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a b s t r a c t

RNA molecules are crucial in different levels of cellular function, ranging from translation
and regulating genes to coding for proteins. Additionally, nucleic acids (RNA and DNA
molecules) are designed for novel applications in biotechnology. Understanding the
structure of a molecule is important in inferring its function, and computational methods
for structure prediction have captured the interest of many researchers.
Some functions of RNA molecules in cells, such as gene regulation, result from the

binding of one RNA molecule to another, so-called target RNA molecule. This has led to
recent interest in prediction of the secondary structure formed from interactingmolecules.
In this paper, we provide a brief overview of methods, applications, and challenges in
computational prediction of nucleic acid secondary structure, both for single strands and
for interacting strands.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this article, we review algorithms for predicting the secondary structure of nucleic acids – RNA and DNA molecules –
from their base sequence. The challenge of nucleic acid structure prediction presents interesting combinatorial problems,
solutions to which are of real practical value in genomics and biotechnology.
The varied natural cellular roles, as well as designed uses, of nucleic acids arise from the diverse structural forms that

these molecules can assume. Very familiar is the double helix, formed by base pairing of a DNA strand with its complement:
A pairs with T, and C pairs with G. Unlike DNA, RNA strands in the cell typically are not paired with a complementary
partner; yet the bases of an RNA strand also energetically favor pairing with complementary bases. As a result, a long single
strand of RNA tends to fold on itself, in a way that causes pairing of complementary bases within the strand. The resulting
paired complementary regions form helical stems; these stemsmay form branched or evenmore complex (pseudoknotted)
patterns, as explained in Section 2.
With several genomes now sequenced, there is growing recognition of the degree to which RNA molecules are essential

to the operation of the cell. The central dogma of molecular biology is that genes are transcribed into RNA molecules called
messenger RNA’s (mRNA’s), which are then translated into proteins. However, many RNAmolecules which are obtained via
transcription from genes are not intermediates in the process of creating proteins from DNA. Rather, these so-called non-
coding RNA’s (ncRNA’s) perform cellular functions in their own right, largely derived from their structures. As Couzin stated,
‘‘RNA, long upstaged by its more glamorous sibling, is turning out to have star qualities of its own’’ [8]. Some cellular roles
of RNA’s include the following.

• RNAmolecules catalyze cellular processes, such as splicing of RNA strands; this is onemechanism that cells use to degrade
foreign matter such as RNA viruses [15].
• Naturally-occurring short RNA molecules can help regulate the expression of genes. One mechanism for achieving this
is RNA interference, whereby a short interfering RNA molecule (siRNA) binds to a perfect complement on the target
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strand. In this way, the siRNA guides an attached protein complex, called the RISC (RNA-induced silencing complex) to
the target, and the target is cleaved by the RISC. Other RNA’s, calledmicroRNA’s, inhibit translation of their targetmRNA’s
by (imperfectly) binding to the target so as to prevent the cell’s translation machinery from accessing the target.
• Yet another mechanism for gene regulation is the riboswitch. The structure of a riboswitch can change, upon sensing the
presence of a particular small molecule; if the riboswitch is embedded in anmRNA then the structural change can inhibit
or enhance translation efficiency for that mRNA [40,41].
• Designed siRNA’s can be synthesized in the lab and used to ‘‘knock down’’ the regulation of certain genes in cell cultures
[16,17]. This mechanism is extremely useful in genome studies, since it can help scientists infer the functions of certain
genes and their products.
• Mechanisms of RNA interference are also being explored as a treatment for HIV and viral hepatitis [17].

Apart from naturally-occurring RNA’s, other RNA molecules have been designed which have novel catalytic functions not
found in nature [20]. One motivation for design of such molecules is to lend support to the hypothesis that a primitive form
of life – the RNA world – preceded the modern DNA-protein world.
Often the catalytic and regulatory roles of RNA involve the interaction of two RNA strands. For example, a ribozyme needs

to bind to a target RNA strand in order to splice it, and similarly amiRNA or siRNAmust bind to its target in order to regulate
gene expression. As a result, prediction of the structure formed by two interacting RNA strands is valuable.
Another reasonwhyprediction of nucleic acid structure is important is because of the emerging uses of designedDNA and

RNA molecules in nanotechnology. Designed DNA molecules can be self-assembled into rigid scaffolds for organization of
matter at the nanoscale, or designed to serve as biosensors that can signal the presence of tiny concentrations of a chemical
in solution [14]. DNA is suitable for these applications because, when single-stranded, it forms branched or pseudoknotted
secondary structures in a similarmanner to RNA; also DNA tends to be quite stable, unlike RNAwhich degrades quite quickly
under standard conditions. In order to design DNA molecules with novel uses, it is necessary to first have good tools for
prediction of DNA structure. Many designed nucleic acid structures incorporate pairing interactions between two (or more)
strands, and so predicting the structure of interacting strands is again important for these applications.
Following some useful background in Section 2, we describe some algorithms for prediction of the secondary structure

of single-stranded nucleic acids in Section 3, and for interacting nucleic acids in Section 4. We conclude with some areas
for future work in Section 5. We consider only algorithms that aim to predict structure from the base sequence: that is,
a single DNA or RNA sequence is given as input, and the task is to predict the structure into which this molecule folds,
under fixed conditions. This paper is not intended to be a comprehensive review, but aims to highlight some of the key
algorithmic advances and challenges pertaining to nucleic acid secondary structure prediction from the base sequence.
We note that, from a computational standpoint, there are other very interesting challenges pertaining to nucleic acid
structure. One is prediction of secondary structure common to two or more homologous sequences, that is, sequences
which are evolutionarily related and form similar structures [7]. Another is discovery of new non-coding RNA’s in sequenced
genomes [40].

2. Background

Throughout this paper, we focus on RNA molecules, but the principles of structure prediction are essentially the same
for DNA molecules. An RNA molecule is a sequence of nucleotides, or bases, of which there are four types: Adenine (A),
Guanine (G), Cytosine (C), and Uracil (U). The molecule has chemically distinct ends, called the 5′ and 3′ ends. We model an
RNA molecule as a sequence over the alphabet {A, C,G,U}, with the left end of the sequence being the 5′ end. Throughout,
n denotes the length of an RNA sequence. We index the bases consecutively from the 5′ end starting from 1, and refer to a
base by its index.
When an RNA molecule folds, bonds may form between certain pairs of bases, where each base may pair with at most

one other base. The resulting structure depends on environmental conditions, such as temperature and salt concentration
of the solution in which the molecule resides. A secondary structure R is a set of pairs i.j, 1 ≤ i < j ≤ n, such that no index
occurs in more than one pair. The pair i.j denotes that the base indexed i is paired with the base indexed j. The canonical
base pairs, which form the secondary structure, are the Watson–Crick pairs A–U and C–G, as well as the wobble pair G–U.
Pair i.j is pseudoknotted if it crosses some base pair i′.j′, that is, exactly one of i′ and j′ is in the set {i, . . . , j}. A structure

R is considered pseudoknotted if it has at least one pseudoknotted base pair. Similarly R is pseudoknot free if it has no
pseudoknotted base pair.
We can illustrate the secondary structure of an RNA molecule on a circular graph called a polymer graph, in which the

bases of the RNA molecule are presented on the circumference of the circle and the base pairs are presented by straight
lines (undirected edges) connecting the two pairing bases. A pseudoknotted secondary structure has crossing lines in the
polymer graph. See Fig. 1.
As noted in the introduction, the RNA structure forms because it is thermodynamically (energetically) favourable for

bases to form paired helices. Accordingly, computational secondary structure prediction from the base sequence is typically
done by finding the thermodynamically most stable (minimum free energy) secondary structure. To explain this, we need
to describe loops and loop energies.
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Fig. 1. From left to right and top to bottom, a pseudoknot free and a pseudoknotted structure in their base pair structure and polymer graphs. In the figure
at the top left, bases are arranged along the backbone; three bases at each of the 5′ and 3′ ends are illustrated. In the top left structure, loops are annotated
by their type: loops with one emanating branch are hairpin loops, with two emanating branches are either internal or bulge loops; and with three or more
emanating branches are multi-loops.

Fig. 2. Two pseudoknotted structures of multiple RNA molecules.

Loosely speaking, the region enclosed by one or more base pairs forms a loop. With respect to fixed environmental
conditions, each loop has an associated energy value. Biochemists have developed tables and rules for calculating the energy
of the loop, based on its closing base pairs and the unpaired bases around the loop [26]. (For large loops, the number of
unpaired bases is used, rather than the actual bases.) The free energy of a secondary structure is calculated by summing its
loop energies. The lower the free energy of the structure, the more stable is the structure.
So far, we have considered only structures formed from a single RNA molecule. When two or more molecules interact,

the situation is similar. We can represent the secondary structure of interacting RNAs by representing each participating
RNA strand by an arc, or segment, of the circle enclosing a polymer graph, such that there is a gap between two consecutive
segments and no segments overlap. The base pairings are then represented just as in the single-stranded case, by straight
lines connecting the two pairing bases. Amulti-RNA structure is connected if the corresponding polymer graph is connected.
There are (L − 1)! different ways (orderings) to place L RNA molecules on a circle. A connected multi-RNA structure is
considered pseudoknotted if all of these orderings result in a structurewith crossing base pairs (see Fig. 2). Thus, a secondary
structure is considered pseudoknot free if at least one of its corresponding polymer graphs does not have crossing base pairs.
Dirks et al. [12] showed an elegant representation theorem, that if a connected multi-RNA structure is pseudoknot free, there
is exactly one ordering of the RNA molecule segments around the circle that results in a structure with non-crossing base
pairings. See Fig. 3.
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Fig. 3. Each connected pseudoknot free structure involving interacting strands has exactly one polymer graph with no crossing lines. For the example
shown, involving three strands (a, b, and c), the graph on the left is that with no crossing lines. In the polymer graph obtained by arranging the strands in
the order a, c , b, there are crossing lines, as illustrated on the right.

Fig. 4. Polymer graphs of four interacting strands. (1) The structure has 1-fold rotational symmetry (i.e. does not have rotational symmetry). (2) If strands
a and c , and b and d are respectively indistinguishable, then this structure has 2-fold rotational symmetry. (3) If all strands are indistinguishable, then this
structure has 4-fold symmetry.

In what follows, when we refer to a multi-RNA structure, we mean a connected multi-RNA secondary structure.
The free energy of a multi-RNA structure is also defined as the sum of energy contributions of loops. But, when two (or

more) of the participating strands are indistinguishable (have identical sequences), an additional term must also be added
to the sum. A (connected) structure formed from indistinguishable strands may have rotational symmetries. Informally,
rotational symmetries arise in a structure when the polymer graph can be rotated (less than 360 degrees) to a configuration
that is identical to its original configuration, both in sequence composition and in structure. Fig. 4 illustrates 1-fold, 2-fold,
and 4-fold rotational symmetries; see Dirks et al. [12] for details. The additional term is kT log R for a structure with R-fold
symmetry, where k is the Boltzmann constant and T is the temperature.

3. Predicting the secondary structure of single stranded RNA molecules

In this section, we first give an overview of methods for predicting the minimum free energy secondary structure for an
RNA sequence. Then, we briefly discuss a related problem, that of calculating the partition function. Finally, we describe an
alternative approach to prediction of pseudoknotted structures, based on the hierarchical folding hypothesis.

3.1. MFE secondary structure prediction

There has been significant success in prediction of pseudoknot free secondary structures, that is, structure which have
no crossing base pairs. State-of-the-art prediction algorithms, such as Mfold [26] or RNAfold [18] find the structure with
minimum free energy (MFE) from the set of all possible pseudoknot free secondary structures. The energy of a structure
is estimated as the sum of energies of loops that form when the molecule folds. Algorithms for MFE secondary structure
prediction of pseudoknot free secondary structures exploit two useful properties. First, a pseudoknot free secondary
structure for a sequence is either closed by a base pair connecting the first and last base in the sequence, or can be broken
down into two independent substructures on a prefix and suffix of the sequence. Second, the total energy of a structure
which is composed of two independent substructures is the sum of the energies of the loops of the substructures. As a result,
a divide-and-conquer approach, based on dynamic programming, can be used to find the MFE pseudoknot free secondary
structure; the runtime of such algorithms isΘ(n3) for standard energy loop models [30].
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While many small RNA secondary structures are pseudoknot free, pseudoknots do arise frequently in biologically-
important RNA molecules, both in the cell [36,39], and in viral RNA [9]. Examples include simple H-type pseudoknots, with
two interleaved stems, which are essential for certain catalytic functions and for ribosomal frameshifting [2], as well as
kissing hairpins, which are essential for replication in the coxsackie B virus [28].
Unfortunately, MFE pseudoknotted secondary structure prediction is NP-hard [1,22,23], even for a simple energy model

that depends on base pairs but not on unpaired bases and a single RNA. Polynomial-time MFE-based approaches to
pseudoknotted structure prediction have been proposed [1,13,32,34,38], with respect to various sum-of-loops energy
models for pseudoknotted structures, which find the MFE structure for a given input sequence, from a restricted class
of structures. A class of structures can be defined by specifying allowable patterns of interleaving among base pairs. For
example, Mfold and RNAfold handle the class of pseudoknot free secondary structures; we provide more examples later.
We say that a structure R can be handled by a given algorithm if R is in the class of structures over which the algorithm
optimises.
Algorithms for MFE pseudoknotted secondary structure prediction trade off run-time complexity and generality — the

class of structures handled, that is, the class of structures over which the algorithms optimise. For example, kissing hairpins
are not in the class of structures handled by the Θ(n5) algorithms of Akutsu [1] and Dirks and Pierce [13] but are in the
class handled by theΘ(n6) algorithm of Rivas and Eddy [34]. (We note that, even when the true structure R for a sequence
is handled by an algorithm, the algorithm still may not correctly predict R, because correctness depends not only on the
generality of the algorithm but also on the energy model and energy parameters.)

3.2. Calculating the partition function

The MFE approach to structure prediction assumes that a molecule folds into one stable structure, namely that with the
lowest energy. A more accurate viewpoint is that the folding process is probabilistic, with the MFE structure being the most
likely to form. It is assumed that the probability of a sequence being in a given structure depends on the energy of that
structure, following a Boltzmann distribution. Thus, the probability of a given structure for a sequence is proportional to an
exponent in the free energy of that structure. More precisely, for a fixed sequence, the probability that the sequence folds
into structure S is e∆G(S)/RT/Q . Here, ∆G(S) is the free energy of secondary structure S, R is the universal gas constant, and
T is the absolute temperature. The quantity Q is called the partition function, and is given by

Q =
∑
S

e∆G(S)/RT ,

where the sum is taken over all secondary structures S for the fixed sequence.
Knowing the base pair probabilities is very valuable; they can indicate, for example, whether a sequence has two quite

different low-energy structures. Furthermore, predictions of base pairs that occur with high probability tend to be more
accurate than predictions of base pairs that occur with low probability [24].
In 1990, McCaskill [27] presented a dynamic programming algorithm for computing the partition function Q of a given

sequence, where the sum is taken over all possible pseudoknot free secondary structures. This algorithm determines the
partition function for a strand using a divide-and-conquer dynamic programming approach that is quite similar to that
used for MFE structure prediction. Care must be taken that to avoid over-counting: each structure should make exactly one
contribution toQ . (In contrast, when finding theMFE energy, it is OK to take theminimumover a set of structures containing
duplicate structures.) McCaskill’s algorithm has run time complexity of O(n4) which can be further reduced to O(n3) using
standard methods.
In 2003, Dirks and Pierce [13] extended McCaskill’s O(n3) algorithm to handle a class of pseudoknotted structures. Their

algorithm has run time complexity of O(n5).

3.3. Prediction of pseudoknots based on hierarchical folding hypothesis

Recently, we introduced a new approach, called HFold [19], motivated by the two limitations of MFE-based algorithms
for pseudoknotted secondary structure prediction: they have high time complexity, and ignore the folding pathway from
unfolded sequence to stable structure. HFold is based on the hierarchical folding hypothesis, which is succinctly stated
by Tinoco and Bustamante as follows: ‘‘An RNA molecule [has] a hierarchical structure in which the primary sequence
determines the secondary structure which, in turn, determines its tertiary folding, whose formation alters only minimally
the secondary structure’’ [37]. (These and other authors consider the initially-formed secondary structure to be pseudoknot
free, and refer to base pairs that form pseudoknots as part of the tertiary structure. However, here we refer to all canonical
base pairs, namely A–U, C–G, and G–U, as secondary structure.)
HFold predicts RNA secondary structures in a manner consistent with a natural formalisation of the hierarchical folding

hypothesis. Consider the problem of hierarchically predicting secondary structure as follows: given a sequence S and a
pseudoknot free secondary structure G (a set of base pairings), find a pseudoknot free secondary structure G′ (a set of base
pairings disjoint from G) for S, such that the free energy of G ∪ G′ is less than or equal to the free energy of G ∪ G′′ for all
pseudoknot free structures G′′ 6= G′.
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As with algorithms for MFE pseudoknotted secondary structure prediction, algorithms for Hierarchical-MFE secondary
structure prediction may handle a restricted class of structures. That is, the type of structure formed by G ∪ G′ may have
restricted patterns of interleaving among base pairs. Since both G and G′ are pseudoknot free, the most general class of
structures that could be handled by an algorithm for hierarchical-MFE secondary structure prediction would be the bi-
secondary structures of Witwer et al. [42] — those structures which can be partitioned into two pseudoknot free secondary
structures G and G′. There is no knownway to solve the hierarchical-MFE prediction for the class of bi-secondary structures.
Instead, HFold solves the problem with respect to a subclass of the bi-secondary structures, which we called density-2
structures.
HFold handles a general class of structures, including H-type pseudoknots and kissing hairpins, as well as structures

containing nested instances of these structuralmotifs. The only known algorithm for predictingMFE nested kissing hairpins,
that of Rivas and Eddy, requires Ω(n6) time. Rastegari and Condon [31] showed that, out of a set of over 1,100 biological
structures, all but nine are density-2 (when isolated base pairs are removed), and six of these nine are also not in the class
handled by Rivas and Eddy’s algorithm.

4. Interacting RNA molecules

Because of the variety of ways in which interacting RNA and DNA molecules contribute to cellular function, are useful
in gene knockdown studies (that is, techniques in which an organism is genetically modified to have reduced expression
of one or more genes), and have potential in therapeutics and in nanotechnology, methods for computational prediction of
the structure of interacting RNAmolecules are very useful. A key challenge is to predict the MFE structure formed from two
or more strands. A closely related problem is to calculate the partition function for a complex of interacting strands. We
describe methods for these purposes in Section 4.1.
A related problem is to calculate how tightly one molecule binds to another. For example, in order to design siRNA’s

(small interfering RNA) for a target mRNA, we need to assess which short strand that is complementary to a stretch of the
target has strongest ‘‘binding affinity’’ to the target. Several different measures of binding affinity have been proposed, and
algorithms to calculate these measures have been developed. We review these in Section 4.2.

4.1. MFE and partition function calculations for interacting strands

MFE pseudoknot free joint secondary structure. Mathews et al. [25] noted that the dynamic programming method for
predicting the secondary structure of single-stranded nucleic acids can easily be adapted to two strands. Briefly, themethod
is run on the concatenation of the strands, but keeps track of the ‘‘break point’’ at which one strand starts and the other ends.
The recurrences are adjusted to account for the fact that an unpaired region surrounding the break point is not a loop, and to
include a penalty for associating the two strands. Andronescu et al. [4,6] extended the same idea to handle multiple strands.
However, neither of thesemethods account for symmetry correction, and somay not compute the trueMFE structure if two
or more of the interacting strands are indistinguishable.
Dirks et al. [12] explained one method for calculating the MFE pseudoknot free secondary structure formed by two

strands, which does correct for symmetry. First, calculate theMFE secondary structure, say S, without symmetry correction.
If this secondary structure has no symmetries, it is the true MFE structure, since the symmetry correction term is always
positive. Otherwise, if S has R-fold rotational symmetry, then enumerate all secondary structures whose energies without
symmetry correction arewithin kT log R of the free energy of S without symmetry correction. Finally, re-evaluate the energy
of these structures, this time correcting for symmetry, and choose the structure with the lowest energy. Unfortunately, this
method requires exponential time in the worst case. No efficient algorithm is known for calculating the MFE pseudoknot
free secondary structure formed by two strands, which corrects for symmetry.
MFE pseudoknotted joint secondary structure. Algorithms for predicting the MFE pseudoknotted secondary structure
formed by multiple stands, without symmetry correction, can be easily obtained by adapting pseudoknotted algorithms for
single strands, in the samemanner as described in the pseudoknot free case. Another dynamic programming algorithmwas
proposed by Alkan et al. [3]. This method takes Θ(n6) time on two strands of length n. The authors note that their method
can predict structures which could not be predicted by an adaptation of the Rivas and Eddy algorithm.
Partition function. Dirks et al. [12] presented the first algorithm for calculating the partition function of a pseudoknot free
complex of multiple interacting nucleic acid strands. Their method also uses dynamic programming. In addition to the need
to correct for symmetry as discussed above, the partition function calculation (unlike the MFE calculation) should ensure
that each possible structure that could be formed from the interacting strands is counted exactly once. While correcting
for symmetry or properly counting appear to be hard to do on their own, Dirks et al. showed that both could be done
simultaneously, using a correction factor which is derived from group-theoretic insights. The time and space complexity of
the algorithm of Dirks et al. are O(n3) and O(n2) respectively when n is the total length of input strands.

4.2. Measuring binding affinity

Now, consider the case when one of two interacting strands is a short oligo (short sequence of nucleotides, also called
oligonucleotide), which binds with amuch longer, so-called target strand. The free energy of theMFE joint structure formed
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by the two strands is an inappropriate measure of binding affinity, because it includes terms pertaining to structure formed
by parts of the target alone.
AMFEmeasure of binding affinity. One alternative is to assume that the MFE joint structure, in the region where the oligo
binds to the target, involves no intra-molecular base pairings and that loop lengths are short – bounded by a constant. With
these assumptions, the goal is to predict theMFE joint structure formed by oligo and target. Rehmsmeier et al. [33] noted that
the dynamic programming recurrences for MFE structure prediction can be simplified to yield an algorithm with running
time O(mn), where m and n are the lengths of the oligo and target, respectively. They developed a method, RNAhybrid, to
do this.
When the short oligo is a microRNA or siRNA, m is typically small (at most 25 nucleotides) and can be treated as a

constant compared with n. Then the time complexity of RNAhybrid is linear to the length of the target. RNAhybrid also
predicts optimal and additional suboptimal, non overlapping hits. RNAhybrid does not handle pseudoknotted structures.
Accounting for target structure. Several authors have stressed the need to account for secondary structure of the target,
when measuring binding affinity of an oligo to the target [21,26,29,35]. This is because, if the target has structure, part of
the structure may need to be disrupted, in order to create or expose an unpaired region which can then bind to the oligo.
Mathews et al. [25] introduce ameasure of oligo-target binding affinity which they call equilibrium affinity. They assume

that the target structure is known (perhaps obtained via MFE prediction). Roughly speaking, the equilibrium affinity is the
overall free energy change, at equilibrium, of a system that includes targets which have structure and are not bound to an
oligo, targets with disrupted structure which are bound to an oligo, and oligos which are self-folded or bound to another
oligo. Given a target strand and its structure, the OligoWalk method calculates the equilibrium affinity for each oligo of a
given length which is complementary to a stretch of the target. The run time for OligoWalk is O(n2), where n is the length
of the target sequence, if only local rearrangements in target structure are allowed upon binding of oligos, and the run time
is O(n4) if global rearrangements in target structure are allowed.
Mückstein et al. [29] described an extension to McCaskill’s partition function algorithm for single strands, which

calculates the probability that a region is unpaired in a given structure. They then used this probability value in predicting
where the oligo would bind to the target strand. The authors showed that when the target strand is large, this algorithm has
time complexity O(n3). This algorithm, RNAup, handles a restricted class of pseudoknotted RNA–RNA structures in which,
for example, the oligo binds to the unpaired bases of a hairpin loop of the target structure. This class of structures is not
handled by the concatenation based RNA–RNA structure prediction algorithms that do not consider pseudoknots. However,
this algorithm cannot predict complex pseudoknotted structures resulting, for example, frombinding of an oligo to unpaired
bases of two hairpin loops of the target structure (see Fig. 2).
Shao et al. [35] note that long targets may form one of several stable structures. This, together with the fact that

MFE secondary structure predictions are inaccurate, supports the consideration of multiple target structures when
measuring oligo binding affinity. They found that, rather than using suboptimal structures, it is better to obtain statistically
representative sample of structures, from the Boltzmann weighted ensemble of secondary structures. The Sfold program
[10,11] efficiently provides such a sample. They defined a quantitative measure called ‘‘target disruption energy’’, which
is the energy change (increase) needed to locally disrupt the target structure at the point where the oligo binds, averaged
over 1000 target structures predicted by Sfold, and showed that accounting for target disruption energy is important, when
predicting binding affinity of an oligo to its target.
In an investigation of microRNA target recognition, Kertesz et al. [21] also account for target structure. They proposed an

energy-based score equal to the difference between the free energy gained by the binding of themicroRNA to the target and
the free energy cost of unpairing the target site nucleotides. To compute the above energy values, they used MFE secondary
structure prediction methods.
Other considerations.When predicting microRNA or siRNA efficiency (that is, the likelihood that they are effective in gene
regulation), factors other than thermodynamic measures of binding affinity are also important. For example, microRNA’s
are held in a protein complex called the RISC (RNA-induced silencing complex); Kertesz et al. [21] found that accounting
also for the cost of unpairing bases flanking the region to which microRNA is bound resulted in better predictions. Tertiary
structure may also play a role [26]. We note that none of the methods above handle pseudoknotted structures.
Shao et al. [35] provide a nice summary of several important factors that influence the efficiency of potential siRNA’s.

For example, the 5′ end of the oligo should form a stem with its complement on the target that is less stable than the stem
formed by the 3′ end. Also, in some positions, certain nucleotides are preferred.
Further discussion of these considerations is beyond the scope of this review, but we note that computational methods

for predicting binding efficiency can be fruitfully combined withmethods that assess other factors. For example, RNAhybrid
allows the user to force hybridisations to contain perfect helices in the 5′-part of the microRNA.

5. Conclusion and future work

Much attention has been recently directed to RNA molecules in general and RNA secondary structure prediction
in particular. There has been significant progress in the past decade, in development of algorithms for prediction of
pseudoknotted structures, andof secondary structures formed from interacting strands, basedon thermodynamic principles.
However, the computational complexity of many of these methods still remains high. As discussed before, most of the
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secondary structure prediction algorithms either exclude pseudoknotted structures in general or are very costly and
inefficient in predicting pseudoknots.
We have not discussed the prediction accuracy of the methods presented here. Accuracy can be measured, for example,

as the percentage of bases that are correctly predicted (as unpaired, or as paired with the proper partner). Mathews et al.
[26] did an extensive study of the standard energy model on a large set of structures, and reported 72% accuracy for MFE
pseudoknot free prediction. The accuracy of the methods hinges greatly on the accuracy of the underlying energy model.
Andronescu et al. [5] have developedmethods for improving the energy values of features (loop contributions) of the current
energymodel, resulting in improved parameters. For significantly better accuracy, particularly for pseudoknotted structures,
changes in the feature set may be needed. Energy model improvement is also necessary for predicting the secondary
structure of interacting RNAmolecules. Also, in the case of interacting RNAmolecules, much effort still needs to be put in the
development of algorithms that accurately handle pseudoknotted structures. As the amount of data on the characteristics
of the structure of interacting RNA’s increases, it should be possible to improve our thermodynamic models of structure
formation, and thus to improve the accuracy of structure prediction.
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