
RANDOM DEBATERS AND THE HARDNESS OF

APPROXIMATING STOCHASTIC FUNCTIONS�

ANNE CONDONy , JOAN FEIGENBAUMz , CARSTEN LUNDx , AND PETER SHOR{

Abstract. A probabilistically checkable debate system (PCDS) for a language L consists of a
probabilistic polynomial-time veri�er V and a debate between Player 1, who claims that the input x
is in L, and Player 0, who claims that the input x is not in L. It is known that there is a PCDS for
L in which V ips O(logn) coins and reads O(1) bits of the debate if and only if L is in PSPACE

([Condon et al., Proc. 25th ACM Symposium on Theory of Computing, 1993, pp. 304{315]). In this
paper, we restrict attention to RPCDS's, which are PCDS's in which Player 0 follows a very simple
strategy: On each turn, Player 0 chooses uniformly at random from the set of legal moves. We prove
the following result.

Theorem: L has an RPCDS in which the veri�er ips O(logn) coins and reads O(1) bits of the
debate if and only if L is in PSPACE.

This new characterizationof PSPACE is used to show that certain stochastic PSPACE-hard functions
are as hard to approximate closely as they are to compute exactly. Examples of such functions include

optimization versions of Dynamic Graph Reliability, Stochastic Satis�ability, Mah-Jongg, Stochastic
Generalized Geography, and other \games against nature" of the type introduced in [Papadimitriou,
J. Comput. System Sci., 31 (1985), pp. 288{301].

Key words. Approximation Algorithms, Complexity Theory, Probabilistic Games, Proof Sys-
tems, PSPACE

AMS subject classi�cation. 68Q15

1. Introduction. Recently, there has been great progress in understanding the

precision with which one can approximate solutions to NP-hard problems e�ciently.

Feige et al. [13], Arora et al. [2, 3] and others proved strong negative results for

several fundamental problems such as Clique and Satis�ability. This progress has led

to renewed study of approximation algorithms for PSPACE-hard problems.

Not surprisingly, PSPACE-hard problems also display a wide variation in the

precision with which they can be approximated e�ciently. The following results in

the literature show that, with respect to a particular performance guarantee, some

PSPACE-hard problems have e�cient approximation algorithms, others have such

algorithms if and only if NP = P, and still others have such algorithms if and only if

PSPACE = P. One interesting class of results concern problems on hierarchically de-

�ned structures, such as graphs. Problems on these structures, and on a related class

of periodic structures, arise in many VLSI and scheduling applications (see, for exam-

ple, [18] for references to these and other applications). Because such representations

can implicitly describe a structure of exponential size, using just polynomial space,

� These results �rst appeared in our Technical Memorandum [11]. They were presented in pre-

liminary form at the 9th Annual IEEE Conference on Structure in Complexity Theory, Amsterdam,
The Netherlands, June 1994.

y University of Wisconsin, Computer Sciences Department, 1210 West Dayton Street, Madison,
WI 57306 USA, condon@cs.wisc.edu. Supported in part by NSF grants CCR-9100886 and CCR-
9257241.

z AT&T Laboratories, Room 2C473, 600 Mountain Avenue, Murray Hill, NJ 07974-0636 USA,
jf@research.att.com.

x AT&T Laboratories, Room 2C324, 600 Mountain Avenue, Murray Hill, NJ 07974-0636 USA,
lund@research.att.com.

{ AT&T Laboratories, Room 2D149, 600 Mountain Avenue, Murray Hill, NJ 07974-0636 USA,

shor@research.att.com.

1

2 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

the associated problems are often PSPACE-hard. As early as 1981, Orlin [20] claimed

a negative result on approximating a PSPACE-hard periodic version of the Knapsack

problem, namely that a fully polynomial approximation scheme exists for this problem

only if NP = P. Orlin did not address whether in fact it might be PSPACE-hard to

approximate this function. On the positive side, Marathe et al. [18] recently developed

constant factor approximation algorithms for PSPACE-hard problems, including the

Max Cut and Vertex Cover problems for certain restricted classes of hierarchically

represented graphs. In related work, Marathe et al. [19] applied results of Arora et

al.[2] to show that these same problems have polynomial-time approximation schemes

if and only if NP = P.

In [10], we considered optimization versions of several other problems in PSPACE,

including Quanti�ed Satis�ability, Generalized Geography, and Finite Automata In-

tersection. Building on the techniques of [2, 3, 13], we showed that it is in fact

PSPACE-hard to approximate these problems closely (where \closely" depends on

the problem). Using direct reduction arguments, Hunt et al. [14] showed that some

generalized quanti�ed satis�ability problems (for example, satis�ability of quanti-

�ed formulas in which \clauses" are not restricted to be disjunctions of literals) are

PSPACE-hard to approximate.

An important class of PSPACE-hard problems not previously addressed in this

literature is a class of stochastic problems that involve decision-making under uncer-

tainty, as in the games against nature of Papadimitriou [21]. In this paper, we develop

a new technique for showing that these stochastic PSPACE-hard problems are hard

to approximate. Informally, these are problems in which the instances involve prob-

abilities in some essential way. The probabilities may describe failures of arcs in a

digraph or moves of one of the players in a game. Examples of functions that we prove

are hard to approximate include optimization versions of Stochastic Satis�ability [21],

Stochastic Generalized Geography, Dynamic Graph Reliability [21], and Mah-Jongg.

We describe two of these problems in more detail below. Precise de�nitions of all of

the functions of interest can be found in Section 3.

Our technique for proving that these problems are hard to approximate is based

on a new characterization of PSPACE in terms of debates between one powerful

and one random player that are checked by a resource-limited veri�er. Just as the

\games against nature" model is a powerful tool in obtaining hardness results for

stochastic problems such as those mentioned above, our new model of PSPACE proves

to be a very useful and natural tool in obtaining nonapproximability results for these

problems.

We also use the identity IP = PSPACE [16, 23] to derive nonapproximability

results for other stochastic PSPACE-hard functions. Examples of the functions that

yield to this technique include optimization versions of Dynamic Markov Process

[21] and Stochastic Coloring, as well as a di�erent optimization version of Stochastic

Satis�ability.

We now give two examples that illustrate the kind of problems to which our new

technique applies. The �rst is a variant of Graph Reliability, a #P -complete problem

studied by Valiant [25]: Given a directed, acyclic graph G, source and sink vertices

s and t, and a failure probability p(v; w) for each arc (v; w), what is the probability

that there is a path from s to t consisting exclusively of arcs that have not failed?

Papadimitriou [21] de�nes Dynamic Graph Reliability (DGR) as follows: The goal of

a strategy is still to traverse the digraph from s to t. Now, however, for each vertex

x and arc (v; w), there is a failure probability p((v; w); x); the interpretation is that,

RANDOM DEBATERS 3

if the current vertex is x, the probability that the arc (v; w) will fail before the next

move is p((v; w); x). DGR consists of those digraphs for which there exists a strategy

for getting from s to t with probability at least 1=2. A natural optimization problem

is MAX-PROB DGR: Given a graph, vertices s and t, and a set fp((v; w); x)g of

failure probabilities, what is the probability of reaching t from s under an optimal

strategy? We show in Section 3.3 below that there is a constant c > 0 such that it

is PSPACE-hard to approximate MAX-PROB DGR within ratio 2�n
c

. This implies,

for example, that if there is a polynomial-time algorithm that, on input x, outputs

a number in the range [2�n
c

MAX-PROB DGR(x); 2n
c

MAX-PROB DGR(x)], then

PSPACE=P.

Our second example is a solitaire version of Mah-Jongg that is widely available

as a computer game. Mah-Jongg tiles are divided into sets of four matching tiles;

we assume that there are an arbitrarily large number of tiles. Initially, the tiles are

organized in a preset arrangement of rows, and the rows may be stacked on top of

each other. As a result, some tiles are hidden under other tiles. A tile that is not

hidden and is at the end of a row is said to be available. In a legal move, any pair

of available matching tiles may be removed. The player wins the game if all tiles are

removed by a sequence of legal moves. An instance of the Mah-Jongg game describes

the arrangement of the rows, and, in addition, the tiles that are not hidden. We

let MAH-JONGG(x) be the maximum probability of winning the Mah-Jongg game

with initial arrangement x of the tiles, assuming that the hidden tiles are randomly

and uniformly permuted. We show that approximating the function MAH-JONGG

within some factor n�c is PSPACE-hard, where c < 1 is some constant. Thus, if

there is a polynomial-time algorithm that, on input x, outputs a number in the range

[n�cMAH-JONGG(x); ncMAH-JONGG(x)], then PSPACE=P.

Our new characterization of PSPACE, which is used in proving nonapproxima-

bility results for these problems, builds on techniques developed in our previous work

on probabilistically checkable debate systems (PCDS's) [10], which in turn builds on

techniques of Arora et al. [2], Lund et al. [16] and Shamir [23]. In a PCDS for L, there

are two computationally powerful players, 1 and 0, and a probabilistic polynomial-

time veri�er V . Players 1 and 0 play a game in which they alternate writing strings

on a debate tape �. Player 1's goal is to convince V that an input x 2 L, and Player

0's goal is to convince V that x 62 L. When the debate is over, V looks at x and �

and decides whether x 2 L (Player 1 wins the debate) or x 62 L (Player 0 wins the

debate). Suppose V ips O(r(n)) coins and reads O(q(n)) bits of �. If, under the best

strategies of Players 1 and 0, V 's decision is correct with high probability, then we

say that L is in PCD(r(n); q(n)). We showed in [10] that PCD(logn; 1) = PSPACE.

That is, any language in PSPACE can be recognized by a PCDS in which the veri�er

uses O(logn) coin ips and queries only a constant number of bits of the debate.

We now restrict attention to PCDS's in which Player 0 follows a very simple

strategy { that of tossing coins. Speci�cally, whenever Player 0 writes a string of

length f(n) on the debate tape �, the string is chosen uniformly at random from

f0; 1gf(n). We call such a debate system an RPCDS and denote by RPCD(r(n); q(n))

the class of languages recognized by RPCDS's in which the veri�er ips O(r(n)) coins

and reads O(q(n)) bits of �. We note that an Arthur-Merlin game [4] is an RPCDS

in which the veri�er is deterministic and q(n) is an arbitrary polynomial; that is,

V reads the entire debate between Arthur (Player 0) and Merlin (Player 1) before

deciding whether the input is in the language. Thus, the class of languages accepted

by Arthur-Merlin games is by de�nition RPCD(0; poly(n)) and is commonly denoted

4 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

by IP. It is known that RPCD(0; poly(n)) = PSPACE [16, 23]. In this paper, we prove

the following result.

Theorem: RPCD(logn; 1) = PSPACE.

This theorem shows that a veri�er that tosses O(logn) coins does not have to

read the entire debate between Arthur and Merlin. In fact, only a constant number

of bits of the debate are needed. Our result is yet another in a sequence of results

on polynomial-time interactive complexity classes, starting with the result that IP

= PSPACE, that show that \universal quanti�cation" can be replaced by \random

quanti�cation with bounded error" without changing the complexity class.

In the rest of this section, we �rst de�ne precisely the PCDS and RPCDS models.

We then describe previous work on related complexity classes.

1.1. Preliminaries. In this section, we de�ne both the PCDS model of [10] and

the new RPDCS model. We conclude with some de�nitions relating to the approx-

imability of PSPACE-hard functions.

A probabilistically checkable debate system, or PCDS, consists of a veri�er V and

a debate format D. The veri�er is a probablistic polynomial-time Turing machine

that takes as input a pair x; �, where � 2 f0; 1g�, and outputs 1 or 0. We interpret

these outputs to mean \Player 1 won the debate" and \Player 0 won the debate,"

respectively.

A debate format is a pair of polynomial-time computable functions f(n); g(n).

Informally, for a �xed n, a debate between two players, 0 and 1, consistent with

format f(n); g(n), contains g(n) rounds. At round i � 1, player i mod 2 chooses a

string of length f(n).

For each x of length n, corresponding to the debate format D is a debate tree.

This is a complete binary tree of depth f(n)g(n) such that, from any vertex, one

edge is labeled 0 and the other is labeled 1. A debate is any binary string of length

f(n)g(n). Thus, there is a one-to-one correspondence between debates and the paths

in the debate tree. Moreover, a debate is the concatenation of g(n) substrings of

length f(n). Each substring is called a round of the debate, and each debate of this

debate tree has g(n) rounds.

Again for a �xed x of length n, a debate subtree is a subtree of the debate tree

of depth f(n)g(n) such that each vertex at level i (the root is at level 0) has 1 child

if i div f(n) is even, and it has two children if i div f(n) is odd. Informally, the

debate subtree corresponds to a list of \responses" of Player 1, against all possible

\arguments" of Player 0 in the debate, or, more succinctly, a \strategy" of Player 1.

A language L has a PCDS with error probability � if there is a pair (D =

(f(n); g(n)); V) with the following properties.

1. For all x in L, there is a debate subtree on which, for all debates � labeling

a path of this subtree, V outputs 1 with probability 1 on input x; �. In this case, we

say that x is accepted by (D;V).

2. For all x not in L, on all debate subtrees, there exists a debate � labeling

some path of the subtree such that V outputs 1 with probability at most � on input

x; �. In this case, we say that x is rejected by (D;V).

This de�nition allows \one-sided error," analogous to the type of errors that are

allowed in the complexity class co-RP (see, for example, Johnson [15] for a de�nition).

The main result of [10] also holds for a \zero-sided error" de�nition, with three possible

outputs, 1, 0, and �, for \player 1 won," \player 0 won," and \I don't know who

RANDOM DEBATERS 5

won," respectively. In this case, the veri�er must never declare the losing player to

be a winner, but it may, both in the case that x 2 L and in the case that x 62 L, say

that it doesn't know who won.

We say that the veri�er makes q(n) queries if the number of bits of � read by

the veri�er is at most q(n) when the input x is of size n. The veri�er V in a PCDS

is required to be nonadaptive, by which we mean that the bits of � read by V de-

pend solely on the input and the coin ips. If L has a PCDS with error probability

1=3 in which V ips O(r(n)) coins and reads O(q(n)) bits of �, we say that L 2
PCD(r(n); q(n)). The classical result of Chandra et al. [9] that PSPACE is equal to

Alternating Polynomial Time can be restated as PCD(0; poly(n)) = PSPACE. In [10],

we showed that PSPACE is also equal to PCD(log(n); 1).

We now focus on PCDS's in which Player 0 follows a very simple strategy { that

of tossing coins. Informally, an RPCDS with debate format D = (f(n); g(n)) is a

PCDS in which, at each even-numbered round, Player 0 moves by choosing a string

in f0; 1gf(n) uniformly at random and writing it on the debate tape. Formally, for

a given a debate subtree (i.e., strategy of Player 1), we de�ne the overall probability

that V outputs 1 to be the average over all debates � in the tree, of the probability

that V outputs 1 on debate �. A language L has an RPCDS with error probability �

if

10. For all x in L, there is a debate subtree for which the overall probability that

V outputs 1 is 1. Again, we say that x is accepted by (D;V).

20. For all x not in L, on all debate subtrees, the overall probability that V

outputs 1 is at most �. In this case, we say that x is rejected by (D;V).

Note that item 10 is equivalent to item 1 above. If L has an RPCDS with error

probability 1=3 in which V ips O(r(n)) coins and reads O(q(n)) bits of �, we say

that L 2 RPCD(r(n); q(n)).

To conclude this section, we review some de�nitions relating to approximability of

PSPACE-hard functions. Let f be any real-valued function with domainD � f0; 1g�.
Let A be an algorithm that, on input x 2 f0; 1g�, produces an output A(x). We say

that A approximates f within ratio �(n), 0 < �(n) < 1, if for all x 2 D, �(jxj) �
A(x)=f(x) � 1=�(jxj). If algorithm A computes the function g, we also say that g

approximates f within ratio �.

We say that a function g is PSPACE-hard if PSPACE � Pg, i.e., if every language

in PSPACE is polynomial-time reducible to g. By \approximating f within ratio �(n)

is PSPACE-hard," we mean that, if g approximates f within ratio �(n), then g is

PSPACE-hard.

1.2. Related Work. The theory of probabilistically checkable debate systems

developed here and in [10] plays the role for PSPACE that the theory of probabilis-

tically checkable proof systems (PCPS's) plays for NP. A PCPS is simply a PCDS

with just one player, Player 1, in which case the \debate" corresponds to a \proof."

(See Arora et al. [2, 3] or Sudan [24] for an overview of PCPS's.) If the veri�er is

deterministic and reads all bits of the proof, the model is equivalent in power to a

nondeterministic Turing machine, where the proof corresponds to the nondeterminis-

tic moves. Thus, by de�nition, NP = PCP(0; poly(n)). Arora et al. [2] showed that

PCP(logn; 1) = NP. Their result shows that there is a dramatic trade-o� between the

number of random bits available to the veri�er of such a proof and the number of bits

of the proof that the veri�er has to read. The techniques used to prove this result are

used heavily in our results on PCDS's and RPCDS's. In the next two paragraphs, we

discuss these results and the relationships between the proofs.

6 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

In [10], we developed the PCDS in order to extend the work of Arora et al. to

PSPACE. The PCDS model is related to the alternating Turing machine model of

Chandra et al. [9], just as the PCP model is related to the nondeterministic Turing

machine model. Chandra et al. showed that PSPACE is precisely the set of languages

recognized by two-player, perfect information games, in which the referee is a de-

terministic polynomial-time machine that examines the entire game before deciding

who wins. The alternating Turing machine model formalizes their notion of such a

game. The PCDS model generalizes this game model of Chandra et al. by allowing

the referee to ip coins; this generality allows one to study the trade-o� between the

number of coins used and the number of bits of the game, or debate, that are exam-

ined by the referee. In current notation, the result of Chandra et al. is that PSPACE

= PCD(0; poly(n)). In [10], we showed that PCD(logn; 1) = PSPACE. Thus, we get

the same trade-o� between random bits and queries as was previously shown for proof

systems. The proof that PSPACE � PCD(logn; 1) is done in two parts. One part

shows that PSPACE is contained in the class of languages accepted by PCDS's in

which the veri�er reads only a constant number of rounds of the debate. The second

part then shows how the constant number of rounds in this result can be replaced by

a constant number of bits. This second part is proved by extending the work of Arora

et al. on PCPS's.

The result IP = PSPACE [16, 23] shows that Chandra et al.'s characterization

of PSPACE is true even if one of the two players uses the unsophisticated strategy

of simply selecting a move at random. That is, polynomial-time alternating Turing

machines and polynomial-round Arthur-Merlin games accept the same class of lan-

guages. The main result of this paper shows that this assumption that one player

plays randomly does not destroy the tradeo� between the referee's use of random-

ness and the number of bits of the game that the referee reads. Namely, we prove

that RPCD(logn; 1) = PSPACE. Again, the proof that PSPACE � RPCD(logn; 1) is

done in two parts. The �rst shows that PSPACE is contained in the class of languages

accepted by PCDS's in which the veri�er reads only a constant number of rounds of

Player 1 and a constant number of bits of Player 0. The second part, just as in [10],

shows how the constant number of rounds in this result can be replaced by a constant

number of bits.

All of these results on PCPS's, PCDS's and RPCDS's can be used in di�erent

ways to prove nonapproximability results for hard problems. The result of Arora et

al. that NP = PCP(logn; 1) has been applied to prove that several NP-hard problems

are hard to approximate closely. These problems include optimization versions of

Satis�ability, Independent Set [2, 3], Clique [13], and Colorability [17]. For example,

the MAX SAT function maps a boolean formula in 3-conjunctive normal form to the

maximumnumber of clauses of that formula that are simultaneously satis�ed by some

assignment to the variables. Bellare et al. [5] showed that there is no polynomial-time

algorithm that can approximate MAX SAT within factor 112=113, unless NP = P.

More recently, Bellare and Sudan [6] improved 112=113 to 64=65, but their assumption

is weaker than NP = P.

Similarly, the result that PCD(logn; 1) = PSPACE yields nonapproximability re-

sults for optimization versions of PSPACE-hard problems, including Quanti�ed Satis-

�ability, Generalized Geography and Finite Automata Intersection [10]. For example,

the optimization version of Quanti�ed Satis�ability is de�ned as follows. Suppose

that the variables of the formula are assigned values, in order of quanti�cation, by

two players 0 and 1. Players 0 and 1 assign values to the universally and existentially

RANDOM DEBATERS 7

quanti�ed variables, respectively. If Player 1 can guarantee that k clauses of the for-

mula will be satis�ed, regardless of what Player 0 chooses, we say that k clauses of the

formula are simultaneously satis�able. The function MAX QSAT maps a quanti�ed

formula to its maximumnumber of simultaneously satis�able clauses. In [10], we show

that approximating MAX QSAT within some constant factor c < 1 is PSPACE-hard.

The tools developed in [10] are useful in proving nonapproximability results for

PSPACE-hard problems that can be cast as two-person games between two powerful

players. However, these tools do not seem to lead to similar proofs for the stochas-

tic PSPACE-hard problems that are considered in this paper. Our new results on

RPCDS's are used to obtain such proofs in Section 3.

There has been other very recent work, both on approximation algorithms and on

nonapproximability results for PSPACE-hard problems. Using direct reductions from

variations of the Quanti�ed Satis�ability problem, Hunt et al. [14] and Marathe et

al. [18] showed that several PSPACE-hard problems are hard to approximate, unless

PSPACE = P. These include algebraic problems and graph problems on hierarchically

de�ned graphs. Marathe et al. [19] proved that several graph problems such as vertex

cover and independent set, when restricted to planar, hierarchically de�ned graphs,

are PSPACE-hard and yet do have polynomial-time approximation schemes. They

also developed approximation algorithms for restricted optimization problems on pe-

riodically de�ned graphs. Such problems were proved to be PSPACE-hard by Orlin

[20].

The rest of this paper is organized as follows. Our main result that RPCD(logn; 1)

= PSPACE is proven in Section 2. In Section 3, we prove several nonapproximability

results for stochastic functions, using this characterization of PSPACE. Finally, in

Section 4, we prove additional nonapproximability results, using the result that IP =

PSPACE.

2. Language-Recognition Power. In this section, we prove our main result,

that RPCD(logn; 1) = PSPACE. To prove the (harder) direction that PSPACE �
RPCD(logn; 1), we build on several techniques of Lund et al. [16], Shamir [23], Arora

et al. [3, 2] and Condon et al. [10]. We �rst describe these results, and in Lemma 2.3

we put them together to prove PSPACE � RPCD(logn; 1).

The �rst result we need, Lemma 2.1, shows that in order to prove that PSPACE

� RPCD(logn; 1), it is su�cient to show that any language in PSPACE can be

recognized by a RPCDS in which the veri�er uses O(logn) random bits, reads a

constant number of rounds of Player 1, and a constant number of bits of Player 0.

Lemma 2.1. Suppose L is accepted by a RPCDS (D;V) in which the veri�er uses

O(logn) random bits, reads a constant number of rounds of Player 1, and a constant

number of bits of Player 0. Then L is accepted by a RPCDS (D0; V 0) in which the

veri�er uses O(logn) random bits, reads a constant number of bits of Player 1, and

a constant number of bits of Player 0.

Proof. (Sketch) We showed in [10, Theorem 3.2] that any language recognized

by a PCDS in which V ips O(logn) coins and reads O(1) rounds of the debate is

also recognized by a PCDS in which V ips O(logn) coins and reads O(1) bits of

the debate. The lemma follows by a straightforward modi�cation to the proof of [10,

Theorem 3.2].

Briey, if D has N rounds on a given input, then D0 has N + 1 rounds. Let the

players of (D;V) be 0 and 1 and the players of (D0; V 0) be 00 and 10. Roughly, the

idea is that in rounds 1 through N , player 10 plays as player 1 does in debate D,

except that each move is encoded using a special encoding function, known as the

8 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

low degree polynomial code [2]. The string written by 10 in round N + 1 contains

a proof, �R, for each random string R of V . The proof �R shows that V outputs 1

given random string R and the decoded debate of rounds 1; : : : ; N . Moreover, V 0 can

check this proof while examining only a constant number of bits.

The veri�er V 0 chooses a random seed R and computes the indices i1; i2; : : : ; iq
of rounds that V queries using the random seed R. Using a protocol of Arora et

al. [2, 3], V 0 need only examine a constant number of bits of each round i1; i2; : : : ; iq
and a constant number of bits of round N + 1 in order to verify that V outputs 1 on

random string R and the decoded debate of rounds 1; : : : ; N .

The correctness of this protocol follows from Arora et al. [2, 3]. For details, see

[10].

The next lemma is implicit in the proof that IP = PSPACE [16, 23].

Lemma 2.2. Let L be a language in PSPACE and x = x1x2 : : : xn be an input.

Then, there is a sequence of multivariate polynomials

g1(y1;1; : : : ; y1;n1) (where n1 = n); g2(y2;1; : : : ; y2;n2); : : : ; gm(ym;1; : : : ; ym;nm
)

with the following properties.

1. If x 2 L, then g1(x1; : : : ; xn) = 1, and, if x 62 L, then g1(x1; : : : ; xn) = 0.

(Thus, membership in L can be reduced to a g1-question.)

2. There exist polynomial-time computable functions h1;i, h2;i, and fi such that

gi(y) = fi(gi+1(h1;i(y)); gi+1(h2;i(y))) for all y. (That is, one gi-question reduces to

two gi+1-questions.)

3. Finally, gm is a polynomial-time computable function, and the degree of all

the polynomials is bounded by d = poly(n).

In [16, 23], each gi is a polynomial that can be explicitly written as a formula

of polynomial length in terms of sums and products but may result in a formula of

exponential length when these sums and products are expanded.

Finally, we describe a technique, called the polynomial veri�cation technique,

that was proposed by Babai as a generalization of a technique �rst used by Lund et

al. [16]. Roughly, this method \reduces" a set of questions of the form: \Is the value

of multivariate polynomial g at point a equal to v?" to one such question.

To describe this technique precisely, we need the following de�nitions. Given a

(multivariate) polynomial g over a �nite �eld F , a g-question is a pair (a; v), where a

is an assignment of values in F to the indeterminates in g, and v is a value in F . Let

f(a1; v1); (a2; v2); : : : ; (al; vl)g be a set of g-questions. Let L(t) be the interpolated

polynomial curve of degree l � 1 such that L(j) = aj for every j = 1; 2; : : : ; l. (In

\L(j)," the symbol \j" is used as an abbreviation for \the jth element of the �nite

�eld F .") Let p be the (univariate) polynomial g(L(t)). Note that p(j) = g(aj) for

j = 1; 2; : : : ; l.

The polynomial veri�cation technique receives as input the set of g-questions and

a polynomial p0. The technique outputs one g-question (L(r); p0(r)), where r is chosen

uniformly at random from F . Suppose that p0(j) = vj for all j. Then, the output has

the following property. If all input g-questions are good, that is, g(aj) = vj; 1 � j � l,

and p0 = p, the output g-question is also good. Otherwise, with probability at least

1 � d(l � 1)=jF j, the output g-question is not good. Correctness in the latter case

follows from the fact that two distinct polynomials of degree d(l � 1) can agree on at

most d(l�1) points. Note that since p0(j) = vj and p(j) = g(aj) for all j, then p
0 6= p,

because at least one question is not good. Thus, the probability that a random point

on p0 agrees with p is low (at most d(l � 1)=jF j). This completes the description of

the polynomial veri�cation technique.

RANDOM DEBATERS 9

To motivate our proof that PSPACE � RPCD(logn,1), it is useful to review the

proof that PSPACE � IP. In that proof, a RPCDS for a language L in PSPACE is ob-

tained by combining the polynomial veri�cation technique and Lemma 2.2. Roughly,

in each odd numbered round 2k � 1 of the debate, Player 1 writes a gk-question,

where gk is de�ned as in Lemma 2.2. In the �rst round, the g1-question should be

((x1; : : : ; xn); 1), which is equivalent to claiming that x 2 L. In round 2k + 1 where

k � 1, the gk+1-question written by Player 1 should be obtained from the gk-question

written by Player 1 in round 2k � 1 by �rst reducing the gk-question to two gk+1-

questions, as in part (2) of Lemma 2.2, and then by randomly reducing these two

questions to one gk+1-question, using the polynomial veri�cation technique. The ran-

dom number r needed in this reduction is provided by Player 0 in round 2k and the

polynomial p0 is provided by Player 1 in round 2k�1 (in addition to the gk-question).

To verify that x is indeed in L, the veri�er does three things. First, the veri�er checks

that the g1-question written by Player 1 is ((x1; : : : ; xn); 1). Second, the veri�er checks

that for each k � 1, the gk+1-question in round 2k+1 is correctly computed from the

gk-question in round 2k � 1, according to the above description. Finally, the veri�er

checks that the gm-question written in the last round of the debate is good; by prop-

erty (3) of Lemma 2.2, this can be done in polynomial time. If all three checks are

passed, the veri�er accepts, else the veri�er rejects. For details, see [16, 23].

Unfortunately, this protocol requires that the veri�er read all rounds of the debate

system. In Lemma 2.3, building on the ideas of the above protocol, we describe a new

protocol in which the veri�er need only read a constant number of rounds of Player

1, and a constant number of bits of Player 0. The key idea of the new protocol is to

add much \redundancy" in the rounds of Player 1 in order to enable the veri�er to

check correctness while looking at only a constant number of rounds. Roughly, this

is achieved by requiring that Player 1 write in each odd-numbered round not just a

single gk-question but also all the questions written in previous rounds.

In each odd-numbered round k and for each i = 1; 2; : : : ;m, Player 1 actually

writes a (possibly empty) set of gi-questions, all from some �nite �eld F . In the �rst

round, the only question that Player 1 writes should be ((x1; : : : ; xn); 1), which is a

g1-question, equivalent to claiming that x 2 L. Player 1 claims that all gi-questions

written are good. In order to enable the veri�er to verify this, Player 1 furthermore

writes a univariate polynomial pi for each i such that the set of gi-questions is not

empty in round k. Player 1 claims that, for every i, the polynomialpi is the polynomial

gi(Li(t)), where Li is the polynomial interpolating the domains of the gi-questions,

as in the polynomial veri�cation technique.

Player 0's random move at round k + 1 supplies the random point r 2 F on

the curve L to be used in the polynomial veri�cation technique, for each i. By

�rst using the polynomial veri�cation technique and then by reducing the resulting

gi-question to two gi+1-questions, as in Lemma 2.2, any polynomial number of gi-

questions can be probabilistically reduced to two gi+1-questions in one round. The

list of gi+1-questions at round k+2 is the list of gi+1-questions at round k, plus these

additional two questions. Since at most two new gi-questions are introduced in each

odd round, the total number of gi-questions in any round is polynomial. The main

technical contribution of our proof shows that the resulting \redundancy" is su�cient

to enable the veri�er to check the debate while examining O(1) rounds.

Also, in round 4m+1, Player 1 writes a sequence of strings (r2; r4:::; r4m). Player

1 claims that these are the random moves of Player 0 in the even-numbered rounds.

This enables the veri�er to read any of the random strings of Player 0 by examining

10 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

only one round (of Player 1). The veri�er can verify with high probability that Player

1 writes the correct strings, by reading just a constant number of bits of the rounds

of Player 0.

Lemma 2.3. PSPACE � RPCD(logn; 1).

Proof. Let L be a language in PSPACE. Lemma 2.1 shows that it is su�cient

to construct a RPCDS for L in which the veri�er uses O(logn) random bits, reads a

constant number of rounds of Player 1, and a constant number of bits of Player 0.

The RPCDS is constructed as follows. The debate system has 4m+ 1 rounds. In

each odd-numbered round, for every i = 1; 2; :::;m, Player 1 writes a set of gi-questions

f(ai;1; vi;1); (ai;2; vi;2); : : : ; (ai;li ; vi;li)g;

where ai;j 2 Fni and vi;j 2 F , for some �nite �eld F whose size will be determined

later. Here, l1 = 1; that is, there is only one g1-question (a1;1; v1;1). Also, for i > 1,

li = 0 if k � 2i� 3 and otherwise, li increases by 2 in each subsequent odd-numbered

round. That is, if k > 2i� 3, the number of gi-questions in odd-numbered round k is

2 more than the number of gi-questions in round k � 2. Furthermore, for each i such

that li > 0, Player 1 writes a univariate polynomial pi(t) of degree at most d(li � 1).

Finally, in round 4m + 1, Player 1 also writes a sequence of strings (r2; r4:::; r4m).

This completes the description of the debate.

Before describing the veri�er, we need one de�nition. Let f(a0
i;j
; v0

i;j
), 1 � i � m,

1 � j � l0
i
g be the gi-questions and fp

0
i
g be the polynomials in odd-numbered round

k � 2, and let f(ai;j; vi;j); 1 � i � m; 1 � j � lig be the gi-questions and fpig be

the polynomials in round k, where 1 < k � 4m + 1. Let L0
i be the polynomial

curve interpolating the points fa0
i;j
g in round k� 2, as in the polynomial veri�cation

technique. For odd k > 1, we say that round k is locally consistent with respect to r

if the following holds. First, for all i and j, 1 � i � m, 1 � j � li, pi(j) = vi;j . Also,

for all i; 1 � i � m, if l0
i�1 = 0 then li = 0, and if l0

i�1 > 0 then

(ai;1; :::; ai;li) = (a0i;1; :::; a
0

i;l
0

i

; h1;i�1(L
0

i�1(r)); h2;i�1(L
0

i�1(r)));

and

(vi;1; :::; vi;li) = (v0
i;1; :::; v

0

i;l0
i

; wi;1; wi;2);

where p0i�1(r) = fi�1(wi;1; wi;2). Note that (L0
i�1(r); p

0
i�1(r)) is the single gi�1-

question obtained by applying the polynomial veri�cation technique to the set of

gi�1-questions in round k � 1. Applying property (2) of Lemma 2.2, one can check

whether this single gi�1-question is good by checking that p0
i�1(r) = fi�1(wi;1; wi;2)

and that the two gi-questions

(h1;i�1(L
0

i�1(r)); wi;1) and (h2;i�1(L
0

i�1(r)); wi;2)

are good. Thus, round k is locally consistent with respect to r if for each i; 1 � i � m,

the list of gi-questions at round k consists of the list of gi-questions at round k � 2,

plus two additional questions, which can used to verify that the gi�1-questions at

round k � 2 are good.

We now describe the protocol of the veri�er V . V �rst reads the �nal round

4m + 1. V checks that, for all pairs (am;j ; vm;j) in round 4m + 1, gm(am;j) = vm;j

and also that (a1;1; v1;1) = ((x1; :::; xn); 1). If not, V rejects. Otherwise, V reads a

random odd-numbered round k > 1, and checks that (i) round k is consistent with the

RANDOM DEBATERS 11

�nal round 4m + 1: That is, every pair (ai;j; vi;j) written in round k is also written

in round 4m+ 1; and that (ii) round k is locally consistent with respect to the string

rk�1 written by Player 1 in round 4m + 1. Finally, V reads a random bit of round

k�1 of Player 0 and checks that it is equal to the corresponding bit of the string rk�1
written by Player 1 in round 4m + 1. If all of these checks are satis�ed, V accepts;

else V rejects.

It is straightforward to show that if x 2 L, then Player 1 has a strategy that

causes V to accept with probability 1. Hence, suppose that x 62 L. For a given run

of the RPCDS, if in the �nal round of the debate, (a1;1; v1;1) 6= ((x1; :::; xn); 1), then

V rejects; hence suppose that in the �nal round, (a1;1; v1;1) = ((x1; :::; xn); 1). Let S

be the set of odd-numbered rounds k > 1 that are locally consistent with respect to

the string rk�1 written by Player 1 in the �nal round, are consistent with the �nal

round, and have �(rk�1; sk�1) < 1=3, where sk�1 is the move of Player 0 in round

k � 1 and �(r; s) is the fraction of bits that di�er in r and s. We say that such a

run is S-consistent. We will show that if Player 1 is S-consistent for some S with

jSj � m, then, with very high probability, Player 1's move in round 4m + 1 contains

a pair (am;j ; vm;j) for which gm(am;j) 6= vm;j . This follows from the next claim and

the fact that the run is S-consistent.

Claim: Let S contain the elements i1 < i2 < � � � < im. If Player 1 is S-consistent

and g1(x1; :::; xn) = 0, then, for every k = 1; 2; : : :;m, with probability at least

1 � 4mkd=jF j1=18 (computed over Player 0's coin tosses), there exists some j such

that gk(ak;j) 6= vk;j, where (ak;j; vk;j) are played in the ith
k

round.

Proof. The claim is proven by induction on k. For k = 1, the claim holds: Because

player 1 is S-consistent, the pair ((x1; :::; xn); 1) is written by Player 1, whereas by

assumption g1(x1; :::; xn) = 0.

Thus assume that, for some pair (ak�1;j; vk�1;j) in round ik�1, gk�1(ak�1;j) 6=
vk�1;j. This happens with probability at least 1 � 4m(k � 1)d=jF j1=18, by the in-

ductive hypothesis. Because the run is S-consistent, this pair is also written in

round ik � 2. This implies that the polynomial p0
k�1 played in round ik � 2 is not

the polynomial gk�1(L
0

k�1(t)). Thus if r = rik�1 is not a root of the polynomial

p0
k�1(t)� gk�1(L

0
k�1(t)), then p0

k�1(r) 6= gk�1(L
0
k�1(r)) implying that either

gk(h1;k�1(L
0

k�1(r))) 6= wk;1 or gk(h2;k�1(L
0

k�1(r))) 6= wk;2:

Otherwise p0
k�1(r) 6= fk�1(wk;1; wk;2), which contradicts the fact that round ik is

locally consistent with respect to r.

The claim now follows, because the polynomial p0
k�1(t) � gk�1(L

0

k�1(t)) has at

most 4md roots (since l0
k�1 is always at most 4m), and the number of s's such that

�(s; r) < 1=3 for some root r is less than jF j17=18 (using Chernov bounds).

The above claim shows that if Player 1 plays S-consistently for any �xed S with

jSj � m, then with probability at most poly(n)=jF j1=18, the veri�er V accepts. Thus,

to bound the probability that V accepts, on a run in which Player 1 plays S-consistent

rounds for some S, where jSj � m, sum over all possible S to obtain a bound of

22m poly(n)=jF j1=18. The error is thus less than 1=3 for su�ciently large F .

If Player 1 does not play S-consistently for any S of size greater than m, the

veri�er rejects with probability at least 1=6. This is because with probability at least

1/2, V checks a round k that is not S-consistent, and then, with probability at least

1=3, V detects that this round is not S-consistent.

Our main result on the complexity class RPCD(logn; 1) now follows easily.

12 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

Theorem 2.4. RPCD(logn; 1) = PSPACE.

Proof. Lemma 2.3 proves one direction, that PSPACE � RPCD(logn; 1). In or-

der, to prove the other direction, �rst note that RPCD(poly(n); poly(n)) � RPCD(0;

poly(n)), because, in the last round of the debate, Player 0 can supply the veri�er of

a RPCDS with random bits; hence the veri�er needs no random bits as long as it can

read all bits in the debate. Combining this with the result that RPCD(0; poly(n)) =

IP = PSPACE [16, 23] gives Theorem 2.4.

3. Nonapproximability Results based on RPCD(logn; 1). We prove, in

this section, that several PSPACE-hard problems are hard to approximate. The

PSPACE-complete language SSAT, or \stochastic satis�ability," introduced by Pa-

padimitriou [21], plays an important role in the proofs in this section. In Section 3.1,

we de�ne the language SSAT and, using our result that PSPACE = RPCD(logn; 1),

we show that the corresponding optimization problem is hard to approximate. In the

following three sections, we prove that optimization versions of stochastic Generalized

Geography, Dynamic Graph Reliability and Mah-Jongg are all hard to approximate.

3.1. Stochastic Satis�ability (SSAT). An SSAT instance is a boolean for-

mula � over the set of variables fx1; : : :xng, in conjunctive normal form with three

literals per clause. The instance is in the language if there is a choice of boolean

value for x1 such that, for a random choice (with true and false each chosen with

probability 1=2) of x2, there is a choice for x3, etc., so that the probability that � is

satis�ed is greater than 1=2. Think of an instance as a game between an existential

player and a random player. For each odd value of i, the existential player chooses

an optimal boolean value for xi, where \optimal" means \maximizes the number of

clauses of � that are satis�ed." For each even value of i, the random player ips a fair

coin to get a boolean value for xi. The odd-numbered variables are called existential

variables, and the even-numbered variables are called random variables. The play-

ers choose boolean values in order, by increasing value of i. We de�ne the function

MAX-CLAUSE SSAT, whose value on a given instance � is the expected number of

clauses that are satis�ed if the existential player follows an optimal strategy.

Theorem 3.1. There is a constant 0 < c < 1 such that approximating MAX-

CLAUSE SSAT within ratio c is PSPACE-hard.

Proof. Let L be a language in PSPACE. From Section 2, there is a RPCDS (D;V)

for L, where V is polynomial-time bounded and uses r(n) = O(logn) random bits and

O(1) queries. Let D = (f(n); g(n)). Without loss of generality, we can assume that

f(n) is even for all n. We reduce the problem of deciding whether a string x is accepted

by (D;V) to the problem of approximating the expected number of simultaneously

satis�able assignments of a quanti�ed 3CNF formula within a constant factor.

To do this, it is su�cient to construct a formula from x and (D;V), such that if

x 2 L then all clauses are simultaneously satis�able, but if x 62 L, then the expected

number of simultaneously satis�able clauses is a constant fraction < 1 of the total

number of clauses. Let jxj = n. The formula has f(n)g(n) variables, corresponding to

the bits of a debate between Players 0 and 1, ordered as they appear in the debate. By

adding extra variables (which will not appear in the clauses), we can ensure that the

variables corresponding to rounds of Player 1 are existential (odd-numbered) variables

and those corresponding to rounds of Player 0 are random (even-numbered) variables.

For each sequence of random bits R of length r(n), there is a subformula with

s = O(1) clauses. The subformula is satis�ed by a truth assignment to the variables

if and only if V outputs 1, when the query bits are as in the truth assignment. Such

a subformula can be constructed using those variables corresponding to the bits of

RANDOM DEBATERS 13

a debate that are queried on random sequence R. A constant number of additional

existential variables are needed so that the subformula is in 3CNF form; these should

be ordered after all variables corresponding to bits of the debate.

If x is accepted by (D;V), then there is a debate subtree for which the overall

probability that V outputs 1 is 1. This implies that the expected fraction of simulta-

neously satis�able clauses of the formula is 1, if the existential player assigns values

to the existential variables according to this debate subtree. If x is not accepted by

(D;V), then for any debate subtree, the overall probability that V outputs 1 is at

most 1=3. Thus, no matter how the existential variables are chosen, the expected

fraction of subformulas satis�ed is at most 1=3. Since each subformula contains O(1)

clauses, it follows that the expected fraction of clauses that can be simultaneously

satis�ed is a constant fraction < 1.

3.2. Stochastic Generalized Geography (SGGEOG). In this section, we

derive a nonapproximability result for a stochastic version of Generalized Geography.

Generalized Geography, as de�ned by Schaefer [22], is a game played on a directed

graph G with a distinguished vertex s. A marker is initially placed on s, and two

players, 1 and 0, alternately move the marker along arcs of the graph, with the

constraints that Player 1 moves �rst and that each arc can be used at most once. The

�rst player unable to move loses. The language GGEOG is the set of pairs (G; s) on

which Player 1 has a winning strategy.

In previous work [10], we de�ned the function MAX GGEOG that maps a pair

(G; s) to the largest integer k such that Player 1 can force the game to be played for k

moves. (Note that Player 1's objective is to keep the game going as long as possible,

whether or not Player 1 ultimately wins.) Here we consider a variation, Stochastic

Generalized Geography, in which Player 0 plays randomly. At each even-numbered

move of the game, Player 0 simply chooses an arc uniformly at random among all of

the unused arcs out of the vertex at which the marker currently sits. The objective of

Player 1 is to maximize the length of the game. The function MAX SGGEOG maps a

pair (G; s) to the expected length of the game that is achieved when Player 1 follows

an optimal strategy.

Theorem 3.2. For any constant 0 < c < 1=2 it is PSPACE-hard to approximate

MAX SGGEOG within ratio n�c, where n is the number of vertices of the graph.

Proof. We present an approximability-preserving reduction from MAX-CLAUSE

SSAT. A key part of our construction is a gadget (directed graph) with the following

properties, where � > 0 is some constant. Let � be an instance of SSAT with n

variables and m clauses. The gadget constructed from � has a source vertex and a

destination vertex. If � 2 SSAT, then Player 1 has a strategy that guarantees that

the destination is reached from the source, with the last move being by Player 0, if the

geography game is played from the source vertex, starting with Player 0. However, if

� 62 SSAT then on each strategy of Player 1, one of two facts hold: (i) the destination

is reached from the source, with probability at most 1��, with the last move being by

Player 0, or (ii) the destination is reached from the source, with probability at most

(1� �)n, with the last move being by Player 1.

Let the size of this gadget be bounded by p(j�j) for some polynomial p of degree

> 1. Given this gadget, the reduction builds an instance ((V;A); s) of MAX SGGEOG

as follows. The directed graph (V;A) contains n independent copies of the gadget,

say g1; : : : ; gn. The distinguished vertex s is an additional vertex, with a single arc to

the source vertex of g1. In addition, A contains a directed edge from the destination

vertex of of gadget gi to the source vertex of gadget gi+1, for 1 � i < n. Finally,

14 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

(V;A) contains a \tail" starting at the destination vertex of gn. The length of the

tail is (np(j�j))K, where K is some constant that we will determine later. That is,

the tail consists of (np(j�j))K ordered vertices, with an edge between the ith and the

(i + 1)st, and one additional edge between the destination vertex of the nth gadget

gn and the �rst vertex of the tail.

Then, if � 2 SSAT, Player 1 has a strategy that guarantees that the tail is reached

from s. Namely, Player 1 �rst moves to the source vertex of g1, and then uses the

strategy that guarantees that the destination vertex of g1 is reached on a move of

Player 0. From there, Player 1 follows the single arc to the source vertex of g2, and

so on, until the destination vertex of gn is �nally reached. At that point, the tail is

traversed, and so the length of the game is at least (np(j�j))K, that is, the length

of the tail. However, if � 62 SSAT, then the properties of gadgets above guarantee

that on all strategies of Player 1, the probability that the tail is reached is at most

(1��)n. Hence, the expected length of the game is at most np(j�j) (that is, the size of
the graph (V;A), excluding the tail) +(1� �)n(np(j�j))K. Thus for su�ciently large

�, a multiplicative factor of approximately (np(j�j))K�1=2 separates the expected

length of the game in the cases � 2 SSAT and � 62 SSAT respectively. The size (i.e.,

the number of nodes) of the new instance is N = np(j�j) + (np(j�j))K . Thus an

approximation within a factor of N�(K�2)=2K = N�(1=2�1=K) would distinguish the

two cases. This immediately yields the theorem.

It remains to explain how the gadget is constructed. Assume without loss of

generality that n (the number of variables of �) is odd and that MAX-CLAUSE

SSAT(�) � 1. In the gadget (Vg; Ag), the vertex set Vg consists of V1, the \variable-

assignment vertices," V2, the \clause vertices," V3, the \staircase vertices," and in

addition, a source vertex sg and a destination vertex dg.

V1 =

� n[
i=1

fui; qi; qi; wi; wi; zi; z
0

ig

�
[fun+1g:

V2 consists of fy1; : : : ; ymg. V3 contains 2n sets of vertices, each of size 3t where t will

be chosen later; we denote them by

fwi;1; w
0

i;1; w
00

i;1; : : : ; wi;t; w
0

i;t; w
00

i;tg and fwi;1; w
0
i;1; w

00
i;1; : : : ; wi;t; w

0
i;t
; w00

i;t
g;

for 1 � i � n.

The arc set Ag also consists of four parts, A1, A2, A3, and A4, that serve the

following functions. A1 connects the vertices of V1 into a sequence of hexagons: For

each odd value of i, 1 � i � n, the digraph contains the arcs (ui; qi), (ui; qi), (qi; wi),

(qi; wi), (wi; zi), (wi; zi), (zi; z
0
i
), (z0

i
; ui+1); for each even value of i, 1 � i � n � 1, it

contains the arcs (ui; wi), (ui; wi), (wi; qi), (wi; qi), (qi; zi), (qi; zi), (zi; z
0
i
), (z0

i
; ui+1).

A2 connects the vertex un+1 to the clause vertices and the clause vertices back to the

hexagons as follows. For 1 � j � m, there is an arc (un+1; yj). For each literal in the

jth clause of �, there is an arc (yj ; v), where v is the \w-vertex" corresponding to this

literal. For example, if the 17th clause of � is x2_x7_x12, the arcs (y17; w2), (y17; w7),

and (y17; w12) are present. A3 creates 2n \staircases" hanging o� the vertices wi and

wi: For 1 � i � n, the arcs (wi; wi;1), (wi;1; w
0
i;1), and (wi;1; w

00
i;1) are present, as

are the arcs (w00
i;j
; wi;j+1), (wi;j+1; w

0
i;j+1), and (wi;j+1; w

00
i;j+1), for 1 � j � t � 1;

analogous arcs form staircases emanating from the wi's. Finally, A4 contains the arc

(sg ; u1), that connects the source vertex sg to the �rst variable-assignment vertex

u1, and also arcs (w00
i;t
; dg) and (w00

i;t
; dg), 1 � i � n, that connect the end of each

RANDOM DEBATERS 15

- z02

�

�

R

R

-

z01

-

-
�

�

R

R

-

-

-- u2

w2

w2 q2

q2

z2u1

q1

q1 w1

z1

w1

Fig. 1. The start of the variable assignment (hexagon) section

�

*

un+1
z

R

?

66

w2

w7

w12

y1

y2

y17

ym

Fig. 2. The arcs (un+; yj) and those from y17 back to the hexagons, where c17 = x2 _ x7 _ x12

staircase to the destination vertex dg. Figures 1 through 3 give examples of hexagons,

clause-arcs, and staircases.

Within a gadget (Vg ; Ag), the Stochastic Generalized Geography game plays out

as follows. We assume that Player 0 initially moves from the source vertex, sg along

the single arc to vertex u1. Player 1 (the existential player) assigns (optimally) either

true or false to x1. If Player 1 assigns true, the next two moves of the game are

(u1; q1), played by 1, and (q1; w1), played by 0. Note that 0 has no choice but to move

the marker along (q1; w1). Then Player 1 plays (w1; z1), 0 plays (z1; z
0
1), and 1 plays

(z01; u2). We will consider later the case where Player 1 chooses the arc (w1; w1;1). If

Player 1 assigns false to x1, then the analogous moves are made using the vertices w1,

q1, etc. After (z
0
1; u2) has been traversed, Player 0 (the random player) assigns (with

equal probability) true or false to x2. If Player 0 assigns true, the next move of the

game is (u2; w2), played by 0. Play continues along the arcs (w2; q2), (q2; z2), (z2; z
0
2),

(z02; u3), played by 1, 0, 1, 0. As before, if Player 0 assigns false to x2, analogous

moves are made using the vertices w2, q2, etc. From u3, play continues in this fashion

until Player 1 moves along either (z0n; un+1) or (z
0
n; un+1), depending on the boolean

value chosen for xn. This ends the \variable assignment" phase of the game.

Player 0 now chooses uniformly at random among the arcs (un+1; y1),(un+1; y2),

: : :, (un+1; ym). Suppose Player 0 chooses (un+1; yj). If the j
th clause of � is satis�ed

by the assignment chosen in the �rst phase of the game, then Player 1 chooses an arc

(yj ; wi) (resp. (yj ; wi)) corresponding to a true literal xi (resp. xi) that appears in

16 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

?

?

?

w00
i;2

?

?

-

-

wi

wi;1

w0
i;2

w0
i;1

w00
i;1

wi;2

Fig. 3. The start of the staircase emanating from wi

the jth clause. The game then takes 2t more steps, because it follows the \spine" of

the staircase emanating from wi (resp. wi); Player 0 will have no choice but to take a

step down the spine, and Player 1 will always choose to go one step further down the

spine instead of o� onto a \stair," because the game ends as soon as a stair is chosen.

The end of the spine is reached on a move of Player 1, and �nally Player 0 follows the

single arc to the destination dg. If the j
th clause is not satis�ed, then Player 1 must

choose an arc (yj ; wi) (resp. (yj ; wi)) corresponding to a false literal xi (resp. xi). For

concreteness, suppose that Player 1 chooses the arc (yj ; wi). Both of the arcs from

wi are unused in this case; in the previous case, when xi was a true literal, only the

arc (wi; wi;1) was unused. Player 0 chooses each unused arc with probability 1=2. If

Player 0 chooses (wi; wi;1), the game continues for 2t moves as before to destination

dg; otherwise the game ends in O(1) moves and dg is not reached.

The probability of reaching dg is thus equal to 1, if � 2 SSAT, since in this

case Player 1 can guarantee that all clauses are satis�ed by the variable assignment.

However, if � 62 SSAT, then the probability that a given clause is satis�ed by the

variable assignment chosen in the �rst phase of the gadget game is at most k=m,

where k = MAX-CLAUSE SSAT(�). If in the second phase of the game, Player 0

chooses a clause that is not satis�ed, then with probability 1=2, the destination is not

reached. Hence, the probability of reaching dg is at most k=m+ (1� k=m)=2 � 1� �,

for some � > 0, by Theorem 3.1. Thus if � 62 SSAT, then on a strategy of Player 1

that never goes o� into a staircase, fact (i) of the �rst paragraph of the proof holds.

It remains to consider those strategies of Player 1 that go o� into a staircase instead

of continuing down the string of hexagons. If Player 1 chooses, say, the arc (wi; wi;1)

on the �rst move from wi, then Player 0 chooses between the stair arc (wi;1; w
0
i;1)

and the spine arc (wi;1; w
00
i;1). With probability 1=2, the stair arc would be chosen,

RANDOM DEBATERS 17

and the game would end after one more step. If the spine arc were chosen, the same

choice would confront Player 0 after one more step. Thus, the probability of reaching

the end of the spine is 2�t, where t is the number of stairs. We choose t so that

2�t < (1� �)n, to ensure that in this case, fact (ii) holds.

We note that the result of Theorem 3.2 could also be proved using a reduction

from the MAX-PROB SSAT function, de�ned in the Section 4.

3.3. Dynamic Graph Reliability (DGR). Graph Reliability is a #P -com-

plete problem studied by Valiant [25]: Given a directed, acyclic graph G, source and

sink vertices s and t, and a failure probability p(v; w) for each arc (v; w), what is the

probability that there is a path from s to t consisting exclusively of arcs that have

not failed? Papadimitriou [21] de�nes Dynamic Graph Reliability (DGR) as follows:

The goal of a strategy is still to traverse the digraph from s to t. Now however,

for each vertex x and each arc (v; w), there is a failure probability p((v; w); x); the

interpretation is that, if the current vertex is x, the probability that the arc (v; w) will

fail before the next move is p((v; w); x). The language DGR consists of those digraphs

for which there exists a strategy for getting from s to t with probability at least 1=2.

A natural optimization problem is MAX-PROB DGR: Given a graph, vertices s and

t, and a set fp((v; w); x)g of failure probabilities, what is the probability of reaching

t from s under an optimal strategy?

To obtain a nonapproximability result for MAX-PROB DGR, we need the fol-

lowing variant of Theorem 3.1.

Theorem 3.3. Consider the restriction of SSAT to instances in which the random

variables appear only nonnegated, and there is at most one random variable per clause.

There are constants 0 < c1 < c2 < 1 such that, given such a restricted instance with

m clauses, it is PSPACE-hard to decide whether on average at least c2m clauses are

satis�able or whether at most c1m clauses are satis�able.

Proof. From the proof of Theorem 3.1, we can conclude that, given a formula

�, it is PSPACE-hard to distinguish between the cases that the expected number of

simultaneously satis�able clauses is at most c1m or at least c2m, for some constants

c1; c2 such that 0 < c1 < c2 < 1. It also follows from this proof, together with the

proof of Theorem 2.4, that this is true for instances with only one random variable

per clause. To see this, note that in the proof of Theorem 2.4, the veri�er queries

only one of Player 0's bits; thus each clause of any subformula in the construction of

Theorem 3.1 has only one random variable.

We now show how to modify that construction so that no random variable is

negated in the resulting formula. To do this, we use the identity

�xyz = �x+ yz + xy�z + x�yz + x�y�z � 3

where concatenation means \or," and \+" and \�" mean addition and subtraction

over Z. Suppose � contains n variables and m clauses, of which r contain a negated

random variable. We replace any clause �xyz containing a negated random variable x

and literals y and z by the four clauses yz, xy�z, x�yz and x�y�z. We now have a formula

�0 containing n variables and m+ 3r clauses. We claim that

MAX-CLAUSE SSAT(�0) = MAX-CLAUSE SSAT(�) + 5r=2;

This formula is derived from the above identity; the term �x is satis�ed exactly half

the time, and after subtracting 3, we �nd that we expect 5=2 additional clauses to be

satis�ed in �0 for each of the r substitutions that we made.

18 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

--
-

-

-

-

�xn

�

�R

R

-

-

-

-

-

-

U~

�

�

>

^

� �

�R �

R R

R

]
�

.......................

?

.......................y

k

?

s

x1 x2 xn

am bm cm dm

d2c2b2a2

a1 b1 c1 d1

s0 t

�x1 �x2

Fig. 4. The graph constructed in reducing MAX-CLAUSE SSAT to DGR. Note that all edges

are directed from left to right except those incident to r, which go from right to left.

Theorem 3.4. There is a constant c > 0 such that approximating MAX-PROB

DGR within ratio 2�n
c

is PSPACE-hard.

Proof. We show how to reduce the problem of approximating the MAX-CLAUSE

SSAT function on an instance of the form given in Theorem 3.3 to the problem of

approximating the Dynamic Graph Reliability function. The target DGR instance is

composed of two parts, a variable-setting component and a set of clause-testing com-

ponents. The construction is illustrated in Figure 4. The variable-setting component

consists of the n \diamonds" in this �gure, and the ith clause-testing component lies

between vertices ai and di. There are four edges between each pair ci and di. Three

of these correspond to the three literals in the clause, and the fourth is a \bypass

edge."

Each path from s through the variable-setting component corresponds to an as-

signment of the variables in order. If xi is an existential variable, both of the edges

into vertices xi and �xi are available, so the strategy determines which vertex is in

the path. If the vertex xi is chosen, all of the edges in the clause-testing components

corresponding to �xi fail with probability 1, and similarly if �xi is chosen, all of the

edges corresponding to xi in the clause-testing components fail. If xi is a random

variable, upon reaching the vertex immediately before xi, with probability 1=2 the

edge to xi fails. If it does, the path must go through �xi, in which case all of the edges

corresponding to xi in the clause-testing components fail. Otherwise, the path may

go through �xi or xi. Since �xi never appears in any clauses, it can only help to go

through the xi node, so we may assume that the strategy is consistent with this.

From vertex s0, the path leaves the variable-setting component and enters one of

m clause-testing components. When s0 is reached, each edge (bi; ci); 1 � i � m, fails

with probability 1� 1=m. If all edges (bi; ci) fail, clearly t cannot be reached from s0.

We next show that if if two or more of these edges survive, t is always reachable, and

if exactly one of these edges survives, t is reachable only if the corresponding clause is

satis�ed. Thus, t is reachable with probability approximately 1�2=e+k=(me), where

k is the number of satis�ed clauses and e is 2.71828... . From Theorem 3.3, it now

follows that for some constants c1 < c2, it is PSPACE-hard to distinguish between

the cases MAX-PROB DGR(x) < c1 and MAX-PROB DGR(x) > c2.

Recall that three of the four edges between nodes ci and di correspond to the three

literals in the clause, and each will be present when s0 is reached if the corresponding

RANDOM DEBATERS 19

literal is true. If ai is visited, then the bypass edge for clause i fails. If exactly

one edge (bi; ci) survives, clearly t can be reached only if the corresponding clause is

satis�ed, in which case the path contains s0; ai; bi; ci; di; t. Finally, if two edges (bi; ci)

and (bj; cj) survive, then the path s0; ai; bi; ci; r; bj; cj; dj; t reaches t. Note that in this

case the bypass edge between cj and dj is available because node aj is never visited.

Finally, we strengthen our result by making several copies of this construction

and repeating it in series and in parallel. To show this, we use a result of Ajtai and

Ben-Or [1] (see Theorem 3.14 in [8]): For every probabilistic circuit C of size s that

accepts a language L with error probability � < 1=2, there is a probabilistic circuit C0

of size s poly(N) that accepts L with error probability < 2�N . In fact, the circuit C0

has the following structure:

2 logN_ 0
@2N2 logN^ 0

@N
3_

N^
C

!1
A
1
A :

To apply this result to our construction, we replace ^ by repeating the construc-

tion in series (i.e., taking two copies and connecting the sink in the �rst copy with

the source in the second) , and replace _ by repeating the construction in parallel

(i.e., taking two copies and connecting s0 in the �rst copy with the source in the

second and the sink in the �rst copy with the sink in the second). The number of

edges of the resulting construction is then O(sN6+�) for any � > 0, where s is the size

of the construction above. From this, the theorem follows, where c is any constant

less than 1=6. (Assuming that the the instance is encoded such that the length is

O(sN6+� log(sN)), which can easily be done.)

3.4. A Solitaire Game usingMah-Jongg tiles (MAH-JONGG). Solitaire

Mah-Jongg, widely available as a computer game, is played roughly as follows. The

game uses Mah-Jongg tiles, which are divided into sets of two or four matching tiles.

We generalize the standard game simply by assuming that there are an arbitrarily

large number of tiles. Initially, the tiles are organized in a preset arrangement of

rows, and the rows may be stacked on top of each other. As a result, some tiles are

hidden under other tiles; it is assumed that each possible arrangement of the hidden

tiles is equally likely. A tile that is not hidden and is at the end of a row is said to

be available. In a legal move, any pair of available matching tiles may be removed,

resulting in a new con�guration of the tiles in which up to two previously hidden tiles

are uncovered. The player wins the game if all tiles are removed by a sequence of

legal moves. MAH-JONGG(x) is de�ned to be the maximum probability of winning

the generalized Mah-Jongg game, from initial arrangement x of the tiles, assuming

that the hidden tiles are randomly and uniformly permuted.

To de�ne the game precisely, we de�ne a set of Mah-Jongg tiles to be T = [iTi,
where T1; : : : ; Tt are disjoint sets of tiles, each set being of size 2 or 4. We say tiles

T1 and T2 match if and only if for some i, T1; T2 2 Ti. A con�guration C is a set of

positions (i; j; k), where each of i; j; k is a non-negative integer, satisfying the following

constraints.

1. If (i; j; k) 2 C and (i; j0; k) 2 C where j < j0, then for every j00 in the range

[j; j0], (i; j00; k) 2 C.

2. If (i; j; k) 2 C where k > 0 then (i; j; k � 1) 2 C.

Intuitively, this captures the fact that tiles are arranged in three dimensions. Tiles can

be stacked on up of each other; all tiles with common k are at the same height. Tiles

at the same height, with common i index, form a row. The �rst condition ensures

20 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

that there cannot be \gaps" in a row; the second, that a tile at height k > 0 must

have a tile underneath it.)

With respect to a given con�guration, a position (i; j; k) is hidden if (i; j; k + 1)

is also in the con�guration. An arrangement consists of a set of Mah-Jongg tiles T ,
a con�guration C of size jT j, and a 1-1 function from the positions of C that are

not hidden into T . If this function maps position (i; j; k) to tile T , we say T is in

position (i; j; k). With respect to a given arrangement, we say a position (i; j; k) is

available if it is not hidden, and either position (i; j � 1; k) or (i; j+1; k) is not in the

con�guration. An arrangement is empty if T is empty.

Let x = (T ; C; f) be an arrangement. Each pair f(i1; j1; k1); (i2; j2; k2)g of

available positions at which there are matching tiles T1; T2 de�nes a match of x.

We say arrangement x0 is obtainable from x via match f(i1; j1; k1); (i2; j2; k2)g if

x0 = (T 0; C0; f 0), where T 0 = T � fT1; T2g, C
0 = C � f(i1; j1; k1); (i2; j2; k2)g and

�nally, f 0 and f agree on the set of positions which are not hidden both in C and C0.

(Note that f 0 is not de�ned on positions (i1; j1; k1) and (i2; j2; k2), and f 0 is de�ned

on position (i1; j1; k1�1) if k1 > 0 and on position (i2; j2; k2�1), if k2 > 0, since these

are no longer hidden.) Corresponding to each match f(i1; j1; k1); (i2; j2; k2)g of x is a

move, which results in an arrangement x0, chosen uniformly and randomly from the

set of arrangements obtainable from x via match f(i1; j1; k1); (i2; j2; k2)g. A sequence

of moves from arrangement x leads to a win if it results in the empty arrangement. A

strategy on x associates a match (if any) with each possible arrangement obtainable

from x via any sequence of moves.

An instance of the Mah-Jongg game is an arrangement x. MAH-JONGG(x) is the

maximumprobability of a win from x, where the maximum is taken over all strategies

on x.

In Theorem 3.6, we show that it is PSPACE-hard to approximate the MAH-

JONGG function within ratio n�c for some constant c < 1. Our result holds for

instances x in which tiles are never stacked more than two deep (see Figure 5). We

use the following lemma in our reduction.

Lemma 3.5. Let q(n) be any polynomial and let � > 0 be any constant. Let �0

be an instance of SSAT with no negated random variables. Then there is an instance

SSAT � with no negated random variables that can be e�ciently constructed from �0,

with the following properties.

(a) If the expected fraction of simultaneously satis�able clauses of �0 is at most

c1� �(� 0), then on any strategy for assigning values to the existential variables of �,

with probability at least 1 � 1=q(j�0j) the fraction of satis�ed clauses of � is at most

c1.

(b) If the expected fraction of simultaneously satis�able clauses of �0 is at least

c2+ �(� 1), then there is a strategy for assigning values to the existential variables of

� such that with probability at least 1� 1=q(j�0j), the fraction of satis�ed clauses of �

is at least c2.

Proof. � is simply composed of many independent copies of �0, as follows. If

�0 = 9x18x2 : : :9xn0f(x1; : : :xn0)

then for some p = p(j�j) to be chosen later,

� = 9x118x12 : : :9x1n0 : : :9xp18xp2 : : :9xpn0f(x11; : : :x1n0) ^ : : :^ f(xp1; : : :xpn0):

Fix any strategy for assigning values to the existential variables of �. Let random

variable Xi; 1 � i � p be the fraction of clauses that are satis�ed in the subformula

RANDOM DEBATERS 21

Fig. 5. The arrangement of tiles part way through a game of Xmahjongg. Possible moves

include removing the six of dots in the third row and the six of dots in the sixth row, removing the

pair of twos of bamboo in the fourth row, and removing any two of the three available North tiles

(in the �rst, sixth and seventh rows). Xmahjongg is copyright 1989 by Je� S. Young. Tile designs

are copyright 1988 by Mark A. Hohn.

f(xi1; : : :xin0). Let random variable Y be the fraction of satis�ed clauses of �. Then

Y = (1=p)
Pp

i=1Xi. If Var(Xi) is the variance of Xi, then the variance of Y is

Var(Y) =

pX
i=1

Var(Xi=p) � 1=p:

To prove part (a), suppose that �0 is such that the expected fraction of simul-

taneously satis�able clauses is at most c1 � �. Then, the expected value of Xi,

and hence of Y , is at most c1 � � for all i. Thus, from Chebyshev's inequality,

Prob[Y � c1] � 1=(�2p). If p(j�0j) � (1=�2)q(j�0j), then with probability at least

1� 1=q(j�j), Y � c1. The proof of part (b) is similar.

Theorem 3.6. There is a constant 0 < c < 1 such that approximating MAH-

JONGG within ratio n�c is PSPACE-hard.

Proof. To prove this result, we show how to reduce the problem of approximating

the MAX-CLAUSE SSAT function on an instance �0 of the one of the two types

given in Theorem 3.3 to the problem of approximating the MAH-JONGG function on

some instance. We �rst convert �0 into formula � of Lemma 3.5, and then apply the

following reduction to �. We assume without loss of generality that the number of

literals in each of the m clauses of � is exactly three and that the number of variables,

n, is even. Given such an instance �, the main structures of the corresponding Mah-

Jongg game are roughly as follows.

Corresponding to each variable is a set of variable-setting rows. Removing a

22 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

Dm B�D2V1 V2 V3 Vn D1

Fig. 6. The regulating row.

particular tile from one of these rows corresponds to \setting" the variable. Corre-

sponding to each clause is a set of clause rows. Most of the hidden tiles are in the

clause rows. The treasure chest consists of a single row. On the left end of this row

is a special treasure-key tile; the game can be won only by removing this tile. The

matching treasure-key tile can only be accessed by uncovering a \good" subset of

guard-tiles, which are initially hidden. Thus, the goal of a good strategy is to maxi-

mize the number of hidden tiles uncovered so as to maximize the chances of �nding

a good subset of guard-tiles, and hence of removing the treasure-key. This strategy

corresponds to \setting" the existential variables so as to maximize the number of

hidden tiles in the clause rows that are uncovered. (We will see that the random

variables are \set" randomly.)

A regulating row of tiles is used to ensure that variables are set in the correct

order and that no tiles can be removed from a clause row until all variables are

set. Furthermore, the regulating row, together with the variable-setting rows, ensures

that the only tiles in the clause rows that can legally be removed are those tiles in

rows of clauses that have been satis�ed during the variable-setting phase. Thus, the

probability of winning the game depends on the number of clauses that are satis�ed

by the variable assignment chosen in the variable-setting phase.

We now describe the tiles and their arrangement in detail. For each existential

variable xi, there are four tiles labeled Vi (one of which is in the treasure chest) and

for, each random variable xi, there are two tiles labeled Vi. For each clause cj , there

are four tiles Cj and two tiles Dj . There are also b pairs of blocking tiles; again b will

be speci�ed later. The kth pair of blocking tiles is labeled Bk. One of each pair is in

the treasure chest.

Figure 6 describes the regulating row. Here and in what follows, we represent

a blocking tile by B�; the subscript is assumed to be di�erent in each occurrence of

B�, and the position of a particular subscript is arbitrary. If the treasure chest is not

open, in order to remove all tiles in regulating row, the Vi must �rst be matched in

order, followed by the Di in order.

We next describe the variable-setting structures. In addition to the tiles de�ned

above, the variable-setting structures contain for each variable xi, a pair of tiles labeled

Mi;k, where k ranges between 1 and the number of clauses in which either xi or �xi
occurs.

If xi is existential, the ith variable-setting structure is described in Figure 7. If

at some point in the game the treasure chest is not open and Vi is the leftmost tile

in the regulating row, then this tile must be matched to the Vi in either the �rst or

the second row of this structure. If it is matched to the Vi in the �rst row, this is

equivalent to setting xi to true. By removing the M -tiles in this row, the player can

make available the tiles Cj in this structure, for which clause cj contains literal xi.

Similarly, setting xi to false makes available the tiles Cj for which cj contains �xi.

As the fourth Vi tile is in the treasure chest, the Vi that is not matched cannot be

removed until the treasure chest is opened.

RANDOM DEBATERS 23

Cj
s
i
+s0

i

Mi;1

Mi;si+s
0

i

B�

Vi Mi;1 Mi;2 Mi;si
B�

Vi Mi;si+1Mi;si+2

Mi;2

Mi;si+s0

i

B�

B�

Cj1
B�

Cj2

Fig. 7. The variable-setting structure for existential variable i, where j1; j2; : : : ; jsi are the

clauses containing xi and js
i
+1 ; : : : ; js

i
+s

0

i

are the clauses containing �xi.

Hh

H1

H2

Fig. 8. The remaining tiles.

If the variable xi is a random variable, the variable-setting structure is quite

similar, except that hidden tiles are used to ensure that the setting of xi is randomly

chosen. Each pair of hidden tiles is labeled Hk or H
0

k
, for k in the range 1 to h (where

h will be speci�ed later). One tile from each pair is hidden. Each remaining tile H0

k
is

in the treasure chest and each remaining tile Hk forms a singleton row (See Figure 8).

Then, if xi is random, the ith variable-setting structure is described in Figure 9. If

the hidden tile under Vi is H�, then it can be matched to a tile in a singleton row.

We will see that this happens with probability approximately 1=2. As before, if xi is

contained in clause cj, then tile Cj in this structure can be made available. Recall

that �xi never appears if xi is a random variable.

We next describe the clause rows (See Figure 10). Again, we need additional

tiles. For each clause j, there is a pair of tiles labeled M 0
j;k
, where k ranges between 1

24 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

Mi;1

Mi;1

B�

Mi;2

Mi;si

B�

B�

Cj1 B�

Cj2

Vi

Cjs
i

Mi;siMi;2

Fig. 9. The variable-setting structure for random variable i, where j1 ; j2; : : : ; jsi are the clauses

in which xi appears.

M 0
j;2

B�CjDj M 0
j;t

M 0
j;t

M 0
j;2M 0

j;1

M 0
j;1

Fig. 10. The clause row for the ith clause.

and t (where t will be chosen later). There is a tile hidden under each M 0-tile. This

arrangement ensures that if the jth clause is true, then all t of the hidden tiles under

all M 0

j;k
can be removed.

Before describing the treasure chest and the arrangement of guard-tiles, we state

some properties of the game structures constructed so far. In what follows, by \with

high probability", we mean with probability at least 1 � 1=p(j�0j), for some large

polynomial p. First, the number t = t(j�0j) of tiles hidden in each clause component,

is su�ciently large, we can ensure that with high probability, only tiles of the type

Hk or H0

k
are uncovered in the variable-setting phase. Second, assuming that the

random variables are true and false with probability 1=2, it follows from Lemma 3.5

that if q(j�0j) is su�ciently large, then with high probability, the fraction of hidden

tiles uncovered in the clause components is either � c1 or � c2, depending on the

RANDOM DEBATERS 25

V1K L B1 Vn H0
1 LH0

h
Bl

Fig. 11. The treasure chest, where l = 4m+ (3n=2) + 1 + (3v� 1)=2.

type of �0. The di�culty here is that after several hidden tiles have been revealed,

the probability of a random variable's being true or false is no longer 1
2 but depends

on the relative numbers of Hi and H0
i
already revealed. However, if t is su�ciently

large, say t � rk, the chance of any particular variable being true will change by a

factor of at most 1 � k!=rk�1. Thus, the probability of any particular assignment

of trues and falses to the random variables will be changed by a factor of at most

(1 � k!=rk�1)r � 1� k!=rk�2, which won't a�ect the probabilities enough to change

the result. (This is the reason for the tiles Di: They ensure that the hidden tiles

associated with true clauses cannot be revealed, thus changing the probability of a

variable being true, until after the variables have been set.)

The treasure chest is described in Figure 11. On the left end is the treasure-key

K. Rows called guard rows control access to the single key K which matches the

treasure-key in the following way. There are v guard rows (where v is a power of 3

and will be chosen later). Associated with the kth guard row are w pairs of guard-tiles

Gkj; 1 � j � w, one of which is initially hidden. The other guard-tile from each pair

is in the guard row. By �nding all guard-tiles for one guard row, the treasure-key can

be accessed and the treasure chest opened. We describe the structure that enforces

this later; we �rst show how such a structure, with appropriate choice of v and w, can

guarantee that the reduction is \approximation preserving".

First, suppose that the expected fraction of simultaneously satis�able clauses of

�0 is at most c1 � �, so that by Lemma 3.5, on any strategy for assigning values to

the existential variables of �, with probability at least 1 � 1=q(j�0j) the fraction of

satis�ed clauses of � is at most c1. Then with high probability (at least 1�1=p(j�0j)),
on any play of the Mah-Jongg game, at most a fraction c1 of the hidden tiles in

the clause components are uncovered. To remove all guard-tiles from a given guard

row, all w guard-tiles must be uncovered. If at most a fraction c1 of the hidden tiles

in the clause components are uncovered, the probability of �nding these tiles in the

clause components is at most cw1 . Hence, the probability that the treasure-chest is not

opened is at least the probability that no guard-tiles are found during the variable-

setting phase, times the probability that at most a fraction c1 of the hidden tiles in

the clause components are uncovered, times the probability that for all guard rows, it

is not the case that all guard-keys in that guard row are uncovered. This is at least

(1� 1=p(j�0j)2(1 � cw1)
v).

In the case that the expected fraction of simultaneously satis�able clauses of �0

is at least c2 + �, a slightly di�erent argument shows that the probability that the

treasure-chest is opened is at least (1� 1=p(j�0j)2(1� (1� cw2)
v). We need to choose

w and v so that (1� cw1)
v is large and (1� cw2)

v is small. We let w = log1=c1 j�
0j and

let v = j�0j. Then, (1� cw1)
v = (1 � 1=j�0j)j�

0
j � 1=e, and (1� cw2)

v � n�c, for some

c > 0. This completes the proof that the reduction is approximation-preserving.

It remains to describe the structure that ensures that the treasure-key can only

be accessed by �nding all guard-tiles for one guard row. One way to ensure this in

our construction would be to put a key K matching the treasure-key in each guard

row, which could be accessed once all the guard-tiles of the guard-row are removed.

26 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

G6w

B�

B�

B�

B�

B�

B�

B�

B�K01

B�G1w K01G11

G21

G31

G41

G51

G61

G2w

K02

K02

K02

Gv�2;1

Gv�1;1

Gv1

Gv�2;w

Gv�1;w

Gvw

K0i

K0i

K0i

K01G3w

G4w

G5w

Fig. 12. The guard rows.

However, this requires an unbounded number of treasure-keys. The following scheme

achieves the same goal while ensuring that the number of tiles of any one type is at

most 4 (see Figures 12 and 13).

The guard rows are arranged in groups of three; each row in the ith group has

a tile K0i to the right of all of its guard-tiles; this is followed by a blocking tile B�.

For each group i, a fourth tile K0i appears as the leftmost tile in a row with two

other tiles. Again, these \�rst-level" rows are grouped in three's. Each row in the i0th

group has as its middle tile a tile K1i0 , and a blocking B�-tile as its rightmost tile.

Again for each i0, the fourth K1i0 tile appears as the leftmost tile in a \second-level"

row with two other tiles and these rows are grouped in three's. Each row in the i00th

group has as its middle tile a tile K2i00 , and a blocking B�-tile as its rightmost tile.

Further levels of rows are constructed in this way; the number of rows at each level of

this structure decreases by a factor of three, until there is only one row left. This row

again has three tiles, but the middle one matches the treasure-key K. By opening

any one of the guard rows, a row at each level can successively be opened until the

treasure-key is �nally accessed.

RANDOM DEBATERS 27

K1;i=3

K01 K11 B�

B�

B�

B�

K11 B�K02

K11 K21

KKj1

B�K0i K1;i=3

K2;i=9

Fig. 13. Levels of rows which guard access to the treasure chest. If all guard-tiles from one

guard row are removed, the key K0j in that row can be used to remove keys at successive levels of

this structure until the treasure-key K is removed at the last level.

To account for the number of pairs of blocking tiles needed, note that (3v� 1)=2

are needed for the guard rows, as well as 4m + 3n=2 for the clause and variable-

setting rows, and 1 for the regulating row. Therefore, the total number of blocking

tiles needed is 4m + 3n=2 + 1 + (3v � 1)=2. Also, once t; v and w are selected to

ensure correctness of the reduction, h, the number of pairs of initially hidden tiles of

the form Hk or H0

k
for some k, can be determined as follows. The total number of

hidden tiles is 2h + vw, that is, one tile from each pair of the form Hk or H0

k
, and

one of each of the vw pairs of guard-tiles. Also, the number of locations in which tiles

are hidden initially is r +mt, that is, one in each variable-setting structure for the r

random variables, and t in each of the m clause structures. Hence h is chosen so that

2h+ vw = r +mt.

4. Nonapproximability Results using IP. The proofs of all of the non-

approximability results in the previous section were based on the characterization

RPCD(logn; 1) = PSPACE. In this section, we prove nonapproximability results for

di�erent PSPACE-hard functions, based on the characterization IP = PSPACE ob-

tained in [16, 22].

The �rst problem we consider here is also based on the language SSAT. Once

again, an instance of SSAT can be thought of as a game between an existential

player and a random player, but this time the objective of the existential player

is to maximize the probability that � is satis�ed. The value of MAX-PROB SSAT on

a given instance is the probability that � is satis�ed if the existential player follows

an optimal strategy. The language SSAT, as de�ned in [21], consists of all instances

� for which MAX-PROB SSAT(�) > 1=2.

The reductions in this section are based on the following fact, which is a direct

consequence of the proof that IP = PSPACE.

Fact 4.1. For any language L in PSPACE and any � < 1, there is a polynomial-

time reduction f from L to SSAT such that

x 2 L)MAX-PROB SSAT(f(x)) = 1; and

28 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

x 62 L)MAX-PROB SSAT(f(x)) < 1=2n
�

;

where n is the number of variables in f(x).

The next theorem is a direct consequence of Fact 4.1.

Theorem 4.2. There is a constant c > 0 such that approximating MAX-PROB

SSAT within ratio 2�n
c

is PSPACE-hard.

Papadimitriou [21] de�nes the language Dynamic Markov Process (DMP). An

instance is a set S of states and an n � n stochastic matrix P , where n = jSj.
Associated with each state si is a set Di of decisions, and each d 2 Di is assigned a

cost c(d) and a matrix Rd. Each row of Rd must sum to 0, and each entry of P +Rd

must be nonnegative. The result of making decision d when the process is in state

si is that a cost of c(d) is incurred, and the probability of moving to state sj is the

(i; j)th entry of P +Rd. A strategy determines which decisions are made over time; an

optimal strategy is one that minimizes the expected cost of getting from state s1 to

state sn. The language DMP consists of tuples (S; P; fDig; c; fRdg; B) for which there
is a strategy with expected cost at most B. A natural optimization problem is MIN

DMP, the function that maps (S; P; fDig; c; fRdg) to the expected cost of an optimal

strategy. Papadimitriou [21] proves that DMP is PSPACE-complete by providing a

reduction from SSAT. In fact, the reduction has the property that if SSAT instance

� is mapped to DMP instance (S; P; fDig; c; fRdg; B), and MAX-PROB SSAT(�)

= p, then MIN DMP(S; P; fDig; c; fRdg) = p=4. The next result thus follows from

Theorem 4.2.

Theorem 4.3. There is a constant c > 0 such that approximating MIN DMP

within ratio 2�n
c

is PSPACE-hard.

The complexity of coloring games was studied by Bodlaender [7], motivated by

scheduling problems. An instance of a coloring game consists of a graph G = (V;E),

an ownership function o that speci�es which of two players, 0 and 1, owns each vertex,

a linear ordering f on the vertices, and a �nite set C of colors. This instance speci�es

a game in which the players color the vertices in the order speci�ed by the linear

ordering. When vertex i is colored, its owner chooses a color from the set of legal

colors, i.e., those in set C that are not colors of the colored neighbors of i. The game

ends either when all vertices are colored, or when a player cannot color the next vertex

in the linear ordering f because there are no legal colors. Player 1 wins if and only if

all vertices are colored at the end of the game. The length of the game is the number

of colored vertices at the end of the game.

We consider a stochastic coloring game (SCG) in which one player, say 0, ran-

domly chooses a color from the set of legal colors at each stage. Two correspond-

ing optimization problems are to maximize the following functions: MAX-PROB

SCG(G; o; f; C), which is the maximum probability that Player 1 wins the game

(G; o; f; C), and MAX-LENGTH SCG(G; o; f; C), which is the maximum expected

length of the game (both maxima are taken over all strategies of Player 1).

We show that MAX-PROB SCG is PSPACE-hard to approximate within a factor

of 2�n
c

, for some constant c > 0, and that MAX-LENGTH SCG is PSPACE-hard to

approximate within a factor of n�c
0

, for some constant c0 > 0.

Theorem 4.4. There is a constant c > 0 such that approximating MAX-PROB

SCG within ratio 2�n
c

is PSPACE-hard.

Proof. We describe a reduction from MAX-PROB SSAT to MAX-PROB SCG

that adapts the original construction [7]. By Fact 4.1, we can restrict our attention

to instances � such that either MAX-PROB SSAT(�) = 1 or MAX-PROB SSAT(�)

RANDOM DEBATERS 29

< 1=2n
�

, for some � > 0. We construct an instance G = (V;E) of MAX-PROB SCG

as follows.

V = ftrue; false;Xg [fxi; �xi j 1 � i � ng

[fcj;k j 1 � j � m; 1 � k � ng [fdg:

The linear ordering f of the vertices is as follows:

true; false;X; x1; �x1; x2; �x2; : : : ; xn�xn; c1;1; c1;2; : : : ; cm;n; d:

The ownership function is speci�ed as follows. Player 1 owns the vertices true; false,

and X and also the vertices xi; �xi where xi is existentially quanti�ed in the formula

�. Player 0 owns the remaining vertices. The set of colors C is ftrue; false;Xg.
It remains to specify the set of edges.

E = fftrue; falseg; ftrue;Xg; ffalse;Xgg(1)

[ffxi; �xig; fX;xig; fX; �xig j 1 � i � ng(2)

[ffli; cj;kg; ffalse; cj;kg j li is a literal in cj; 1 � i � n; 1 � j � m; 1 � k � ng(3)

[ffcj;k; dg j 1 � j � m; 1 � k � ng [ffd; falseg; fd;Xgg:(4)

The set of edges (1) ensures that vertices true; false;X are colored with three

distinct colors. Without loss of generality, suppose that they are colored true; false

and X, respectively.

The set of edges (2) ensures that, for each pair xi; �xi, one is colored true and the

other false. Thus, each coloring of these vertices corresponds to a truth assignment

of the variables x1; : : : ; xn.

The set of edges (3) ensures that, if clause cj is true with respect to the truth

assignment corresponding to the coloring of vertices x1; : : : ; xn, then each vertex cj;k
is colored X. If cj is false, then each vertex cj;k is independently colored X or true,

each with probability 1=2.

The set of edges (4) ensures that d can be colored only if all the cj;k are colored

X.

We claim that deciding whether MAX-PROB SAT(�) is equal to 1 or is at most

1=2n
�

can be reduced in polynomial time to approximating MAX-PROB SCG(G; o;

f; C) within ratio 2�n
c

, where c is a positive constant that depends on �. To see

this, note that if MAX-PROB SSAT(�) = 1, then there is a way to choose a truth

assignment to the existentially quanti�ed variables that ensures that all clauses of �

are true. Hence, by de�nition of the ownership function, Player 1 has a strategy for

coloring vertices such that, for every choice of colors of Player 0, the corresponding

truth assignment to x1; : : : ; xn satis�es all clauses. Hence, all vertices cj;k are colored

X, and so vertex d can be colored. Thus, Player 1 has a strategy that wins with

probability 1.

On the other hand, if MAX-PROB SSAT(�) < 1=2n
�

, then on any strategy of

Player 1, d can be colored with only exponentially small probability. This is because,

on all strategies of Player 1, with probability at least 1� 1=2n
�

, the truth assignment

30 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

corresponding to the variable coloring fails to satisfy f(x). Suppose that clause cj is

false. Then with probability at least 1� 1=2n, one of the vertices cj;k; 1 � k � n, is

colored true. As a result, d can be colored with probability at most 1� (1�1=2n)(1�
1=2n

�

).

The proof of Theorem 4.4 can easily be modi�ed to show the following.

Theorem 4.5. There is a constant c0 > 0 such that approximating MAX-

LENGTH SCG within ratio n�c
0

is PSPACE-hard.

Proof. Simply modify the construction of Theorem 4.4 so that the vertex set is

V 0, consisting of the vertices of V plus jV jn2c
0

additional vertices d1; : : : ; djV jn2c
0 . The

ownership of these vertices can be speci�ed arbitrarily, and they are ordered after the

vertices in V . No additional edges are needed.

The expected length of the game is now either jV j � 1 + jV jn2c
0

or jV j � 1 + (1�
(1� 1=2n)(1� 1=2n

�

))(jV jn2c
0

), depending on the two possibilities for the probability

that � is satis�ed.

5. Open Problems. There are many other two-player games that can be made

into stochastic functions by letting Player 0 play randomly. Examples include the

following.

1. In the Node Kayles game of Schaefer [22], the input is a graph. A move

consists of putting a marker on an unoccupied vertex that is not adjacent to any

occupied vertex. The �rst player unable to move loses. We can de�ne Stochastic

Node Kayles (SNK) in the same way, except that Player 0, rather than choosing

optimally among all unoccupied vertices that are not adjacent to occupied vertices,

instead chooses uniformly at random from the same set. Player 1's objective is to

keep the game going as long as possible. MAX SNK is the expected length of the

game under an optimal strategy of Player 1.

2. In the Generalized Hex game of Even and Tarjan [12], the input is a graph

with two distinguished nodes n1 and n2. A move for Player 1 (0) consists of putting

a white (black) marker on a vertex; the player is free to choose any unoccupied vertex

except n1 or n2. After all vertices have been chosen, Player 1 wins if and only if there

is a path from n1 to n2 along only white-occupied vertices. Stochastic Generalized

Hex (SGH) is, as usual, the same game in which Player 0 places a black marker on

a random unoccupied vertex rather than an optimal unoccupied vertex. A natural

stochastic function is MAX-PROB SGH, which maps a graph to the probability, under

an optimal strategy of Player 1, that there will be a white path from n1 to n2.

Super�cially, these games di�er from games like Generalized Geography and

Stochastic Coloring in that there is no \locality" requirement on the moves of the

random player. In Stochastic Generalized Geography, the random player must choose

from among the arcs out of the current vertex, and in SCG the random player must

color the vertex speci�ed by the ownership function. The reductions that we use to

prove MAX SGGEOG, MAX-PROB SCG, and MAX-LENGTH SCG hard to approx-

imate make essential use of this locality. In Node Kayles, say, the random player may

choose to mark a vertex that is very far away from the vertex just marked by the

existential player.

We have not proven nonapproximability results for any functions without locality.

Are they easy to approximate within some constant ratio? Are they in fact easy to

compute exactly? It would be interesting to settle the di�culty of approximating

these functions and, more generally, to characterize precisely those PSPACE-complete

languages that give rise to stochastic functions that are hard to approximate.

RANDOM DEBATERS 31

6. Acknowledgements. We thank the anonymous referees for their very helpful

comments, in particular, for pointing out that our bounds on the nonapproximability

of SSGEOG and MAH-JONGG could be improved.

REFERENCES

[1] M. Ajtai and M. Ben-Or, A Theorem on Probabilistic Constant Depth Circuits, Proc. 16th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1984, pp. 471-474.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof Veri�cation and Hard-

ness of Approximation Problems, Proc. 33rd Symposium on Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos, 1992, pp. 14{23.

[3] S. Arora and M. Safra, Probabilistic Checking of Proofs, Proc. 33rd Symposium on Founda-
tions of Computer Science, IEEE Computer Society Press, Los Alamitos, 1992, pp. 2{13.

[4] L. Babai and S. Moran, Arthur-Merlin Games: A Randomized Proof System and a Hierarchy

of Complexity Classes, J. Comput. System Sci., 36 (1988), pp. 254{276.

[5] M. Bellare, S. Goldwasser, C. Lund and A. Russell, E�cient Probabilistic Checkable

Proofs and Applications to Approximation, Proc. 25th Symposium on Theory of Comput-

ing, ACM, New York, 1993, pp. 286-293.
[6] M. Bellare and M. Sudan, Improved Non-approximability Results, Proc. 26th Symposium

on Theory of Computing, ACM, New York, 1994, pp. 184-193.
[7] H. L. Bodlaender, On the Complexity of Some Coloring Games, Intl. J. Foundations Com-

put. Sci., 2 (1991), pp. 133-147.
[8] R. B. Boppana and M. Sipser, The Complexity of Finite Functions, in Handbook of Theo-

retical Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen (ed.),

MIT Press/Elsevier, 1990, pp. 757{800.
[9] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. ACM, 28 (1981),

pp. 114-133.
[10] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Probabilistically Checkable Debate

Systems and Nonapproximability of PSPACE-Hard Functions, Chicago J. Theoretical
Comp. Sci., vol. 1995, no. 4. Extended abstract, entitled Probabilistically Checkable De-

bate Systems and Approximation Algorithms for PSPACE-Hard Functions, in Proc. 25th

Symposium on Theory of Computing, ACM, New York, 1993, pp. 305-314.
[11] A. Condon, J. Feigenbaum, C. Lund, and P. Shor, Random Debaters and the Hardness of

Approximating Stochastic Functions (Extended Abstract), AT&T Bell Laboratories Tech-
nical Memorandum, Murray Hill NJ, May 1993.

[12] S. Even and R. Tarjan, A Combinatorial Problem which is Complete in Polynomial Space,
J. ACM, 23 (1976), pp. 710{719.

[13] U. Feige, S. Goldwasser, L. Lov�asz, M. Safra, and M. Szegedy, Approximating Clique is

Almost NP-Complete, Proc. 32nd Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, 1991, pp. 2{12.

[14] H. Hunt III, M. Marathe and R. Stearns, Generalized CNF Satis�ability Problems and

Non-E�cient Approximability, Proc. 9th Conference on Structure in Complexity Theory,

IEEE Computer Society Press, Los Alamitos, 1994, pp. 356-366.
[15] D. S. Johnson, A Catalog of Complexity Classes, in Handbook of Theoretical Com-

puter Science, Volume A: Algorithms and Complexity, J. van Leeuwen (ed.), The MIT
Press/Elsevier, 1990, pp. 67{162.

[16] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, Algebraic methods for interactive proof

systems, J. ACM, 39 (1992), pp. 859{868.
[17] C. Lund and M. Yannakakis, On the Hardness of Approximating Minimization Problems,

J. ACM, 41 (1994), pp. 960{981.
[18] M. Marathe, H. Hunt III, and S. Ravi, The Complexity of Approximating PSPACE-

Complete Problems for Hierarchical Speci�cations, Proc. 20th International Colloquium
On Automata, Languages and Programming, A. Lingas, R. Karlsson, and S. Carlsson
(eds.), Lecture Notes in Comput. Sci., vol. 700, Spinger, Berlin, 1993, pp. 76-87.

[19] M. Marathe, H. Hunt III, R. Stearns, and V. Radhakrishnan, Hierarchical Speci�ca-

tions and Polynomial-Time Approximation Schemes for PSPACE-Complete Problems,
Proc. 26th Symposium on Theory of Computing, ACM, New York, 1994, pp. 468{477.

[20] J. Orlin, The complexity of Dynamic Languages and Dynamic Optimization Problems,
Proc. 13th Symposium on Theory of Computing, ACM, New York, 1981, pp. 218{227.

[21] C. Papadimitriou, Games Against Nature, J. Comput. System Sci., 31 (1985), pp. 288{301.

[22] T. J. Schaefer,On the Complexity of Some Two-Person Perfect-Information Games, J. Com-

32 A. CONDON, J. FEIGENBAUM, C. LUND AND P. SHOR

put. System Sci., 16 (1978), pp. 185{225.
[23] A. Shamir, IP = PSPACE, J. ACM, 39 (1992), pp. 869{877.
[24] M. Sudan, E�cient Checking of Polynomials and Proofs and the Hardness of Approximation

Problems, PhD Thesis, University of California, Computer Science Division, Berkeley CA,
1992.

[25] L. Valiant, The Complexity of Enumeration and Reliability Problems, SIAM J. Comput., 8
(1979), pp. 410{421.

