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Abstract Chemical reaction networks (CRNs) and DNA

strand displacement systems (DSDs) are widely-studied

and useful models of molecular programming. However, in

order for some DSDs in the literature to behave in an

expected manner, the initial number of copies of some

reagents is required to be fixed. In this paper we show that,

when multiple copies of all initial molecules are present,

general types of CRNs and DSDs fail to work correctly if

the length of the shortest sequence of reactions needed to

produce any given molecule exceeds a threshold that grows

polynomially with attributes of the system.

Keywords Chemical reaction networks � Strand

displacement systems � Reachability bounds

1 Introduction

DNA strand displacement systems (DSDs) (Yurke and

Mills 2003; Zhang et al. 2007) and chemical reaction

networks (CRNs) (Cook et al. 2009; Soloveichik 2009,

2008) are important molecular programming models.

DSDs provide sophisticated molecular realizations of logic

circuits and even artificial neurons (Qian and Winfree

2011; Qian et al. 2011b), while CRNs elegantly express

chemical programs that can then be translated into DSDs

(Chen et al. 2012; Soloveichik et al. 2008, 2010). CRNs

and thus DSDs can in principle simulate Turing-general

models of computation (Qian et al. 2011a; Seelig et al.

2006), and DSDs can be energy efficient (Seelig et al.

2006; Soloveichik et al. 2010; Yurke et al. 2000; Zhang

and Seelig 2011). It is also possible in principle to recycle

molecules in DSDs by running reversible reactions or

displacements in both forwards and reverse directions, so

that t steps of the system use just O(log t) molecules

(Condon et al. 2012; Thachuk and Condon 2012).

However, correct behavior of some published DSDs

(Condon et al. 2012; Qian et al. 2011a) requires that an

exact numbers of some reactants are present initially, and it

is currently impractical to obtain the exact numbers in a

wet lab. We previously considered the conditions for a

class of CRNs to work correctly when multiple copies of

all initial molecules are present and showed that the length

of the shortest trace (sequence of reactions) needed to

‘‘reach’’, i.e., produce, any given molecule is bounded by a

polynomial function of some attributes of a CRN in this

class (Condon et al. 2012). This reachability upper bound

reveals important limits of molecular programs that fall in

the class covered by our result: we cannot write such

programs that run correctly in a closed chemical system

and for which the number of steps (reactions) of the pro-

gram is sufficiently large relative to the volume of initial

reagents.1

In this work we provide two new reachability upper

bounds that significantly extend our earlier work. The first

new theorem applies to tagged CRNs which, as we explain

below, are important because they can be translated into

DSDs of comparable volume that can simulate the CRN
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traces. The second new theorem applies to a broader class

of DSDs than does the translated version of our first result.

In the rest of this introduction we motivate our results in

more detail. Sections 2 and 3 provide technical details of

both theorems. We list some open questions in Sect. 4.

1.1 New result for chemical reaction networks (CRNs)

Figure 1a illustrates a CRN of the type to which our new

result applies (a formal definition of CRN is in Sect. 2).

Each reaction ri is reversible, and has unique tag species

si
? and si

- on its left and right sides respectively. We

explain later why we focus on tagged CRNs, and also

explain why we ignore reaction rate constants in our

example and results.

When a single copy of each species in the set

{A, C, s1
?, s2

?, s3
?, s4

?} is initially present, it takes six

reaction steps to produce the product F, and to do so,

reaction r1 must run in the forwards direction, then later run

backwards, then forwards again, cf. Fig. 1b. However, if

another copy of A is present initially then F can be gen-

erated with just four reactions. The behavior of the system

with two copies does not mirror its behavior with one copy;

in this sense it is incorrect. While for this simple example it

might not seem important how many steps are needed to

produce a particular product, it is critically important in

contexts where the product is the result of a computation

and an erroneous result could be produced as a result of

cross-talk, or short-circuiting of multiple copies of the

intended computation.

In this paper, our notion of correctness is that of copy

tolerance (Condon et al. 2012). We say that a CRN C is

x-copy-tolerant if the length of the shortest trace that pro-

duces any species s in C and in C(x) is the same, where C(x)

is the CRN with the same reactions as C but with x initial

copies of each initial molecule of C. A system is copy-

tolerant if it is x-copy-tolerant for all x. The CRN of Fig. 1

is not 2-copy-tolerant. Copy-tolerance is a weak notion of

correctness; if a CRN C is not 2-copy tolerant then, for

example, C also fails to satisfy the stronger requirement

that each possible trace of C in the 2-copy setting is an

interleaving of two possible traces in the single copy set-

ting. We chose to work with a weak notion of correctness

because it makes our results stronger, i.e., they apply also

to notions of correctness that are stronger than copy-

tolerance.

Our first reachability upper bound, Theorem 2, shows

that in order for a tagged CRN C to be copy-tolerant, the

number of steps needed for C to produce any given species

must be suitably bounded. The bound is a polynomial

function of the volume and other attributes of C.

We prove our result for tagged CRNs—CRNs with a

unique species on the left and right side of each reaction

(Fig. 1)—for two reasons. First, the tags make it possible for

us to prove strong results. The second reason stems from the

fact that our ultimate goal is to prove limits on the power of

DSDs, which can be realized with DNA strands, rather than

for CRNs which are a useful theoretical abstraction. When

translating an ‘‘untagged’’ CRN to a DSD, two sets of aux-

iliary DNA strand complexes, which we refer to as trans-

formers, are introduced per reaction of the CRN, one set for

each side of the reaction. Each set of transformers includes

unique strands that do not otherwise appear in the DSD. The

CRN tag species represent the sets of transformer DNA

strands. Put another way, to translate an untagged CRN to a

DSD using current methods, it is necessary to first add tags to

the CRN and then map the tags to the sets of transformer

species. Thus, by proving a reachability upper bound for a

tagged CRN, we are obtaining a result for the DSD realiza-

tion of the corresponding untagged CRN. The result would

apply also to other realizations of CRNs, perhaps even using

molecules other than DNA, in which transformer molecules

are needed in the realization. Our earlier result (Condon et al.

2012) did not apply to general tagged CRNs.

(a)

(b)

Fig. 1 Example of a simple tagged chemical reaction network

(CRN). a List of reactions, all of which are reversible. b Changes

in signal and tag species as reactions occur. The first row lists species

present initially. The left column of subsequent rows lists the reaction

applied, with plus indicating the forward and minus indicating the

backwards direction. Two right columns show the signal and tag

species, respectively, after the reaction has been applied
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Unlike the example of Fig. 1, chemical reactions have

associated kinetic rate constants that, along with species

counts, determine reaction propensities (Soloveichik 2009;

Soloveichik et al. 2008). In particular, a CRN behaves sto-

chastically if multiple reactions are applicable to the mole-

cules available at one or more points in the sequence of

reactions. However, in examples such as the stack machine

of Qian et al. (2011a) and the Gray code counter of Condon

et al. (2012), correctness of the CRN does not depend on the

relative propensities of applicable reactions (although the

expected time to complete the simulation of the CRN does

depend on those propensities). Since our results are expres-

sed in terms of number of reactions rather than reaction

propensities, they apply to stochastic CRNs. We can inter-

pret our reachability result as a hitting time in the stochastic

context where a hitting time is the minimum number of

reactions required to reach a goal state from the initial state.

1.2 New result for strand displacement systems (DSDs)

The second main contribution of this paper is a limit on the

types of DSDs that are correct in multi-copy settings. In

(toehold-mediated) strand displacement (Fig. 2), an initially

unbound ‘‘signal’’ strand I binds to a ‘‘template’’ T, causing

another signal strand O that was initially bound to T to

become unbound. DSDs are collections of strands that can

change configurations via successive strand displacements in

a pre-programmed fashion (Cardelli 2010; Zhang and Seelig

2011; Zhang et al. 2007) we provide a formal definition later.

We do not allow other types of strand displacements, such as

cooperative strand displacements, where two signal strands

are needed to displace one signal strand. We thus refer to the

DSDs in this paper as Uncooperative DSDs (UDSDs).

Our first result on tagged CRNs implies a reachability

upper bound for DSD realizations of CRNs, but says nothing

about DSDs more generally. In Theorem 8 we elucidate this

simple upper bound which is obtained by applying the CRN

result to limited types of DSDs, those whose signal strands

consist of exactly two domains: a toehold and a long-domain.

However, since the signal types are limited, this result does

not apply to general DSDs. This is because, while tagged

CRNs can be translated to DSDs having parameters such as

the volume and the number of types of reactants polynomial

in the volume of the CRN (Soloveichik et al. 2011), it is not

clear whether the converse is true. To see why, consider

signal strands that have three domains: a toehold and two

long-domains such that they each start with the same long-

domain d* and toehold t*, and end with a distinct long-

domain. Assume there are d different types of these signal

strands where d is the number of long-domains on the tem-

plate we will consider. Note for the DSD template having d
long-domains, over the course of several displacements,

there are factorially many different configurations—ways in

which signal strands are bound to the template. Figure 3

provides a simple example where any permutation of the

signal species could bind to the template. Now, we want to

create a tagged CRN that is equivalent to this DSD. Such a

tagged CRN in which each template configuration is a dis-

tinct species would thus have the number of distinct species

and reactions factorial in the volume (number of toeholds

and long-domains) of the DSD. Since each reaction in the

tagged CRN requires a unique tag which needs to be present

in the initial configuration, the overall volume of the tagged

CRN would be also factorial in the volume of the DSD. It is

not clear how else to translate such a DSD to a (tagged) CRN

of comparable volume.

Can ‘‘long’’ computations be correctly performed by

DSDs, even in the presence of many copies? Our second

reachability upper bounds for UDSDs, Theorems 9 and 10,

answer this in the negative, showing that, if sufficiently

many copies are present, then any unbound DNA strand

that can be produced (i.e., reached) by a sequence of strand

displacements can always be reached within a number of

displacements that grows at most polynomially in the

volume of the single-copy UDSD. Thus, for example, we

cannot write DSD programs that run correctly in the multi-

copy setting and for which the minimum number of dis-

placements needed to produce some given signal strand is

exponential in the initial volume.

As further motivation, we describe another application

of our DSD reachability bound. The CRN of Fig. 4

describes a traditional 3-bit binary counter. Initially, three

species, namely 03, 02 and 01 represent the bits 0 at each

index of the counter. Exactly one reaction can advance the

(a) (b) (c) (d) (e)

Fig. 2 Strand displacement. a An unbound DNA strand I, with a

short toehold (dark line) and long-domain (lighter line), plus a duplex

consisting of a template strand T and a third strand O that is bound to

T. b I binds to T via its toehold. c Through a process of branch

migration, the long-domain of I becomes bound to T, displacing

bonds of O. d O is bound to T by only a toehold. e The toehold bonds

break, making O unbound
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counter from each value (all in the forward direction), until

the counter reaches 13 12 11. For the n-bit generalization of

this counter, the number of species is just 2n (two species

per bit) while the number of steps is 2n. Thus the volume is

logarithmic in the number of steps. Another very nice

feature of this CRN is that it works correctly even if

multiple copies of the initial species are present, not only in

the sense of being copy-tolerant but also in the sense that

the trace of the multi-copy system is an interleaving of

traces of the single-copy system, even in the presence of

cross-talk. This follows from the fact that for every i, to

produce each copy of molecule 1i, reactions (i) and (i - 1)

have to be executed at least once in forward direction, (i - 2)

at least twice, …, (1) at least 2i-2 times, which can be proved

by induction.

However, if tags are added to the counter in order that it

can be translated to a DSD using tags as discussed previ-

ously, the volume of species for the DSD realization of the

counter becomes exponential in n. This is because reaction

(1) is executed in the forward direction 2n-1 times and is

never executed in the reverse direction; thus 2n-1 copies of

the tag on the left side of reaction (1) must be present

initially. Is there an alternative (tag-less) DSD realization

of the n-bit CRN binary counter whose volume grows

polynomially in n? Our DSD result implies that there is no

such realization. If there were, then our reachability upper

bound implies that in the multi-copy setting the bit 1n could

be produced in a polynomial number of steps. But since we

know that it takes 2n-1 steps to produce 1n even in the

multi-copy setting, we have a contradiction.

2 Reachability upper bound for CRNs

In this section we first provide formal definitions of tagged

CRNs. We then provide our main technical result, restate

this result to obtain our reachability upper bound theorem

for copy-tolerant CRNs, compare the bounds of our main

theorem of Sect. 2 with our previous result (Con-

don et al. 2012), and then provide several additional

results.

2.1 Definition of tagged CRNs

Notation. If S is a multiset, we will denote the set of

distinct elements in S as ½½S��. If s is an element and k is a

positive integer, then k � s denotes k copies of s. For

example, a multiset containing three copies of a and five

copies of b, can be represented as f3 � a; 5 � bg. If S is a set

and k is a positive integer, then k � S denotes the multiset

containing k copies of each element in S. Similarly, if S is a

multiset, then k � S denotes the union of k copies of S. The

set operations on multisets are defined in a usual way. Let

#fx 2 Sg denote the number of copies of x in S. In

addition, we define the intersection S \ T of a multiset S
and a set T as S \ ðjSj � TÞ; i.e., S \ T contains only ele-

ments in ½½S�� \ T ; and for each x 2 ½½S�� \ T;#fx 2 S \ Tg
¼ #fx 2 Sg.

Definition 1 (Tagged CRN) A tagged chemical reaction

network is a tuple C ¼ hS; T;R;S0; T 0i with variables

defined as follows:

– S is a set of signal species and T is the set of tag species,

and S \ T = [.

– R is a set of reversible or irreversible reactions, where

each r 2 R is an ordered pair ðI r;PrÞ of multisets of

signal and tag molecules such that I r \ T ¼ fsþr g and

Pr \ T ¼ fs�r g. Note that each side of each reaction

contains exactly one tag molecule and this tag molecule

is unique for that reaction. Intuitively, a reaction r ¼
ðI r;PrÞ either consumes the molecules in I r and

produces the molecules Pr; or, if the reaction is

reversible, it can also consume Pr and produce I r. In

the first case, we say that the reaction was applied in the

forward direction and denote it as ?r, in the second

case in the backward direction and denote it as -r. The

symbols ?r and -r will be called oriented reactions

and we define |?r| = |-r| =r. We will refer to I r and

Pr as the left side and the right side of a forward

Fig. 3 A template indicated by the bottom line has 6 long-domains

and 6! = 720 possible configurations. The signals are the bent top

lines. Dark lines are toeholds and the lighter ones are long-domains.

The template contains d = 6 toehold-long-domain-toehold blocks. In

each block, any one of the signal species shown may be bound. Thus

the number of possible configurations of this template is d! = 6!. If 6

copies of the signal t*d* are present as well, they can displace 6

signals shown, which can subsequently displace six t*d* signals

resulting in any of the 6! configurations

Fig. 4 Binary counter CRN
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reaction ?r, and as the right side and the left side of a

backward reaction -r.

– S0 is a multiset of signal molecules and T 0 is a multiset

of tag molecules present initially at time-step zero. The

volume of CRN C is the number of molecules in

S0 [ T 0.

Tags limit the number of times a reaction can be applied

in the same direction without being applied in the reverse

direction. For example, if r is a reversible reaction and T 0

contains only one copy of sr
? and no copies of sr

-, then in

any valid trace, the oriented occurrences of r have to

alternate, starting with ?r. If r is an irreversible reaction

and T 0 contains x copies of sr
?, then in any valid trace,

there are at most x occurrences of ?r (and no occurrences

of -r). Limiting the number of tags forces a system to

recycle molecules in long traces.

In the following series of definitions, consider a tagged

CRN system C ¼ hS; T ;R;S0; T 0i.

Definition 2 (Bandwidths) Define the bandwidth of sig-

nal species s as the maximum number of occurrences of

s in I r or Pr; i.e., maxr2Rf#fs 2 I rg;#fs 2 Prgg. Define

the maximum bandwidth bC (respectively, total bandwidth

BC) of C as the maximum (respectively, the sum) of

bandwidth over all signal species in S. Similarly, the proper

bandwidth of signal species s, the maximum proper band-

width ~bC and the total proper bandwidth ~BC are defined

analogously but using I r n Pr instead of I r and Pr n I r

instead of Pr .

To illustrate the above definition, consider the CRN

C that consists of two reactions, Aþ B� Aþ C and

Bþ B� C. Now the respective bandwidths of the species

A, B, and C are 1, 2, and 1, the maximum bandwidth

bC = 2 and the total bandwidth BC = 4. Similarly, the

respective proper bandwidths of the species A, B, and

C are 0, 2, and 1, the maximum proper bandwidth ~bC ¼ 2

and the total proper bandwidth ~BC ¼ 3.

Definition 3 (Numbers of occurrences of tags) For any

reversible reaction r 2 R; let tr be the maximum of the

number of occurrences of sr
? or sr

- in T 0; i.e.,

maxf#fsþr 2 T 0g;#fs�r 2 T 0gg; and for any irreversible

reaction r 2 R; let tr be the number of occurrences of sr
? in

T 0. Let TC be the sum of tr’s over all reactions r 2 R.

Definition 4 (x-copy CRN) We define the x-copy of C, for

x 2 Z
þ; as the CRN hS;T ;R; x � S0; x � T 0i.

Definition 5 (Trace) Let q ¼ r1; r2; . . .; rm be a sequence

of oriented reactions where jrij 2 R for all i. For oriented

reaction r if sign(r) = ?, let Ar ¼ I r and Br ¼ Pr

whereas if sign(r) = -, let Ar ¼ Pr and Br ¼ I r. The

configuration of the system at each step i is defined as

ðSi; T iÞ where Si ¼ ðSi�1 n ðAri
\ SÞÞ [ ðBri

\ SÞ and,

similarly, T i ¼ ðT i�1 n ðAri
\ TÞÞ [ ðBri

\ TÞ. A reaction

sequence q is valid if Ari
\ S � Si�1 and Ari

\ T � T i�1

for all i, meaning that for each molecule in Ari
there must

be one in Si�1 [ T i�1. A trace is a valid reaction sequence.

2.2 The main upper bound

Our main upper bound, Theorem 1, shows that in the multi-

copy setting, any product of a tagged CRN can be produced

within a number of reactions that is bounded by a function

of the number of signal species, the bandwidth, and the

number of tags of the CRN.

Theorem 1 Let C ¼ hS; T;R;S0; T 0i be a tagged CRN

and let send 2 S. If some trace of C produces send, then in a

ðjSj � j½½S0��j þ 1ÞðbC þ ~bCTC=2Þ� jSjbCðTC=2þ 1Þ-copy

CRN of C, the length of the shortest trace that produces

send is at most ðjSj � j½½S0��jÞðbC þ ~bCTC=2ÞTC�ðjSj � 1Þ
bCðTC=2þ 1ÞTC.

Proof Let q ¼ r1; r2; . . .; rm be a valid sequence of ori-

ented reactions in a single-copy system producing send

starting from the initial set S0 [ T 0. We will construct a

reaction sequence q0 that also produces send in a multi-copy

CRN and satisfies the length-bound of the theorem, by first

constructing ‘‘unidirectional’’ shortened reaction subse-

quences by eliminating all forward-backward pairs of

reactions {?r,-r} in subsequences of q, and then showing

that in a multiple-copy setting the intermediate signals

required to drive the synthesis can instead be produced by

repeating these shortened reaction subsequences of q.

Throughout the proof we will illustrate the construction on

the CRN and the corresponding trace from Fig. 1.

Consider any prefix of this sequence, say qi ¼ r1; . . .; ri.

Construct a new sequence q0i by randomly pairing ?r with

-r, for any reaction r 2 R, and removing these pairs from

the sequence, until no such pairs can be formed, i.e., q0i
does not contain either ?r or -r, for every r 2 R. For

example, consider q06 = ?r1,?r2,-r1,?r3,?r1,?r4 from

Fig. 1b. Then q06 ¼ þr2;þr3;þr1;þr4 or q06 ¼ þr1;þr2;

þr3;þr4; depending on the choice of the ?r1 and -r1 pair.

The constructed reaction sequence q0i has the same effect

on the final number of signals as qi. However, q0i might not

be a valid reaction sequence starting at the same initial

configuration as qi since some reactants might be missing

when running a reaction in q0i. To avoid that we will start

with a sufficient number of copies of signals in S0 [ T 0

and run each q0i that produces a new signal sj sufficient

number of times so that we have sufficient number of

copies of sj for all remaining executions of such shortened

reaction subsequences. For example, in q06 ¼ þr2;

Reachability bounds for chemical reaction 503
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þr3;þr1;þr4 the missing first reaction ?r1 produces a

signal B which is used by the subsequent reaction ?r2. We

can provide the missing signal B by running a shortened

sequence q01 that produces B before executing sequence q06.

In what follows we will argue that if we start in a config-

uration with a sufficient number of copies of signals in

S0 [ T 0 [ Si�1, the constructed reaction sequence q0i
becomes valid.

Let S0 be the set of signal molecules appearing on the

left hand side of reactions in q0i. Now, let us see what

happens if we apply this sequence on the initial set

S0 [ T 0 [ k � S0, where k is sufficiently large so that the

reaction sequence is valid. We can make the following

observations:

(1) The final number of copies of each signal species is

the same as if we would apply qi on S0 [ T 0 [ k � S0.
Hence, the final configuration contains k � S0.

(2) For each reaction r 2 R; q0i contains either only

forward or only backward occurrences of r (or no

occurrences), and their number is limited by the

number tr of corresponding tags in T 0. As a

consequence, the length of q0i is at most TC.

(3) Consider a signal molecule s 2 S0. Each reaction in q0i
removes or adds at most bC copies of s and the length

‘ of q0i is at most TC. We will show that before each

reaction in q0i; there are at least k � ~bCTC=2 copies of

s. Assume that after the first j reactions, the number of

copies of s is less than k � ~bC‘=2. If j� ‘=2, then the

first j reactions of q0i could remove at most ~bCj�
~bC‘=2 copies of s, and there were at least k copies

present initially, a contradiction. If j [ ‘=2, then there

are less than ‘=2 reactions left, and each of them adds

at most ~bC copies of s. Since by (1), the final number

of copies of s is at least k, we have a contradiction

again. Hence, the number of copies of s before any

reaction of q0i is at least k � ~bC‘=2� k � ~bCT=2.

(4) Hence, it follows that if we set k ¼ bC þ ~bCTC=2,

then before each reaction in q0i; there are at least bC

copies of any signal in S0, and hence, the reaction

sequence is valid. Note that this is true even if we

randomly permute reactions in q0i.

For each signal s appearing in the single-copy trace and

not appearing in the initial set S0, let rindexðsiÞ be the first

reaction in q which produces a copy (or more) of s. Let

s1; . . .; sn be the sequence of all signals not in S0 ordered by

their indices, i.e., indexðs1Þ� indexðs2Þ� � � � � indexðsnÞ.
In our example from Fig. 1, we have index(B) = 1,

index(D) = 2, index(E) = 4 and index(F) = 6. Hence, we

order signals as follows: s1 = B, s2 = D, s3 = E and

s4 = F.

Without loss of generality we can assume sn = send. Let

Si ¼ fs1; . . .; sig. We can make one additional observation:

(5) For each si, the left side of each reaction in q0indexðsiÞ
contains only signals in ½½S0�� [ Si�1. By (4), if we start

in a configuration which contains the multiset of

signals and tags S0 [ T 0 [ ðbC þ ~bCTC=2Þ � ð½½S0�� [
Si�1Þ; q0indexðsiÞ is a trace producing a copy of si.

2.2.1 Construction of reaction sequence

(S1) Start with the initial set containing bC þ ~bCTC=2

copies of ½½S0�� and the empty sequence of reactions.

(S2) For each i ¼ 1; . . .; n : add bC þ ~bCTC=2 copies of

S0 [ T 0 to the initial set and append bC þ ~bCTC=2

times sequence q0indexðsiÞ to the constructed sequence

of reactions.

Before we proceed with proving that this construction is

producing a valid reaction sequence, let us illustrate it on

the CRN from Fig. 1. Since TC = 4 and bC ¼ ~bC ¼ 1; we

have bC þ ~bCTC=2 ¼ 3. The construction starts by putt-

ing f3 � A; 3 � Cg into the initial set and proceeds in four

steps:

1. qindex(B) = ?r1, and hence, q0indexðBÞ = ?r1. We add

f3 � A; 3 � Cg [ 3 � T 0 into the initial set and start

constructing a new reaction sequence with ?r1,

?r1,?r1.

2. qindex(D) = ?r1,?r2, and hence, q0indexðDÞ = ?r1,?r2.

We add f3 � A; 3 � Cg [ 3 � T 0 into the initial set and

append ?r1,?r2,?r1,?r2,?r1,?r2 to the constructed

sequence.

3. qindex(E) = ?r1,?r2,-r1,?r3, and hence, q0indexðEÞ =

?r2,?r3. We add f3 � A; 3 � Cg [ 3 � T 0 into the initial

set and append ?r2,?r3,?r2,?r3,?r2,?r3 to the con-

structed sequence.

4. qindex(F) = ?r1,?r2,-r1,?r3,?r1,?r4, and we choose

the second option q0indexðFÞ = ?r1,?r2,?r3,?r4. We

add f3 � A; 3 � Cg [ 3 � T 0 into the initial set and

append ?r1,?r2,?r3,?r4,?r1,?r2,?r3,?r4,?r1,?r2,

?r3,?r4, to the constructed sequence.

Hence, the construction requires 15 copies of S0 and 12

copies of T 0; and the constructed reaction sequence con-

tains 27 reactions. This is not the most efficient sequence.

As we have seen in the introduction, there is a reaction

sequence of length four that uses only two copies of S0 and

one copy of T 0; and produces a signal species F. However,

this general construction guarantees that the required

number of copies of the initial set and the length of the

sequence is polynomial for any CRN. The configuration of
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the system after each step is shown in Fig. 5. Note that after

each step the configuration contains at least three copies of

each species produced so far. We will show that this is

always the case in the following claim, which also proves

that the constructed sequence is valid.

Claim 1 After each step i in (S2), the constructed

sequence is valid and the final configuration contains bC þ
~bCTC=2 copies of each signal in ½½S0�� [ Si.

Proof Proof by induction: Base case: For i = 0, after

(S1), we have bC þ ~bCTC=2 copies of each signal in ½½S0��
and the empty sequence of reactions is valid. Induction

step: Inductive assumption: before step i, we have bC þ
~bCTC=2 copies of each signal in ½½S0�� [ Si�1 and the

sequence constructed so far is valid. By (5), if we add a

copy of S0 [ T 0 and apply the reaction sequence q0indexðsiÞ
on the current configuration, the trace is valid. By (1), this

newly added part (a copy of S0 [ T 0 and reactions in

q0indexðsiÞ) will not decrease the number of any signal.

Finally, q0indexðsiÞ must contain the last reaction of qindex(si),

i.e., rindex(si) which produces at least one copy of si. If we

repeat this bC þ ~bCTC=2 times, we will still have at least

bC þ ~bCTC=2 copies of signals in ½½S0�� [ Si�1 plus bC þ
~bCTC=2 copies of si. h

The bound: The construction uses ðnþ 1ÞðbC þ
~bCTC=2Þ copies of S0; nðbC þ ~bCTC=2Þ copies of T 0 and

repeats nðbC þ ~bCTC=2Þ times the trace q0some index. By (2),

the length of each q0some index trace is at most TC, hence the

total length of the constructed sequence is at most

nðbC þ ~bCTC=2ÞTC. Furthermore, n can be bounded by

jSj � j½½S0��j. h

We remark that this result does not hold for the untag-

ged CRNs, cf. Example 3.4 in our earlier paper (Condon

et al. 2012), where the following CRN was presented

which requires an exponential number of steps to produce

send even in an 1-copy of this CRN:

si þ si � siþ1 þ s0; for i ¼ 0; . . .; k � 1;

with the initial set containing k copies of s0. Note that since

all reactions are balanced the volume of this system stays

constant. However, since in this CRN in any shortest trace

producing send, all reactions are applied in the forward

direction, if we would tag this CRN, the trace producing

send would require that the initial multiset of tag molecules

T 0 contains an exponential number of tags. It is also

interesting to observe where the proof of Theorem 1 fails

for the untagged CRNs. In observation (2) in the proof we

were able to bound the length of the shortened sequence of

reactions q0i by TC, which would not be possible in an

untagged CRN.

Next, we restate Theorem 1 for copy-tolerant CRNs.

Theorem 2 If a tagged CRN C ¼ hS; T;R;S0; T 0i is

jSjbC TC=2þ 1ð Þ-copy-tolerant and send can be produced in

C, then the length of the shortest trace of C that produces

send is at most jSj � 1ð ÞbC TC=2þ 1ð ÞTC.

A natural question is whether we could improve the

bound in condition (3) of the proof of Theorem 1 by

choosing the ‘‘right’’ permutation of oriented reactions in

q0i. The following example shows that this is not possible in

general.

Example 1 Assume that q contains exactly an even

number, T, of oriented reactions þr1; . . .;þrT designed as

follows. First for every partition p of q into two sets q1
p and

q2
p of same size, we introduce a new signal sp. Let P be the

set of all such partitions. Next, we define reactions

r1; . . .; rT in such a way that each of these signals is either

an input or a product of each reaction:

I ri
¼ fsp : ri 2 qp

1 ; p 2 Pg;
Pri
¼ fsp : ri 2 qp

2 ; p 2 Pg

We will illustrate this construction for T = 4, i.e.,

q = ?r1,?r2,?r3,?r4. There are six partitions of q into

two subsets of size two:

– q1
a = ?r1,?r2 and q2

a = ?r3,?r4,

– q1
b = ?r1,?r3 and q2

b = ?r2,?r4,

– q1
c = ?r1,?r4 and q2

c = ?r2,?r3,

– q1
d = ?r2,?r3 and q2

d = ?r1,?r4,

– q1
e = ?r2,?r4 and q2

e = ?r1,?r3,

– q1
f = ?r3,?r4 and q2

f = ?r1,?r2,

Hence, the reactions use six signals: sa; sb; sc; sd; s�; sf.

Using the definition of inputs and products above, the four

constructed reactions are the following:

r1 : sa þ sb þ sc � sd þ s� þ sf

r2 : sa þ sd þ s� � sb þ sc þ sf

r3 : sb þ sd þ sf � sa þ sc þ s�
r4 : sc þ s� þ sf � sa þ sb þ sd

Note that after all reactions in q are applied, the number of

copies of any of the signals sp is not changed, since there

Fig. 5 The intermediate configurations after each step of the

construction applied to the CRN in Fig. 1a. The multisets in the

second column show only the signal species
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are exactly T=2 reactions in q adding one copy of sp and

T=2 reactions removing one copy of sp.

Now, we show that for any permutation of the reactions

in q, there is a signal molecule with k - T=2 copies when

the first T=2 reactions in this order are applied. Since we

could easily replace I ri
and Pri

with b � I ri
and b � Pri

; the

bound k � ~bCT=2 in (3) cannot be improved without add-

ing some additional conditions on the CRN. To find the

signal molecule with k - T=2 copies after applying the

first T=2 reactions, consider the partition p0 of q into the

first and the second T=2 reactions of this order. Then the

signal sp0
appears in the input set of the first T=2 reactions,

and thus, the number of copies of sp0
is k - T=2 after

applying the first T=2 reactions.

2.2.2 Result for 1-proper tagged CRNs

We next describe a stronger version of our result for a

special case. We say that a tagged CRN C is k-proper if

each reaction has at most k reactants which are not cata-

lysts, more formally, for all r 2 R; jI r n fsþr g n Prj � k and

if r is reversible, also jPr n fs�r g n I rj � k.

Corollary 1 If there exists a trace in a 1-proper tagged

CRN C ¼ hS; T ;R;S0; T 0i producing send, then in an |S|bC-

copy CRN of C, the length of the shortest trace that pro-

duces send is at most (|S| - 1)bCTC.

Proof To improve the bound we will strengthen the

bound for k in observations (1–4) in the proof of Theorem

1. In particular, we will show that there is a permutation

of reactions in q0i such that when this permutation of

reactions is applied on S0 [ T 0 [ bC � S0, the number of

copies of any signal species is not below bC - 1 during

any step and the number of copies of any but one signal

is not below bC. To do this we will borrow the idea from

the proof of Theorem 2 in (Condon et al. 2012). Pick the

first reaction at random. Since it is a 1-proper reaction,

the number of copies of at most one signal species, say s,

is less than bC, and if so, by at most one less. By (1),

there has to be an unused reaction which would bring this

number back to bC. We choose this reaction as the second

reaction. This brings the number of copies of molecule

species s back to bC, but it might decrease the number

copies of another species to bC - 1. Hence, there is again

at most one signal species with fewer than bC copies.

Repeating this process, we construct the desired permu-

tation of reactions of q0i.

Using this improved bound of condition (3), we can now

modify the construction of the reaction sequence as

follows:

(S1) Start with bC copies of ½½S0��.

(S2) For each i ¼ 1; . . .; n: add bC copies of S0 [ T 0 and

append bC times sequence q0indexðsiÞ.

The rest of the proof follows analogously to the proof of

Theorem 1. h

2.2.3 Comparison with the previous result

In our previous work (Condon et al. 2012), we have

showed the following result for untagged CRNs. Untagged

CRNs do not put any restriction on how many times

reactions are used in forward or backward directions. They

can be also thought of as tagged CRNs with an infinite

supply of tags [for the exact definition see (Condon et al.

2012)].

Theorem 6 (Condon et al. 2012). If there exists a trace

in a 1-proper CRN C ¼ hS;R;S0i producing send, then in a

(BC ? 1)-copy CRN of C, the length of the shortest trace

that produces send is at most (BC ? 1)BC/2 ? 1.

Note that BC B |S|bC. In particular, if the maximum

bandwidth is 1, then the number of copies of the system

required in both results is HðjSjÞ and the number of reac-

tions needed to produce send is bounded by O(|S|TC) in our

new result and by O(|S|2) in the result from (Condon et al.

2012).

2.2.3.1 The upper bound in the unrestricted case In the

previous subsection, we assumed that a single copy CRN

can produce the target signal molecule send. Here we study

the case without this assumption. We have the following

weaker result:

Theorem 7 Consider a CRN C ¼ hS;R;S0i with the

maximum bandwidth 1. If send can be produced by an

1-copy CRN of C, then the length of the shortest trace that

produces send is at most O(2|R|) in the 1-copy CRN of C.

Proof Partition R as follows. In an1-copy CRN, we can

assume that we have an unlimited supply of signal molecules

in S0. Let R1 be the set of all reactions in R which can be

applied in the initial configuration. Let S1 be the set of signal

molecules in S0 and those produced by reactions in R1.

Repeat this procedure until Sk contains send. Let ri be the size

of Ri. We want to estimate how many reaction steps are

needed until we can apply the reaction in Rk that produces

send. In the worst case, to apply any reaction in Ri, we might

need signal molecules produced by each reaction in

R1 [ . . . [ Ri�1. Let bi be an upper bound on the number of

reaction steps which will produce all signal molecules

required to apply a reaction in Ri. Hence, we can set b1 = 0

and bi =
P

j=1
i-1 rj(bj ? 1). Note that bi?1 - bi =

ri(bi ? 1), and hence, bi?1 ? 1 = ri(bi ? 1) ? bi ?

1 = (bi ? 1)(ri ? 1). And thus, bi ¼
Qi�1

j¼1ðrj þ 1Þ � 1.
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To upper bound bk we will argue that the value of bk is

maximized if rj = 1 for each j ¼ 1; . . .; k, and k = |R|. This

is because for any n1,n2 C 1 such that n1 ? n2 = n, it

holds that n ? 1 \ (n1 ? 1)(n2 ? 1), i.e., the product

could always be increased by replacing the term

rj ? 1 C 3 in the product with two terms r0j ? 1 and

r00j ? 1, where rj = r0j ? r00j. The claim follows by

induction. Therefore, we can upper bound the number of

reactions needed to produce send by bk þ 1 ¼
Qk�1

j¼1

ðrj þ 1Þ� 2jRj�1. h

The following example shows that the bound in Theo-

rem 7 cannot be improved.

Example 2 Consider the following CRN with the maxi-

mum bandwidth 1:

s0 þ s1 þ � � � þ si � siþ1; for i ¼ 0; . . .; k � 1:

This CRN contains k distinct reactions and the number of

reaction steps required to produce sk is 2k-1, which exactly

matches the bound in Theorem 7. Indeed, if we denote the

number of reactions needed to produce si by ni, then we

have n0 = 0 and ni ¼ n0 þ n1 þ � � � þ ni�1 þ 1, and it is

easy to check that ni = 2i-1, for every i C 1.

3 Reachability upper bound for uncooperative DSDs

In this section we first define the type of DSD to which our

results apply, along with related notation needed for our

results. We then provide our main upper bound, and con-

clude with a restatement of this result to obtain our

reachability upper bound theorem for copy-tolerant DSDs.

3.1 Definition of uncooperative DSDs

In this section we formalize standard features of DSDs as

described in the literature and some additional features, so

that we can reason rigorously about them in our proofs.

Since our model does not allow cooperative strand dis-

placement, we call this model ‘‘uncooperative DSD’’

model (UDSD).

In our definition of UDSDs, we will assume that the

basic building blocks are domains where each domain

d has its complementary domain d* and (d*)* = d. In

practice, domains are built from nucleotide sequences, and

it is usually assumed that these are designed in a way so

that there are no interactions between domains which are

not complementary. In addition, domains are usually

divided into two groups, ‘‘toeholds’’ and ‘‘long-domains’’,

based on their lengths (the number of nucleotides). Strands

are built by concatenating these basic building blocks. The

purpose of toeholds is to initiate branch migration

[replacement of one strand (signal) attached to a long

strand (template) by another strand (signal)]. The purpose

of long-domains is exactly the opposite: to prevent signal

strands from detaching from the template strands without

being replaced by another signal strand (as this would

require a prohibitive amount of energy). Consistent with

existing research, we are working at the domain level of

abstraction, and we consider the actual sequence design of

domains as future work.

An Uncooperative DNA strand displacement system

(UDSD) is a pair D ¼ ðS; CinitÞ of strands and an initial

configuration (secondary structure) for those strands, plus

allowable positional displacements, defined as follows.

– S is a finite multiset of strands. Strands are composed

of subsequences of finite strings of symbols, called

domains. Domains are partitioned into two groups:

toeholds and long-domains. Corresponding to each

domain x is a complementary domain x*; x is a toehold

if and only if x* is. S may contain many strands of a

given type, where the type of a strand is its sequence of

domains. The strands are partitioned into two groups:

signals and templates. A template strand is a sequence

of domains beginning and ending with a toehold that

alternates between toeholds and long-domains. A signal

strand is an arbitrary sequence of domains. There is no

bound on the number of toeholds and long-domains of

a template or a signal.

We say that the UDSD D has simple signals, if each

signal in S is composed of exactly one toehold and one

long-domain.

– A configuration of S is a circular graph2 with the vertex

set containing all domains in S and the edge set con-

sisting of two types of edges: (i) adjacency edges

connecting all adjacent domains in the strands of S and

(ii) binding edges connecting some complementary

domains, which satisfy the following conditions:

(1) Every domain is incident to at most one binding

edge. A domain incident to a binding edge, is

called bound, otherwise, it is called unbound.

(2) There are no binding edges between domains on

template strands.

(3) There are no binding edges between domains on

signal strands.

(4) For each template strand, all domains but one

toehold domain are bound. This one unbound

toehold is called the open toehold of the template.

(5) For every signal strand, either all its domains are

unbound, in which case we say that the signal

strand is unbound, or exactly two of its domains

2 A graph that can be drawn in a way that all vertices lie on a circle

and edges lie inside the circle and do not cross. In graph theory, the

formal equivalent of circular graphs are outerplanar graphs.
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which are adjacent are bound to two adjacent

domains on one template strand, in which case we

say that the signal strand is bound.

In addition, since we assume that a domain is a toehold

if and only if the complementary domain is a toehold, and

all binding edges are between complementary domains,

there are no binding edges between toeholds and long-

domains. We will call the connected components of this

graph complexes. Note that conditions (2), (3) and (5)

imply that the configuration is a circular graph, hence we

could have omitted it from the above definition. However,

we choose to include it so that omitting condition (5) from

the above definition yields a valid more general model of

DSDs, which we would like to consider in future work.

For example, Fig. 7 shows two configurations, the initial

(top) and final (bottom) configurations of a UDSD. This are

drawn, not as a typical circular graph, but with domains

(vertices) represented by lines (short dark lines represent

toeholds and long gray lines represent long-domains),

adjacency edges by connected domains and binding edges

indicated by complementary domains that are juxtaposed.

Most of the signals in these configurations are simple, and

there is one complex signal that can bind to two different

positions of the first template. The PDs are lined up hori-

zontally with their template positions and given by circles

that are numbered according to the order in which they

occur.

Let us now provide some intuition behind these condi-

tions. Condition (1) comes from the fact that each nucleotide

can form a (hydrogen) bond with only one another nucleo-

tide, and thus the same applies to domains which are

sequences of nucleotides. Conditions (2) and (3) are typical

assumptions made for the systems which divide strands into

templates and signals (as we do). The advantage of such a

design is better control of what can and cannot happen in the

system. If the UDSD is designed in such a way that no

domains in the signals are complementary to each other and

similarly, no domains in templates are complementary to

each other, then these two conditions are implied and could

be dropped from the definition of the configuration. Note that

these two conditions imply that the subgraph containing only

binding edges is a bipartite graph.

Conditions (4) and (5) are two additional assumptions

which we make to prove our results. It is possible that our

results hold even if any of these two conditions or both of

them are dropped. We leave that as an open problem.

Condition (4) guarantees that each configuration is at the

minimum free energy. Condition (5) limits how signal

strands and template strands interact. If the UDSD is

designed in such a way that for each signal and each

template there is no scattered substring of the signal of

length more than two which is complementary to a

substring of the template, then the part of condition (5),

which states that a signal binds to a template with exactly

two adjacent domains, is implied. For example, consider a

signal a*b*c*d*e* and a template uvabdexy. Then a scat-

tered substring a*b*d*e* of the signal of length four could

bind to a substring abde of the template, thus breaking

condition (5). The second part of condition (5), which

states that a signal strand does not simultaneously bind to

two different templates, is commonly assumed in any

system which we have seen in the literature and is neces-

sary for our proofs to work.

As a consequence of these conditions we have that the

only way one configuration can be transformed to another

configuration is through ‘‘positional strand displacement’’

described below, which for example, does not allow

cooperative displacement, thus the name ‘‘uncooperative

DSD’’ for our model. (As we will see later, a sequence of

strand displacements can ‘‘walk’’ back and forth in tem-

plates, with each displacement using toeholds that become

open as a result of the previous displacement in the

sequence, but such walks are necessarily restricted to

remain within a template. For example, see Fig. 6.)

– Cinit is an initial configuration.

Starting with the initial configuration, DSDs can pro-

gress through a sequence of configurations via positional

strand displacements (PDs). PDs can move the open toe-

hold of the template to the right or to the left. A PD moving

the open toehold to the right is specified by a positive even

number k, a template strand T with at least k ? 1 domains

and a signal strand called the invader, say of type I, see

Fig. 2a, where we can now assume that only positions k - 1,

k, k ? 1 of template T are shown. The domain d at position

k of the template is a long-domain and the domain at position

k - 1 is a toehold, say t. For the displacement to be appli-

cable to a given configuration C; it must be that in C an

additional signal strand, which we refer to as the releasee, is

bound to d at position k and to a toehold at position k ? 1 of

the template T, and the toehold at position k - 1 is unbound

(open). The invader is unbound in C and contains the sub-

string t*d*.

A displacement models the following steps in Fig.

2b,c,d, when toeholds and long-domains are actual DNA

sequences. First, toehold t* of the invader binds to the

toehold t of the template at position k - 1. Then a branch

migration ensues, whereby long-domain d* of the invader

binds to d at position k of the template and the releasee is

no longer bound at this position. Finally, if it exists, the

bond between the releasee and the toehold at position

k ? 1 is broken. Thus in the resulting configuration C0;
substring t*d* of the invader is bound to td on the template

at positions k - 1 and k and the releasee is unbound, see

Fig. 2e.
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Formally a positional displacement (PD) of UDSD D is

a tuple of the form (I, T, k, z), where I is a signal strand

type, T is a template strand, k is a positive even integer and

z 2 fL;Rg. PD (I, T, k, z) is applicable to a configuration C
if the following conditions hold:

1. Strand T has at least k ? 1 domains and the kth

domain, say d, is a long-domain. Also a signal strand,

called the releasee, is bound to the kth domain of T.

2. In the configuration C; a strand of type I is unbound.

3. If z = R the following conditions hold. (Conditions for

z = L are symmetric, with k ? 1 swapped with k - 1

and d*t* replacing t*d*.)

(a) The (k - 1)st domain of T must exist and is a

toehold, say t.

(b) A strand of type I contains substring t*d*.

(c) The releasee is also bound to a toehold at position

k ? 1 of T. No other domains of the releasee are

bound.

(d) The toehold at position k - 1 of strand T is

unbound. We call this toehold the input toehold

of PD (I, T, k, z).

The PD must release exactly one signal strand. Suppose

that PD (I, T, k, z) is applicable to C. Let C0 be obtained from

C by removing the bonds between T and the releasee and by

adding bonds either between any substring t*d* of an

unbound strand of type I of C and the domains td at positions

k - 1 and k of T if z = R, or between any substring d*t* of

I and the substring dt at positions k and k ? 1 of T if

z = L. Then we say that (I, T, k, z) induces C0 from C. This

definition excludes cooperativity where two invading strands

release a single releasee or one invading strand releases two

releasees, because, by definition, every PD must be initiated

by one invader and release exactly one releasee.

A sequence of PDs q ¼ p1; p2; . . .; pjqj is valid with

respect to Cinit if there is a sequence C1; C2; . . .; Cjqjþ1 of

configurations of D with C1 ¼ Cinit such that for all

i, 1 B i B jqj, pi is applicable to Ci and induces Ciþ1 from

Ci. When Cinit is clear from the context, we simply say that

q is valid. A valid sequence produces a strand s 2 S if in

Cjqjþ1; the strand s is unbound. Let Invaders(q) be the set of

types of invaders of q. Let Unboundðq; CinitÞ be the set of

types of unbound signals in Cjqjþ1 and Unbound(q) the set

of types of unbound signals in C1 [ . . . [ Cjqjþ1. For

Fig. 6 This figure shows the initial configuration Cinit (top) and the

final configuration (bottom) of a small UDSD. The UDSD has two

templates and nine signals with one of them being a complex signal.

The final configuration is characterized by the release of the signal

send = dend* t*. The middle portion of the figure illustrates the

sequence of PDs that moves the UDSD from Cinit to the release of

send. The PDs are ordered according to the sequence in which they

occur, and the number for the PD is located horizontally over/under

the template domain that is affected by the PD. The complex signal is

active in two PDs, 2 and 5. PDs 1–5 interact with the first template by

walking first to the right and then to the left along the template

domains. This behavior is discussed in detail in Fig. 8. A more

detailed illustration of the signals that participate in each PD is shown

in Fig. 7
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example, Fig. 6 shows an initial configuration (top) and a

final configuration (bottom) for a PD. There are two tem-

plates and nine signals, one of which is a complex signal.

Each configuration shows the signals bound to the tem-

plates and the unbound signals above them.

Let q ¼ p1; p2; . . .; pjqj be a sequence of PDs. The tem-

plate subsequence q(T) is the subsequence of q with PDs of

the form pi = (Ii, T, ki, zi) where u \ ki \ v.

The volume of UDSD D is the number of domains in S.

3.2 The upper bounds

First, we use the fact that a UDSD with simple signals can

be simulated by a tagged CRN with volume that is poly-

nomial in the volume of the UDSD, and thus we can use

the bound in Theorem 1 to obtain the following result. If

D ¼ ðS; CinitÞ is a UDSD, we define DðxÞ to be the UDSD

ðx � S; x � CinitÞ; where x � Cinit denotes the configuration that

contains x copies of each complex in Cinit.

Theorem 8 Let D be a UDSD with simple signals. Let

B be the number of types of initially bound signal strands

and D be the total number of long-domains of all templates.

If D can produce send, then DððDþ1Þð2DþBþ1ÞÞ can produce

send via a sequence of at most 2D(D ? 1)(2D ? B) PDs.

Proof By definition, if UDSD D contains only simple

signals, each template T has exactly s ? 1 configurations,

where v is the number of domains and s = (v - 1)/2 the

number of long-domains of T, depending on the position of

the open toehold. We denote these configurations by

T1; . . .; Tsþ1 for template T. Let T[i] be the domain at

position i of T. Then each PD acting on the domain i of

T can be expressed as follows as a chemical reaction:

T ½2i� 1��T½2i�� þ Ti � T ½2i��T ½2iþ 1�� þ Tiþ1

where T[2i - 1]*T[2i]* and T[2i]*T[2i ? 1]* are simple

signal strands and where the notation * indicates that T[k]*

can bind to the template at position k. We express all PDs of D
as reversible chemical reactions above and construct the

initial multiset of CRN C as follows. Each initially unbound

signal is added to the initial multiset of C. For each template

T, we add molecule Ti corresponding to the initial configu-

ration of T to the initial multiset of C. It is easy to see that the

constructed CRN C exactly simulates UDSD D.

However, in order to apply the bound for CRNs from

Sect. 2, we need to convert C to a tagged CRN C0. We

express each PD acting on the domain T[2i] of T[u, v] as

follows as a chemical reaction:

sþTi
þT ½2i�1��T½2i�� þTi� s�Ti

þT½2i��T½2iþ1�� þTiþ1

where sþTi
and s�Ti

are unique tags of this reaction. The

tagged CRN C0 exactly simulates CRN C under the

assumption that there are sufficiently many tags. Assume

that the template T has t copies in D. For one template, a

single copy of each tag is enough to guarantee that the

template can transform from one state to another. There-

fore, we add t copies of tags sþTi
and s�Ti

over all configu-

rations Ti of all templates T to the initial multiset of tags of

C0. This number of tags is sufficient as it allows each

simulated templates to freely transform between their

configurations (assuming the required simulated signal

strands are available). Note that the total number of tags

added for one copy of domain T is exactly 2s.

Finally, we need to determine the parameters of the

constructed tagged CRN C0. The number of types of signal

molecules which are not initially present in the initial

configurations, i.e., jSj � j½½S0��j; is the number of types of

Fig. 7 This figure shows more

detail for the sequence of PDs

outlined in Fig. 6. The initial

configuration Cinit is shown at

the top and the final

configuration with the release of

signal send = dend* t* is shown at

the bottom. Each PD is

indicated by a number in a

circle where the numbers give

the order in which the PDs

occur. Each PDs circle has an

incoming edge and an outgoing

edge. The incoming edge

indicates which signal is the

invader and the outgoing edge

indicates which signal is the

release
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initially bound signal strands in D plus the sum of the

numbers of configurations over all templates. Since the

number of configurations of a template with s long-

domains is s ? 1, this number can be upper bounded by

B ? 2D. The number of tags is exactly 2D. The bandwidth

of C0 is 1. The theorem follows by Theorem 1. h

As shown in Fig. 3, the proof of Theorem 8 will not

work in the case of general signal strands, since the number

of configurations of some templates can be exponential.

Instead of simulating a UDSD by a tagged CRN, in The-

orem 9 we will prove a bound for general (i.e., not with

simple signals) UDSDs directly, reusing some ideas of the

proof for tagged CRNs.

Let D be a UDSD. Our goal is to show that if there is a

valid sequence of PDs a ¼ q1; q2; . . .; qjaj that produces a

given signal send in D; for example Fig. 6, then there is a

‘‘shorter’’ valid sequence, c, that produces send in a multi-

copy version of D; i.e., a version that initially has many

copies of Cinit. Moreover, the number of copies of Cinit and

the length of c will be bounded by a polynomial in B, the

number of types of signals that are initially-bound (i.e.,

every copy is bound) in Cinit but are released by a; and

D, the total number of long-domains of all templates. We

first provide some intuition for our proof while introducing

some useful definitions, and then provide the formal details

in a series of claims.

To build intuition for our proof, we present three pos-

sible strategies for constructing c. The first two strategies

are flawed but provide motivation for the details of the

third, correct, strategy.

Strategy 1: Let c be the sequence of PDs that,

starting from the initially open toehold of a template

in which send is bound, ‘‘walks’’, i.e., displaces the

bound signals one at a time, between this open toe-

hold and send. For example, in Fig. 6, the signal t*d3*

would be used to initiate a sequence of PDs starting at

the left of the second template and finally releasing

send at the far right.

The c of Strategy 1 has length at most D. However, the

multiset of invader signals needed for the displacements

may not be in Cinit. To overcome this problem, we need c to

release (enough copies of) each signal that is not in Cinit but

that is released by a. For each type s of signal strand in

Unbound (a) that is bound in Cinit; let index(s) be the index

of the first PD of a that releases s. Let s1; . . .; sBð¼ sendÞ be

the sequence of all such signals ordered by their indexes,

i.e., indexðs1Þ\indexðs2Þ\ � � �\indexðsBÞ; until send is

produced. Let Si ¼ fs1; . . .; sig. Let ai ¼ q1; q2; . . .;
qindexðsiÞ. For example in Fig. 6, s1 is the signal d1*t* and send

is dend* t*.

Strategy 2: Using Strategy 1, and taking advantage

of the fact that multiple copies of Cinit are available

initially, the PDs in c first produce (sufficiently

many) copies of signal s1. This is possible because by

definition of s1, there is a walk of length at most D to

some s1 that only uses invaders in Cinit. In a similar

manner, use signals in yet additional copies of Cinit

plus the newly released signals s1 to release signal s2,

and so on. For example in Fig. 6, s1 is the signal d1*t*,

Fig. 8 An example of

construction of the

bi(T) subsequence. At the top is

the form of the initial

configuration of the affected

part of the template and at the

bottom the final configuration.

Each dot represents a PD of

template subsequence

ai(T), each diamond a marked

PD and each circle a connector

PD. The sequence of PDs

bi(T) is then a subsequence of

ai(T) which contains only the

marked and connector PDs
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and by using multiple copies of the initial configu-

ration, we can get copies of s1 which help us get

copies of s2, etc.

The problem with this strategy is that the number of

copies of Cinit available initially may need to be exponential

in D, in order to release sBð¼ sendÞ. Specifically, HðDÞ
copies of Cinit would be needed to produce one copy of s1,

e.g., in a scenario where all of the needed invaders on the

walk to s1 are identical, there is only one copy of this

invader in Cinit and s1 has distance HðDÞ from the initially

free toehold in its template. Thus we would need HðDXÞ
copies of Cinit to produce X copies of s1 using Strategy 2.

By the same argument we may need HðDXÞ copies of

ðCinit [ s1Þ to get X copies of s2, leading to a total of

HðD2XÞ copies of Cinit to produce X copies of s2, and so on.

To overcome this problem, we need c to take a walk that,

while still being short, is more effective in releasing needed

invaders and more conservative about using them up.

Strategy 3: This strategy first releases a copy of s1

via a short walk b1 that uses invaders from just a

single copy of Cinit but that can also ‘‘borrow’’ signals

from a reserve of extra copies of Cinit; as long as the

signals are returned to the reserve by the end of the

walk. For example in Fig. 6, we would have many

copies of the initial configuration (top) which give us

a reserve of signals.

We construct b1 by adapting a1 (the prefix of a that

causes s1 to be released, see above). Note that a1

releases s1 without needing to borrow from a reserve,

but may be too long for our result. In contrast, b1 will

have length O(D2) and at the same time, the set of

initially-bound signals that are released by b1 will be

the same as that of a1 and the set of signals that are

finally-bound by b1 will also be the same as that of

a1. In particular, all other signals, e.g., from the

reserve, that may temporarily be bound during the

walk taken by b1 are also released during the walk.

The sequence of PDs b1 sweeps across the region

traversed by a1 in a zig-zag fashion (for a specific

example, see Fig. 6), so as to visit each domain for

(Fig. 7) the last time in the same order as does a1.

Figure 8 provides a general example. When visiting a

domain for the last time, b1 uses the last PD of a1 that

visits that domain—these PDs are called marked PDs

in the formal description to come later. This ensures

that the set of signals that are finally-bound by b1 is

the same as that of a1. Also in b1, between the marked

PDs, are intermediate ‘‘connector’’ PDs that ensure

that b1 is a valid sequence of PDs. The connector PDs

are also chosen so that the first PD of b1 that releases

a signal at a given domain is the same as the first PD

of a1 that releases a signal at that domain. This

ensures that the set of initially-bound signals that are

released by the end of b1 is the same as that of a1.

The walk b1
X can produce X copies of s1 using X copies

of Cinit plus a ‘‘reserve’’ of jb1j copies of Cinit that is still

available at the end of the walk. In a similar fashion, copies

of s2 can then be produced by consuming one additional

copy of Cinit per copy of s2, and also borrowing from the

growing reserve of signals, namely multiple copies of all

signals in Cinit [ fs1g. Continuing in this way, sB = send

can be generated from an initial number of copies of Cinit

that is bounded by a polynomial in B and D.

We now present the formal details. Let T be a template,

and let aiðTÞ ¼ p1; p2; . . .; pjaiðTÞj be the template subse-

quence of ai, where pj = (Ij, T, kj, zj) for every

j ¼ 1; . . .; jaiðTÞj. Let u and v the first and last toeholds of

T affected by ai(T), respectively, and d = (v - u)/2 the

number of affected long-domains in T. We construct a

subsequence bi(T) of the PDs in ai(T). The PDs in this

subsequence will be of two types, marked and connector.

3.2.1 Marked PDs

Mark the first PD p1 of ai(T), and then mark, for each

affected long-domain in the template T, the last PD of

ai(T) that binds to it. Let pm1
; . . .; pmdþ1

be the subsequence

of all marked PDs (1 ¼ m1\m2\. . .\mdþ1). It is easy to

see that the sequence of marked PD positions, km2
; . . .; kmd

;

consists of two interleaved monotonic subsequences: U ¼
uþ 1; uþ 3; . . .; kmdþ1

� 2 and V ¼ v� 1; v� 3; . . .; kmdþ1

þ2; where kmdþ1
is the long-domain position of the last PD

in ai(T). Furthermore, the marked PDs with the long-

domains in the first subsequence have direction R and in

the second subsequence direction L. Depending on the

direction zmdþ1
of the last marked PD, we add the long-

domain position kmdþ1
at the end of U if zmdþ1

= R or at the

end of V, if zmdþ1
= L.

3.2.2 Connector sequences

Now, we must connect the marked PDs by introducing

connector sequences of PDs between each consecutive pair

of marked PDs with the goal being for each subsequent PD

to use the toehold opened by the previous PD. Let �z indi-

cate the opposite direction from z.

For the connector sequence connecting pm1
and pm2

,

select as a connector the first PD in ai(T) with direction �zm2

that binds to each long-domain of T between positions km2

and km2
inclusive. It is easy to see that either all selected

connector PDs are before pm2
in the sequence ai(T), or
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m1 = m2 and the connector sequence is empty. In the

second case, km1
is either u ? 1 or v - 1, and there is no

other PD in ai(T) with the same long-domain position.

Consider j ¼ 2; . . .; d. Each PD of the connector

sequence connecting pmj
to pmjþ1

will be between pmj
and

pmjþ1
in the sequence ai(T). We will consider two cases.

1. If zmj
= zmjþ1

, then no connector PDs are needed (long-

domain positions kmj
and kmjþ1

are from the same

subsequence—either U or V—and hence they differ by

exactly 2).

2. If zmj
= zmjþ1

, then we select the connectors as follows.

In the subsequence of ai(T) between PDs pmj
and pmjþ1

,

choose as a connector the first PD that binds to each

position between kmj
and kmjþ1

, excluding position kmj

and including position kmjþ1
. Note that each PD in this

connector sequence must have direction zmj
.

The construction is illustrated in Fig. 8. The sequence

bi(T) contains all the marked PDs and all the connector

PDs, with distinct indices. Note that this is a subsequence

of ai(T) since for every j ¼ 1; . . .; d; the connector

sequence connecting pmj
to pmjþ1

contains only PDs

between between pmj
and pmjþ1

. Finally, we define bi as a

concatenation of bi(T)’s over all templates T in Cinit.

We next state and prove a sequence of claims that we

use to prove our main result.

Claim 2 The first PD in the sequence bi(T) can use the

initially open toehold. Every other PD in the sequence can

use the toehold opened by the previous PD in the sequence.

Proof The first part of the claim is straightforward since

the first PD of bi(T), i.e., pm1
, is also the first PD of ai(T).

For the second part of the claim, first, we note that each

connector sequence connecting two consecutive marked

PDs consists of PDs with the same direction such that for

all two consecutive PDs in the connector sequence, their

long-domain positions differ by the same value in {-2,2}.

Therefore, all but the first PD in the connector sequence

uses a toehold open by the previous PD in the sequence. It

is enough to show that this condition is satisfied also

(a) between the first PD of a connector sequence and the

preceding marked PD; and

(b) between the last PD of a connector sequence and the

following marked PD,

for each non-empty connector sequence. In the case that some

connector sequence is empty, we need to check that the

condition is satisfied between the marked PDs preceding and

following the empty connector sequence. Consider the later

case first: assume that the connector sequence connecting pmj

to pmjþ1
is empty. Then kmj

and kmjþ1
belong to the same

monotonic subsequence (either U or V), i.e., kmjþ1
= kmj

± 2,

and hence, pmjþ1
uses the toehold opened by pmj

.

Consider the connector sequence connecting pm1
to pm2

.

If m1 = m2, both conditions are trivially satisfied. Other-

wise, PD pm1
may or may not be in this connector

sequence. If pm1
is a connector, the first PD of the con-

nector sequence is pm1
, hence condition (a) is trivially

satisfied. If PD pm1
is not a connector then zm1

= zm2
and

either the connector sequence is empty, or the long-domain

position of the first PD of the connector sequence is km1
,

that is, the first PD of the connector sequence uses the

toehold opened by pm1
, condition (a) holds. The long-

domain position of the last PD of the non-empty connector

sequence is km2
and the direction of the last PD is �zm2

;

hence condition (b) is satisfied.

Next, consider the connector sequence connecting pmj
to

pmjþ1
, for j ¼ 2; . . .; d.

1. If zmj
¼ zmjþ1

, then the connector sequence is empty.

2. If zmj
6¼ zmjþ1

, then the long-domain position of the first

PD in the connector sequence is kmj
? 2 if zmj

= R and

kmj
- 2 if zmj

= L. In either case, the condition (a) is

satisfied. Furthermore, the long-domain position of the

last PD of the connector sequence is kmjþ1
and its

direction is �zmjþ1
; hence, condition (b) is satisfied. h

Claim 3 The length of bi(T) is at most (d ? 1)(d ? 2)/2,

where d is the number of long-domains in T.

Proof Let u and v be the first and last affected toeholds of

T by bi(T) and d = (v - u)/2 B d the number of affected

long-domains. The number of marked PDs is d ? 1. The

first connector sequence has at most d PDs. For each j ¼
2; . . .; d; consider the connector sequence connecting

marked PDs pmj
and pmjþ1

. If zmj
¼ zmjþ1

, the sequence is

empty. Otherwise, the number of PDs in the sequence is at

most jkmjþ1
� kmj

j=2 and kmj
and zmd

and kmjþ1
belong to

different monotonic subsequences of positions. Without

loss of generality, assume kmj
is at index r in U and kmjþ1

is

at index r0 in V. Since each marked PD advances by one

element in exactly one of the sequences U and V, we have

r ? r0 = j, and therefore jkmjþ1
� kmj

j=2 ¼ j½v� ð2r0 � 1Þ�
�½uþ ð2r � 1Þ�j=2 ¼ jv� u� 2jþ 1j=2 ¼ d � jþ 1 (the

last equality follows since j B d). Hence, the number of

connector PDs is at most d ?
P

j=2
d (d - j ? 1) =

d(d ? 1)/2 and the total number of PDs in bi(T) as at most

(d ? 1)(d ? 2)/2 B (d ? 1)(d ? 2)/2. h

Claim 4 The length of bi is at most (D ? 1)(D ? 2)/2 and

thus jInvaders(bi)j B (D ? 1)(D ? 2)/2. Also, Invaders(bi)

contains only types of unbound strands of Cinit or strand

types in Si�1 ¼ fs1; . . .; si�1g.
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Proof By Claim 3, for each template T, the number of PDs

of bi(T) is at most (d ? 1)(d ? 2)/2, where d is the number

of long-domains in T. Summing through all domains, we

obtain that the length of bi is at most (D ? 1)(D ? 2)/2.

By definition of ai, Invaders(ai) contains only types of

unbound strands of Cinit or strand types in fs1; . . .; si�1g.
Since bi is a subsequence of ai, it must also be that

Invaders(bi) also contains only types of unbound strands of

Cinit or strand types in Si-1. h

Claim 5 bi is valid with respect to

Cinit [ ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ:

Moreover,

ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ �
Unboundðbi; Cinit [ ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1ÞÞ:

Proof Let bi ¼ p01; p
0
2; . . .; p0jbij. To prove the first part of

the claim, we need to show that there is a sequence

C1; C2; . . .Cjbijþ1 of configurations with C1 ¼ Cinit [ ðDþ
1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ such that for all j, 1 B

j B |bi|, pj
0 is applicable to Cj and induces Cjþ1 from Cj.

We can prove this by induction on j. The base case when

j = 1 is trivial. Suppose that j [ 1, and that p 0j-1 is

applicable to Cj�1 and induces Cj from Cj�1. Let

pj
0 = (I, T, k, z). Since (I, T, k, z) is also a PD of ai and

ai is valid, it is straightforward to check that condition 1 of

the definition of ‘‘applicable’’ must hold. Condition 2 also

holds because j B (D ? 1)(D ? 2)/2 and there are

(D ? 1)(D ? 2)/2 copies of all unbound signals used by

bi initially present in ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ. So,

we assume that z = R and show that condition 3 holds (the

argument is similar when z = L). Condition 3a and 3b also

follow simply from the fact that (I, T, k, z) is a PD of a.

Condition 3c, that the releasee is not bound to any

domain except the neighboring toehold, must be true

because (I, T, k, z) is a PD of a. The condition 3d follows

by Claim 2.

The final multiset of signals after executing PDs in ai on

Cinit is the multiset consisting of all signals of Cinit plus all

signals initially bound to domains that appear in PDs of ai

minus all signals that are finally bound to domains that

appear in PDs of ai. By construction, PDs in bi operate on

exactly the same set of long-domains as PDs in ai and the

last PD applied to each long-domain of ai is exactly the

same as those of bi. Therefore, no matter whether we

execute PDs in ai or PDs in bi, exactly the same set of

signals are released and bound, and hence, the final mul-

tiset of unbound signals is the same as well. It follows that

h

ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ �
Unboundðbi; Cinit [ ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1ÞÞ:

Claim 6 Let bi
(D?1)(D?2)/2 denote the sequence bi

concatenated (D ? 1)(D ? 2)/2 times, modified just so

that the PDs of each copy refer to templates of different

copies of ðDþ 1ÞðDþ 2Þ=2 � Cinit. Then bi
(D?1)(D?2)/2 is

valid with respect to the configuration

ðDþ1ÞðDþ2Þ=2 � Cinit [ðDþ1ÞðDþ2Þ=2 � ðCinit [Si�1Þ:

Moreover,

ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ SiÞ �UnboundðbðDþ1ÞðDþ2Þ=2
i ;

ðDþ 1ÞðDþ 2Þ=2 � Cinit [ ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1ÞÞ
ð1Þ

Proof By Claim 5, bi is valid with respect to

Cinit [ ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ. Moreover, the final

multiset of signals is the same as if we were to execute PDs

in ai on Cinit and then add ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ.
Thus, if we repeat bi (D ? 1)(D ? 2)/2 times and execute

each bi on a different copy of Cinit; we will still have at least

(D ? 1)(D ? 2)/2 copies of signals in C [ Si�1 plus

(D ? 1)(D ? 2)/2 copies of si. h

The proof of our main technical result, Theorem 9,

follows from the preceding claim.

Theorem 9 Let D be a UDSD with B types of initially

bound signal strands and let D be the total number of long-

domains of all templates. If D can produce send, then

DððDþ1ÞðDþ2ÞðBþ1Þ=2Þ can produce send via a sequence of at

most (D ? 1)2(D ? 2)2B/4 PDs.

Proof Let a, ai and bi, 1 B i B B be defined as above.

Let c be the sequence of PDs obtained by concatenating

(D ? 1)(D ? 2)/2 copies of sequence b1 followed by

(D ? 1)(D ? 2)/2 copies of b2 and so on up to

(D ? 1)(D ? 2)/2 copies of bB, and modifying each copy

just so that the PDs of each copy refer to templates of

different copies of ðDþ 1ÞðDþ 2ÞB=2 � Cinit.

By applying Claim 6, we will show by induction on i that

bðDþ1ÞðDþ2Þ=2
1 bðDþ1ÞðDþ2Þ=2

2 . . .bðDþ1ÞðDþ2Þ=2
i

is valid with respect to ðDþ 1ÞðDþ 2Þðiþ 1Þ=2 � Cinit and

that

ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ SiÞ �UnboundðbðDþ1ÞðDþ2Þ=2
1

bðDþ1ÞðDþ2Þ=2
2 . . .bðDþ1ÞðDþ2Þ=2

i ; ðDþ 1ÞðDþ 2Þðiþ 1Þ=2 � CinitÞ:
ð2Þ
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It follows that c is valid with respect to ðDþ 1ÞðDþ 2Þ
ðBþ 1Þ=2 � Cinit and that c produces send (=sB). The base

case is when i = 1. It follows directly from Claim 6 that

b1
(D?1)(D?2)/2 is valid with respect to the configuration

ðDþ 1ÞðDþ 2Þ � Cinit and that ðDþ 1ÞðDþ 2Þ=2 � ðCinit [
S1Þ � UnboundðbðDþ1ÞðDþ2Þ=2

1 ; ðDþ 1ÞðDþ 2Þ � CinitÞ. The

induction hypothesis is that bðDþ1ÞðDþ2Þ=2
1 bðDþ1ÞðDþ2Þ=2

2 . . .

bðDþ1ÞðDþ2Þ=2
i�1 is valid with respect to ðDþ 1ÞðDþ 2Þðiþ 1Þ
=2 � Cinit and that

ðDþ 1ÞðDþ 2Þ=2 � ðCinit [ Si�1Þ �
UnboundðbðDþ1ÞðDþ2Þ=2

1 bðDþ1ÞðDþ2Þ=2
2 . . .bðDþ1ÞðDþ2Þ=2

i�1 ;

ðDþ 1ÞðDþ 2Þðiþ 1Þ=2 � CinitÞ
ð3Þ

The induction step then follows easily from Claim 6

because after the PDs in

bðDþ1ÞðDþ2Þ=2
1 bðDþ1ÞðDþ2Þ=2

2 . . .bðDþ1ÞðDþ2Þ=2
i�1

have been applied on ðDþ 1ÞðDþ 2Þðiþ 1Þ=2 � Cinit; the

resulting configuration includes both ðDþ 1ÞðDþ 2Þ=2 �
ðCinit [ Si�1Þ (by the induction hypothesis) and

(D ? 1)(D ? 2)/2 additional copies of Cinit needed for

sequence bi
(D?1)(D?2)/2. Also, each of the (D ? 1)(D ? 2)/

2 bi sequences produces a single si that remains unbound

when the remaining bi’s are applied. h

Finally, we restate Theorem 9 for copy-tolerant UDSDs.

We say that a UDSD is x-copy-tolerant if the length of the

shortest PD sequence that produces any signal strand s in D

and in DðxÞ is the same. A UDSD is copy-tolerant if it is x-

copy-tolerant for all x.

Theorem 10 Let D be a UDSD with B types of initially

bound signal strands and let D be the total number of long-

domains of all templates. If D can produce send and D is

(D ? 1)(D ? 2)(B ? 1)/2-copy tolerant, then D can pro-

duce send via a sequence of at most (D ? 1)2(D ? 2)2B/4

PDs.

3.2.3 Concatenated templates

The result above may seem to be limited, due to the

definition of templates beginning and ending with toe-

hold domains and consisting of alternating toehold and

long-domains. Let a generalized template consist of

several templates concatenated together. In fact, the

result as stated in Theorem 9 also applies to generalized

templates. This is because a UDSD with generalized

templates can be simulated w.l.o.g. by a UDSD with a

sufficient number of templates. This makes our result

more general.

3.2.4 Irreversible reactions

If irreversible reactions are considered, then we must

allow for there to be no toehold to either the left or right of

a long-domain on the template. If we are to keep the

condition that every PD has a releasee, then we must allow

for some releasee to contain only the long-domain, rather

than the toehold. This complicates the proofs, because the

current development maintains that at any time there is

only one open toehold in each template. In order to both

allow irreversible reactions and use the current proofs, we

must require that in Cinit one-domain releasees only appear

where there is no toehold to either the right or the left.

Because we find this restriction somewhat artificial, we

conjecture that there is some generalization of these proof

that allows for irreversible reactions.

4 Conclusions and open questions

In this paper, we have considered three models of biomo-

lecular programs, namely tagged CRNs, DSDs, and DSDs

with simple signals. We have shown that, when multiple

copies of all initial molecules are present, such programs

fail to work correctly if the number of reactions of the

program is sufficiently large relative to the volume of ini-

tial reagents. A natural question is: how do these models

relate to each other, in the sense that one can be simulated

by another? Soloveichik et al. showed how CRNs (and thus

also tagged CRNs) could be simulated by DSDs, in the

sense that CRN species are mapped to DSD signals, CRN

reactions can be simulated by a cascade of DSD strand

displacements, and the dynamical properties of the CRN

are reproduced. As a consequence, programs specified as

CRNs can be compiled into real, DNA-based chemical

systems and there are several examples to date. We are not

aware of general methods for simulating DSDs by CRNs.

Such simulations are possible in principle, for example by

mapping each multi-stranded complex that could arise in a

configuration of the DSD to be simulated, to distinct

abstract species of the simulating CRN. However, the

number of species could be exponential in the size of the

DSD, and it’s not clear what purpose such a simulation

would serve.

There are many open questions about the potential for

CRNs and DSDs to be correct in the multi-copy setting.

First, can our reachability upper bound results be

strengthened? There are two possible ways to strengthen

our result for CRNs (Theorem 2): either by reducing the

length of the shortest computation needed to produce send
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or to show that the system is not x-copy tolerant for some

x\jSjbC TC=2þ 1ð Þ. Similarly, there are two ways to

strengthen the reachability upper bounds for DSDs.

Also, can our result on DSDs be extended to DSDs with

more complex primitives, such as cooperative strand dis-

placement (Zhang 2011) or irreversible reactions? What if

long-domains can form intra-molecular bonds, e.g., form-

ing hairpins, in addition to inter-molecular bonds?

This paper considers only reachability bounds, i.e.,

bounds on the number of reactions (steps) needed to reach

(produce) a given product. However, real CRNs behave

stochastically, with rates that depend on relative quantities

of species. It is plausible that the lack of robustness implied

by our theorems, i.e., errors that occur in the multi-copy

setting in CRNs that fail to satisfy the conditions of the

theorem, would be very unlikely to occur in some CRNs

and thus would not be an issue in a real system. Analyses

of robustness of CRNs under stochastic assumptions, per-

haps computing expected hitting times, would help us

better understand the degree to which robustness issues are

a problem.
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