair stability that determines the free energy of a complex (see Eq. 3, 5).

Consider a reaction where a base pair is formed or broken, and denote by
l, r ∈ C one half of the local context on either side of the base pair. Our model
differentiates between seven different half contexts

C = {stack, loop, end, stack+loop, stack+end, loop+end, stack+stack} (6)

so that the set of local contexts is given by C × C. The different half contexts
are shown in Fig. 3. The Arrhenius model is equal to the Metropolis model
(Eq. 3, 4, 5), except that we now re-define kuni : C × C → R>0 and kbi : C × C →
R>0 by setting

kuni(l, r) = klkr kl = Al exp (−El/RT ) kr = Ar exp (−Er/RT ) (7)

kbi(l, r) = αkuni(l, r) (8)

where Al, Ar are Arrhenius rate constants, El, Er are activation energies, and
α is a bimolecular scaling constant. We treat θ = {lnAl, El | ∀l ∈ C} ∪ {α} as
15 free parameters that we fit to data.



6 S. Zolaktaf et al.

stack                       loop                                               end stack+loop

loop+endstack+end stack+stack

r1
r1 r1 r1 r1

r1 r1 r1

r2 r2

r2

r2 r2

r2r2
r2 r2

Fig. 3: The right side of the red base pair forms one half of the local context. The
classification of the half context depends on the pairing status of the two bases r1 and
r2 (if they exist) immediately to the right side of the base pair: stack means r1 and
r2 form a base pair with each other, loop means that neither r1 nor r2 forms base
pairs, end means that neither r1 nor r2 exists, stack+loop means that both r1 and r2
exist and one of the bases forms a base pair with another base while the other does
not, stack+end means that only one of r1 or r2 exists and forms a base pair, loop+end
means that only one of r1 or r2 exists and it does not form a base pair, and stack+stack
means that both r1 and r2 exist and they both form base pairs with other bases. Stars
indicate the possible continuation of the strands, which may be connected to other
starred strands, provided the resulting complex is non-pseudoknotted.

4 Dataset

We compiled a dataset of experimentally determined reaction rate constants, ex-
tracting 376 reaction rate constants published in the literature. Each data point
in our dataset is annotated with a reaction temperature and the concentration
of Na+ and Mg2+ cations in the buffer. The dataset is partitioned into a training
set of size 320, which we call Dtrain, and a testing set with size 56, which we
call Dtest. The training set covers a wide range of observations, in terms of both
reaction types and half contexts. The testing set includes both unimolecular and
bimolecular reactions. An overview of our dataset is given in Table 1.

5 Modeling Framework

We augmented the Multistrand software Multistrand [20, 21] to implement the
new Arrhenius model using the full state space of all non-pseudoknotted sec-
ondary structures. Given values for the 15 free parameters, a sufficient number
of stochastic simulations could be run to estimate the models prediction for an
experimental reaction of interest. Unfortunately, obtaining low error bars on this
estimate is prohibitively slow, and thus is not feasible within the inner loop of
parameter inference procedures. To address this limitation, we developed a com-
putational framework in which we obtain fast, exact predictions for a feasible
approximation of the full Multistrand state space. Specifically, we use a reduced
state space that is a strict subset of the full state space, enabling sparse matrix
computations of mean first passage times, from which reaction rate constants
are predicted. With this computation in the inner loop, we used two methods
for training the model. The first is a maximum a priori (MAP) approach that
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Table 1: Dataset of experimentally measured reaction rate constants. The † sign indi-
cates that the experiment was performed without Na+ in the buffer, in which case our
model computes the free energy as if 50 mM [Na+] is present (in addition to Mg2+).

Dtrain
[Na+]
/M

[Mg2+]
/mM

T / ◦C Source

Hairpin closing and
opening

0.1 10–49 Fig. 4 of Bonnet et al. [6]

0.1–0.5 10–49 Fig. 6 of Bonnet et al. [6]
0.25 18–49 Fig. 3.28 of Bonnet [5]
0.137 20 Fig. 3 of Kim et al. [14]

Bubble closing 0.1 25–45 Fig. 4 of Altan-Bonnet et al. [2]

Association and
dissociation

1.0 4–68 Fig. 6 of Morrison and Stols [17]

0.05† 4 30–55 Fig. 6a of Reynaldo et al. [19]

Toehold-mediated 3-way
strand displacement

0.05† 4 30–55 Fig. 6b of Reynaldo et al. [19]

0.05† 12.5 25 Fig. 3b of Zhang and Winfree [28]

Toehold-mediated 4-way
strand exchange

0.05† 12.5 25 Table 5.2 of Dabby [8]

Dtest

Hairpin closing and
opening

0.137 10–60 Fig. 5a, b of Kim et al. [14]

Toehold-mediated 3-way
strand displacement with
mismatches

0.05† 10 23 Fig. 2d of Machinek et al. [15]

optimizes a single set of parameters, and the second is based on MCMC that
produces an ensemble of parameter sets. In the latter case, a posterior parameter
probability density is computed.

5.1 State Space

In this section, we describe our reduced state space. In the future, our aim is to
train the model using a larger set of non-pseudonotted secondary structures. In
either case, the number of states in the model directly affects the computational
cost of inference through the set of linear equations (Eq. 10 in Section 5.2) that is
solved for each reaction at each iteration of the parameter search. In this study,
the largest state space in the training data is toehold-mediated 4-way strand
exchange and contains 14,438 states.

In our reduced state space, base pairs are permitted to form if and only
if they occur in either the initial or final state of our simulation. For example,
during the simulation of duplex hybridization, only base pairs that are consistent
with the perfect alignment of the two strands are permitted to form. We further
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prune the state space by only allowing base pairs to form or break at the edge
of a hybridized domain.

A separate state space Sr is constructed for each reaction r that we wish
to model (Fig. 1). Each state corresponds to a set of indices 〈p0, p1, ...〉 ∈ Sr,
where the indices indicate the begin and end points of the hybridized domains.
The maximum number of continuously hybridized domains is precisely defined
for each reaction r. For example, the state space for hairpin closing and opening
(Fig. 1a) and hybridization (Fig. 1c) only contain one hybridized domain. In such
cases, the state description requires only two indices, and the length of the
hybridized domain is given by p1 − p0. In Fig. 2, we show the pointers for the
states h, i, and j in the state space for hairpin closing and opening. In each
transition, one of the pointers is incremented or decremented. Specifically, state
i can transition to state h by incrementing p0 and it can transition to state j
by decrementing p1. We restrict 0 ≤ p0 ≤ p1 ≤ m, where m is the length of the
stem in the closed state. If p0 = p1, then the domain is absent in the given state.
A full description of the state space is given in the online appendix.

5.2 Estimating Mean First Passage Times with Exact Solvers

Given a parametrized kinetic model, we describe how to compute the mean first
passage time of a CTMC with state space S using a sparse matrix representa-
tion. Let the mean first passage time t be the average time it takes to reach one
of a set of final states Sfinal from an initial state i0. For a first order reaction
r, the reaction rate constant is found as kr = 1

t . For a second order reaction,
the reaction rate constant is computed as kr = 1

t
1
u where u is the initial concen-

tration of the reactants in the simulation [20]. A bimolecular reaction may be
effectively first order or second order under the given conditions, depending on
the time scale of the unimolecular portion of the reaction pathway relative to the
overall reaction time. In our reaction kinetics dataset, all bimolecular reactions
are second order in the forward direction.

Let the random variable T final
i represent the time required to reach any state

in Sfinal starting in state i ∈ S, where T final
i = 0 for i ∈ Sfinal. The time required

to reach Sfinal starting in i is equal to the initial holding time in state i, which we
call hi, plus the time required to hit Sfinal starting in the next visited state. hi is
distributed exponentially with exit rate ki =

∑
j∈S kij . The probability to move

to state j is directly proportional to the transition rate, so that P(i→ j) =
kij
ki

.
Therefore, the mean first passage time is found as [24]

E[T final
i ] =

1

ki
+
∑
j∈S

kij
ki

E[T final
j ]. (9)

Multiplying Eq. 9 by the exit rate ki and applying ki =
∑
j∈S kij then yields∑

j∈S
kij(E[T final

j ]− E[T final
i ]) = −1. (10)
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Eq. 10 permits a sparse matrix representation Kt = −1 for a rate matrix K
and solution vector t, where Kij = kij for i 6= j, Kii = −

∑
j∈S kij , and

ti = E[T final
i ]. To compute first passage times for a distribution over initial

states Sinit rather than an individual state, the weighted average of the first
passage time is computed.

5.3 Estimating the Unnormalized Posterior Distribution of the
Parameters

Let θ be the set of parameters in a kinetic model. For a given experimentally
observable reaction r, the predicted reaction rate constant k̂r will deviate from
the experimental measurement kr. We define the error of the prediction to be the
log10 difference, εr = log10 kr − log10 k̂r. To produce a measure of likelihood for
our parameter valuation, we assume εr is normally distributed with an unbiased
mean and variance σ2, so that εr ∼ N(0, σ2). We treat σ as a nuisance parameter.
For reaction r the likelihood function is given as

P(r|θ, σ) =
1√

2πσ2
exp

{
−
(

log10 kr − log10 k̂r

)2
/

2σ2

}
(11)

and the likelihood function over the set of training data is given as

P(Dtrain|θ, σ) =
∏

r∈Dtrain

P(r|θ, σ)

= exp

−
∑
r∈Dtrain

(
log10 kr − log10 k̂r

)2

2σ2
− n

2
log 2πσ2

 (12)

where n is the number of observations in Dtrain. To define the probability of
the parameters given the data we need to assume prior distributions for θ and
σ. During preliminary fitting, a number of parameter values were found to be
divergent, which we explain as follows. For a fixed local context (l, r), there
are many assignments of Al, El and Ar, Er that result in nearly equal transition
rates kuni(l, r) = AlAr exp {−(El + Er)/RT} (we expand Eq. 7) that result in

similar model predictions k̂r. This allows dissimilar valuations for E and A to
have nearly equal (log)likelihood scores (Eq. 12). The problem becomes even
more apparent when we consider the intrinsic measurement error on kr, for
example, a standard deviation of 22% was reported by Machinek et al. [15], the
limited range of temperature (see Table 1) inherent to our observations, and
the relative frequency of the different half contexts appearing in each simulation
(see the online appendix). In practice, kuni(l, r) is well constrained for many
different l, r ∈ C. As is common in data-fitting applications, we assume a prior
that improves the stability of the estimation. We assume that all parameters in θ
are independent and identically Gaussian distributed with mean 0 and variance
1
λ . In our inference, we use λ = 0.02, and the predictive quality of the model
does not change for minor adjustments to λ. For the nuisance parameter σ, we
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use a non-informative Jeffreys prior [13]. Under these assumptions, the posterior
distribution is proportional to:

P(θ, σ|Dtrain) =
P(Dtrain|θ, σ)P(θ)P(σ)

P(Dtrain)
∝ P(Dtrain|θ, σ)P(θ)P(σ)

= P(Dtrain|θ, σ)

(
2π

λ

)− |θ|2
exp

{
−λ‖θ‖

2
2

2

}
1

σ
. (13)

In conclusion, the log of the posterior distribution is equal to the following equa-
tion, up to an additive constant not depending on the parameters

logP (θ, σ|Dtrain) ≈

−(n+ 1) log σ − 1

2σ2

∑
r∈Dtrain

(
log10 kr − log10 k

f
r

)2 − λ

2
‖θ‖22 (14)

where the squared L2 norm in Eq. 14 is computed as ‖θ‖22 = α2 + | ln kuni|2 +
| ln kbi|2 for the Metropolis model and as ‖θ‖22 = α2 +

∑
l∈C | lnAl|2 +

∑
l∈C |El|2

for the Arrhenius model.
Our MAP approach seeks a unique parameter set that maximizes the nor-

malized log posterior of the dataset (Eq. 14). We use the Nelder-Mead optimiza-
tion method [18], a gradient-free local optimizer. For MCMC, we use the emcee
software package [10], that implements an affine invariant ensemble sampling
algorithm.

Table 2: Performance of the Metropolis and the Arrhenius models on the training and
testing sets. The Mean Squared Error (MSE) is the mean of | log10 kr − log10 k̂r|2 over
r ∈ D. The Within Factor of Three metric shows the percentage of reactions for which
| log10 kr − log10 k̂r| ≤ log10 3. Initial is the initial parameter set of the MAP approach
(Section 8). MAP is the MAP inference method. Mode is the parameter set from the
MCMC ensemble that has the highest posterior on Dtrain. Ensemble is the MCMC
ensemble method where the reaction rate constant k̂r is averaged over all parameter
sets.

Mean Squared Error Within Factor of Three

Dtrain Dtest Dtrain Dtest

Metropolis

Initial .55 1.3 69.3% 33.9%
MAP .33 .94 79.0% 41.0%
Mode .33 .95 79.0% 41.0%
Ensemble .33 .99 79.6% 37.5%

Arrhenius

Initial .59 1.3 71.2% 33.9%
MAP .14 .47 92.1% 73.2%
Mode .12 .40 92.8% 78.5%
Ensemble .12 .42 93.4% 78.5%
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6 Results

Table 2 shows the performance of the Metropolis and the Arrhenius models with
the MAP and MCMC approaches. For details on computational settings for
the approaches see Section 8. The Arrhenius model fits the training data bet-
ter than the Metropolis model (for details see the online appendix, Figs. 3-14),
which is unsurprising when considering the increase of adjustable parameters
in the Arrhenius model (2 vs 15). However, the Arrhenius model also has bet-
ter predictive qualities for the testing set, as evidenced by the MCMC ensem-
ble mean standard deviation of

√
0.99 = 0.99 for the Metropolis model and√

0.42 = 0.64 for the Arrhenius model. The improvement in the prediction of
the testing set is apparent in Fig. 4, where both models predict the Machinek et
al. study of toehold-mediated 3-way strand displacement with mismatches, and
in predictions of opening and closing rates for hairpin with short stems (1-2 nt)
(Fig. 15 and Fig. 16 in the online appendix). It is impressive that the models,
when trained on a comprehensive training dataset, can predict the results of
experiments not seen during training.

There are two reasons for the superior performance of the Arrhenius model.
First, the presence of the temperature dependent activation energy allows the
Arrhenius model to better calibrate to measurements at varying temperatures.
On average, the reaction rate constants kuni(l, r) double in the Arrhenius model
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Fig. 4: Model predictions (dashed lines) of reaction rate constants (y axis) for toehold-
mediated 3-way strand displacement with mismatches, experimental data (solid lines)
from Fig. 2d of Machinek et al. [15]. For the MCMC ensemble method, error bars
indicate the range (minimum to maximum) of 100 predictions (see Section 8). Arrows
indicate no mismatch. The mismatch in the invading strand affects the reaction rate.
The length of the toehold domain is ten, seven, and six nucleotides long for �,  , and
H, respectively.
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between T = 25 ◦C and T = 60 ◦C (this follows from the parameter values in
which E[El + Er] = 3.32 kcal mol−1). A second factor is the relation between
the activation energy of a transition and the local context. In Fig. 5, the inferred
distribution of kuni(l, r) is given for all local contexts that occur in the model.
Strikingly, for many local contexts, the kuni(l, r) are narrowly distributed and
often mutually exclusive, indicating that our model captures intrinsic qualitative
differences in activation energy.

k u
ni k b

i

Transition

2

4

6

8

10

12

lo
g 1

0k

(a)

st
ac

k
st

ac
k

lo
op

st
ac

k
en

d
st

ac
k

st
ac

k+
lo

op
st

ac
k

st
ac

k+
en

d
st

ac
k

lo
op

+
en

d
st

ac
k

st
ac

k+
st

ac
k

st
ac

k lo
op

lo
op

en
d

lo
op

st
ac

k+
lo

op
lo

op

lo
op

+
en

d
lo

op

st
ac

k+
st

ac
k

lo
op

st
ac

k+
lo

op
en

d

st
ac

k+
st

ac
k

en
d

lo
op

+
en

d
st

ac
k+

lo
op

st
ac

k+
st

ac
k

lo
op

+
en

d

Local context

2

4

6

8

10

12

lo
g
1
0
k u
n
i(
l,
r)

(s
1
)

(b)

Fig. 5: Box plots of model features inferred by the MCMC ensemble method, using
a sample of 100 parameter sets. Edges of the box correspond to the first and third
quartile of the distribution. The whisker length is set to cover all parameter values
in the sample, or is limited to at most 1.5 times the box height with the outliers
plotted separately. a) kuni and kbi for the Metropolis model. b) kuni(l, r) at 25 ◦C for
the Arrhenius model. Combinations that do not occur in the model are not shown.

7 Discussion

A common problem for Arrhenius models in biophysics is that the limited range
of temperatures in experimental data can result in ambiguous parameter infer-
ence, and this is indeed the case for our model with the current data set. De-
spite the generally narrow bands for the transition rates (Fig. 5b), the inferred
A and E parameters are poorly constrained, as is evident from the wide range in
the parameter posterior probability distribution and correlation matrix (Fig. 6).
Mathematically, measurements at a single temperature only restrict lnAl +

−El
RT

rather than Al and El independently, and a significant fraction of the measure-
ments were performed at constant temperature. If further mining of the existing
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Fig. 6: The Arrhenius model parameters inferred by the MCMC ensemble method. a)
Box plots of the half context parameters. Edges of the box correspond to the first and
third quartile of the distribution. The whisker length is set to cover all parameter values
in the sample, or is limited to at most 1.5 times the box height with the outliers plotted

separately. b) The Pearson correlation coefficients Rij =
cov(θi,θj)

σθi
σθj

, where cov(X,Y ) =

E[(X − E[X])(Y − E[Y ])] and σX =
√

E[(X − E[X])2].

experimental literature does not resolve the issue, one solution would be to de-
velop customized experiments to calibrate the model further. Interestingly, the
relative lack of correlation between the parameters for different half contexts
suggests that there could be benefit in subdividing the half context categories
further.

We envision further improvements to the model by adjusting the state space
and the thermodynamic energy model. For the state space, the requirement for
hybridizing strands to only engage in perfectly aligned base pairing is not real-
istic, and we plan on using a state space generated directly from Multistrand to
avoid these problems. Our simulation depends on the model of thermal stability
implemented in the NUPACK software [27] and adjustments to the thermody-
namic model could improve the quality of our predictions. For example, hairpin
closing rates are known to depend on the loop sequence, as open poly(A) loops
are more rigid than poly(T) loops [1]. The current thermodynamic model does
not incorporate this effect, and we avoid comparing the model to measurements
on poly(A) loop hairpins. Similarly, the initiation of branch migration is known
to have a significant thermodynamic cost, with one study measuring a cost of
2.0 kcal mol−1 at room temperature [23]. This initialization cost is not incorpo-
rated.

We have reported the initial results of our effort to develop accurate kinetic
models for nucleic acids. Our Arrhenius model surpasses the performance of
the Metropolis model, trained and evaluated on a wide range of experimental
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DNA reaction rate constants. Although our current analysis focuses on DNA,
we believe our approach also applies to RNA reaction kinetics.

8 Methods

We fit the Metropolis and Arrhenius kinetic models using the MAP approach to
a learn parameter set that maximizes Eq. 14. Using the MCMC approach, we
maximize the same equation, but instead obtain an ensemble of parameter sets.

The MAP method is sensitive to the initial parameters, and for the Metropo-
lis model, we use kuni = 8.2 × 106 s−1 and kbi = 3.3 × 105 M−1s−1, follow-
ing known estimates for a one dimensional model of toehold-mediated strand
displacement [23]. For the Arrhenius model, we fix Er = 3 kcal mol−1 for all
r ∈ C and we initialize α and Ar such that, at T = 23 ◦C, equally kuni(l, r) =
8.2× 106 s−1 and kbi(l, r) = 3.3× 105 M−1s−1 for all local contexts l, r ∈ C. For
both models, we initialize σ = 1.

Results for the MCMC should generally depend less on the initial value of the
sets in the ensemble. To initialize the parameter assignment for each parameter
set in the MCMC ensemble, we realize random variables

Er ∼ U(0, 6)× kcal−1 mol−1 Ar ∼ U(0, 104)× s−1/2 ∀r ∈ C
kuni ∼ U(0, 108)× s−1 kbi ∼ U(0, 108)× mol−1 s−1

α ∼ U(0, 10)× mol−1 σ ∼ U(0, 1) (15)

where U(a, b) is the uniform distribution over (a, b). During the inference, the pa-
rameters are not restricted to initialization bounds, and instead we only require
kuni, kbi, Al, α and σ to be positive.

In the emcee software [10], an ensemble of walkers each represents a set of
parameters, which are updated through stretch moves. Given two walkers θ1 and
θ2, a new parameter assignment θ′1 for the first walker is generated as

θ′1 = Zθ1 + (1− Z)θ2 g(Z = z) ∝

{
1√
(z)

if z ∈
[

1
a , a
]

0 otherwise
(16)

where g(z) is the probability density of Z. We use a = 2 (default value) and
an ensemble of 100 walkers. We only use the last step of each walker to make
predictions, which results in an ensemble of 100 parameter sets for each model.

For the MAP approach, we continue the inference until an absolute tolerance
of 10−4 is reached. For the MCMC approach, we continue the inference until 750
iterations are performed per walker.

We implemented our framework in Python. All experiments were run on a
system with 16 2.93GHz Intel Xeon processors and 64GB RAM, running open-
SUSE 42.1. On this system, each iteration takes less than 6 s.

Our framework and dataset, as well as an online appendix that has a full
description of the state space, more experimental plots and analysis, and algo-
rithms that underlie our framework, are available at https://github.com/DNA-
and-Natural-Algorithms-Group/ArrheniusInference.

https://github.com/DNA-and-Natural-Algorithms-Group/ArrheniusInference
https://github.com/DNA-and-Natural-Algorithms-Group/ArrheniusInference
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